MATH 202A APPLIED ALGEBRA I FALL 2019

Homework week 8

Due by the beginning of class on Friday 22nd November (hand in via Gradescope).

For two norms $\|\cdot\|$, $\|\cdot\|'$ on the same vector space V, we write $\|\cdot\| \le \|\cdot\|'$ to mean $\|v\| \le \|v\|'$ for all $v \in V$.

Throughout, you may use any form on the Hahn–Banach theorem that has been stated in lectures (proven or otherwise).

1. For each of the following pairs of norms $\|\cdot\|, \|\cdot\|'$ on \mathbb{C}^n , find, with proof, the smallest constant C > 0 and the largest constant c > 0 such that $c\|v\| \le \|v\|' \le C\|v\|$. (These constants may depend on n.)

(a)
$$\|\cdot\| = \|\cdot\|_2, \|\cdot\|' = \|\cdot\|_{\infty}.$$

- **(b)** $\|\cdot\| = \|\cdot\|_2, \|\cdot\|' = \|\cdot\|_1.$
- (c) $\|\cdot\| = \|\cdot\|_7$, $\|\cdot\|' = \|\cdot\|_{17}$. [If you prefer to prove a general result, feel free.]
- **2.** Let V be a finite-dimensional vector space.
 - (a) Suppose $\|\cdot\|$, $\|\cdot\|'$ are two norms on V such that $\|\cdot\| \le \|\cdot\|'$. Prove that $\|\cdot\|'^* \le \|\cdot\|^*$.
 - (b) If $\|\cdot\|$ is a norm on V and $\alpha \in \mathbb{R}_{>0}$ is a scalar, write $\alpha \|\cdot\|$ for the norm $v \mapsto \alpha \|v\|$. Prove that the dual norm to $\alpha \|\cdot\|$ is $(1/\alpha) \|\cdot\|^*$.
- **3.** Let V, W be finite-dimensional normed spaces, with the norms denoted $\|\cdot\|_V, \|\cdot\|_W$. Consider V^*, W^* as normed spaces with the norms $\|\cdot\|_V^*, \|\cdot\|_W^*$ respectively.

Also, suppose $\phi \colon V \to W$ is a linear map.

- (a) Prove that $\|\phi^*\|_{\text{op}} \le \|\phi\|_{\text{op}}$.
- (b) Prove that ||φ*||_{op} = ||φ||_{op}.
 [Hint: stating part (a) before part (b) is a hint.]
- (c) Reflect on the relationship between your proof of Pset 4 Q3 on the one hand, and (a) here together with Example 5.3.1 on the other hand. [You do not need to write anything for this part.]
- 4. Let V be a finite-dimensional vector space and $\|\cdot\|$, $\|\cdot\|'$ two norms on V. Consider the following functions $V \to \mathbb{R}$:—

$$v \mapsto \|v\| + \|v\|' \\ v \mapsto \max(\|v\|, \|v\|') \\ v \mapsto \inf_{\substack{x, y \in V \\ x+y=v}} (\|x\| + \|y\|') \\ v \mapsto \inf_{\substack{x, y \in V \\ x+y=v}} \max(\|x\|, \|y\|').$$

We denote there respectively by $\|\cdot\| + \|\cdot\|'$, $\max(\|\cdot\|, \|\cdot\|')$, $\operatorname{coplus}(\|\cdot\|, \|\cdot\|')$ and $\operatorname{comax}(\|\cdot\|, \|\cdot\|')$. Note these last two are non-standard notation.

(a) Very briefly, verify that these are all norms on V.

- (b) Prove that $(\|\cdot\| + \|\cdot\|')^* \leq \operatorname{comax}(\|\cdot\|^*, \|\cdot\|'^*).$
- (c) Prove that (max(||·||, ||·||'))* ≤ coplus(||·||*, ||·||'*)).
 [Note: these proofs may have many common steps. You should feel free to merge you answers or otherwise avoid repeating yourself too much.]
- (d') Prove that $(\operatorname{comax}(\|\cdot\|, \|\cdot\|'))^* \ge \|\cdot\|^* + \|\cdot\|'^*$. [Hint: Given $\phi \in V^*$, by definition you are trying to find $v \in V$ such that $|\phi(v)|$ is large but $\|v\|_{\operatorname{comax}}$ is small. Note this is the same as trying to find $x, y \in V$ with $|\phi(x+y)|$ large but $\max(\|x\|, \|y\|')$ small. You can do this directly from the definitions of $\|\phi\|^*$ and $\|\phi\|'^*$.]
- (e') Prove that $(\text{coplus}(\|\cdot\|,\|\cdot\|'))^* \ge \max(\|\cdot\|^*,\|\cdot\|'^*)$. [Hint: see (d').]
- (f) Prove that in fact equality holds in (b),(c),(d'),(e').[Hint: now you shouldn't have to do more work.]
- 5. Consider the vector space \mathbb{C}^n with the usual ℓ^p -norms.
 - (a) Prove that $\|\cdot\|_2 \leq \frac{1}{2} \|\cdot\|_{4/3} + \frac{1}{2} \|\cdot\|_4$. [Here we use the notation developed in previous questions.]
 - (b) Let $x \in \mathbb{C}^n$ be a vector with $||x||_2 \leq 1$. Prove that there is a decomposition x = y + z where $y, z \in \mathbb{C}^n$ satisfy $||y||_{4/3} \leq 1/2$ and $||z||_4 \leq 1/2$.

[Note: you could give a direct proof of this statement, i.e. by finding an explicit formula for y_i and z_i , using calculus or otherwise. This is strongly discouraged. You should attempt to obtain this fact "for free" from (a), by leveraging the results from the rest of the pset.]

 $\mathbf{2}$