MATH 202A

APPLIED ALGEBRA I

FALL 2019

Homework week 8

Due by the beginning of class on Friday 22nd November (hand in via Gradescope).
For two norms $\|\cdot\|,\|\cdot\|^{\prime}$ on the same vector space V, we write $\|\cdot\| \leq\|\cdot\|^{\prime}$ to mean $\|v\| \leq\|v\|^{\prime}$ for all $v \in V$.

Throughout, you may use any form on the Hahn-Banach theorem that has been stated in lectures (proven or otherwise).

1. For each of the following pairs of norms $\|\cdot\|,\|\cdot\|^{\prime}$ on \mathbb{C}^{n}, find, with proof, the smallest constant $C>0$ and the largest constant $c>0$ such that $c\|v\| \leq\|v\|^{\prime} \leq C\|v\|$. (These constants may depend on n.)
(a) $\|\cdot\|=\|\cdot\|_{2},\|\cdot\|^{\prime}=\|\cdot\|_{\infty}$.
(b) $\|\cdot\|=\|\cdot\|_{2},\|\cdot\|^{\prime}=\|\cdot\|_{1}$.
(c) $\|\cdot\|=\|\cdot\|_{7},\|\cdot\|^{\prime}=\|\cdot\|_{17}$.
[If you prefer to prove a general result, feel free.]
2. Let V be a finite-dimensional vector space.
(a) Suppose $\|\cdot\|,\|\cdot\|^{\prime}$ are two norms on V such that $\|\cdot\| \leq\|\cdot\|^{\prime}$. Prove that $\|\cdot\|^{*} \leq\|\cdot\|^{*}$.
(b) If $\|\cdot\|$ is a norm on V and $\alpha \in \mathbb{R}_{>0}$ is a scalar, write $\alpha\|\cdot\|$ for the norm $v \mapsto \alpha\|v\|$. Prove that the dual norm to $\alpha\|\cdot\|$ is $(1 / \alpha)\|\cdot\|^{*}$.
3. Let V, W be finite-dimensional normed spaces, with the norms denoted $\|\cdot\|_{V},\|\cdot\|_{W}$. Consider V^{*}, W^{*} as normed spaces with the norms $\|\cdot\|_{V}^{*},\|\cdot\|_{W}^{*}$ respectively.
Also, suppose $\phi: V \rightarrow W$ is a linear map.
(a) Prove that $\left\|\phi^{*}\right\|_{\mathrm{op}} \leq\|\phi\|_{\mathrm{op}}$.
(b) Prove that $\left\|\phi^{*}\right\|_{\mathrm{op}}=\|\phi\|_{\mathrm{op}}$.
[Hint: stating part (a) before part (b) is a hint.]
(c) Reflect on the relationship between your proof of Pset 4 Q3 on the one hand, and (a) here together with Example 5.3.1 on the other hand. [You do not need to write anything for this part.]
4. Let V be a finite-dimensional vector space and $\|\cdot\|,\|\cdot\|^{\prime}$ two norms on V. Consider the following functions $V \rightarrow \mathbb{R}$:-

$$
\begin{aligned}
v & \mapsto\|v\|+\|v\|^{\prime} \\
v & \mapsto \max \left(\|v\|,\|v\|^{\prime}\right) \\
v & \mapsto \inf _{\substack{x, y \in V \\
x+y=v}}\left(\|x\|+\|y\|^{\prime}\right) \\
v & \mapsto \inf _{\substack{x, y \in V \\
x+y=v}} \max \left(\|x\|,\|y\|^{\prime}\right) .
\end{aligned}
$$

We denote there respectively by $\|\cdot\|+\|\cdot\|^{\prime}, \max \left(\|\cdot\|,\|\cdot\|^{\prime}\right)$, coplus $\left(\|\cdot\|,\|\cdot\|^{\prime}\right)$ and $\operatorname{comax}\left(\|\cdot\|,\|\cdot\|^{\prime}\right)$. Note these last two are non-standard notation.
(a) Very briefly, verify that these are all norms on V.
(b) Prove that $\left(\|\cdot\|+\|\cdot\|^{\prime}\right)^{*} \leq \operatorname{comax}\left(\|\cdot\|^{*},\|\cdot\|^{* *}\right)$.
(c) Prove that $\left.\left(\max \left(\|\cdot\|,\|\cdot\|^{\prime}\right)\right)^{*} \leq \operatorname{coplus}\left(\|\cdot\|^{*},\|\cdot\|^{\prime *}\right)\right)$.
[Note: these proofs may have many common steps. You should feel free to merge you answers or otherwise avoid repeating yourself too much.]
(d') Prove that $\left(\operatorname{comax}\left(\|\cdot\|,\|\cdot\|^{\prime}\right)\right)^{*} \geq\|\cdot\|^{*}+\|\cdot\|^{\prime *}$.
[Hint: Given $\phi \in V^{*}$, by definition you are trying to find $v \in V$ such that $|\phi(v)|$ is large but $\|v\|_{\text {comax }}$ is small. Note this is the same as trying to find $x, y \in V$ with $|\phi(x+y)|$ large but $\max \left(\|x\|,\|y\|^{\prime}\right)$ small. You can do this directly from the definitions of $\|\phi\|^{*}$ and $\|\phi\|^{\prime *}$.]
(e') Prove that $\left(\operatorname{coplus}\left(\|\cdot\|,\|\cdot\|^{\prime}\right)\right)^{*} \geq \max \left(\|\cdot\|^{*},\|\cdot\|^{\prime *}\right)$.
[Hint: see (d').]
(f) Prove that in fact equality holds in (b),(c),(d'),(e).
[Hint: now you shouldn't have to do more work.]
5. Consider the vector space \mathbb{C}^{n} with the usual ℓ^{p}-norms.
(a) Prove that $\|\cdot\|_{2} \leq \frac{1}{2}\|\cdot\|_{4 / 3}+\frac{1}{2}\|\cdot\|_{4}$.
[Here we use the notation developed in previous questions.]
(b) Let $x \in \mathbb{C}^{n}$ be a vector with $\|x\|_{2} \leq 1$. Prove that there is a decomposition $x=y+z$ where $y, z \in \mathbb{C}^{n}$ satisfy $\|y\|_{4 / 3} \leq 1 / 2$ and $\|z\|_{4} \leq 1 / 2$.
[Note: you could give a direct proof of this statement, i.e. by finding an explicit formula for y_{i} and z_{i}, using calculus or otherwise. This is strongly discouraged. You should attempt to obtain this fact "for free" from (a), by leveraging the results from the rest of the pset.]

