MATH 202A

APPLIED ALGEBRA I

FALL 2019

Homework week 7

Due by the beginning of class on Friday 15 th November (hand in via Gradescope).

1. Suppose V is a finite-dimensional vector space, $\phi: V \rightarrow V$ is a nilpotent linear map, $m \geq 1$, $n_{1}, \ldots, n_{m} \geq 1$ are integers $\left(n_{1}+\cdots+n_{m}=\operatorname{dim} V\right)$ and $v_{i, j}\left(1 \leq i \leq m, 1 \leq j \leq n_{i}\right)$ are some basis for V such that

$$
\phi\left(v_{i, j}\right)= \begin{cases}v_{i, j-1} & : j>1 \\ 0 & : j=1\end{cases}
$$

as guaranteed by Theorem 4.2.7.
(a) Prove that

$$
\operatorname{dim} \operatorname{ker}\left(\phi^{k}\right)=\sum_{i=1}^{m} \min \left(k, n_{i}\right)
$$

(b) Hence, for each integer $r \geq 1$, find an expression for $\left|\left\{i: 1 \leq i \leq m, n_{i}=r\right\}\right|$ (the number of blocks of size r) in terms of the quantities $\operatorname{dim} \operatorname{ker}\left(\phi^{k}\right)$.
[In other words, this shows nilpotent normal form is unique up to permuting the blocks.]
2. Consider the space V of complex sequences $\left(a_{0}, a_{1}, a_{2}, \ldots\right)$ satisfying

$$
a_{n}=r_{1} a_{n-1}+r_{2} a_{n-2}+\cdots+r_{d} a_{n-d}
$$

for all $n \geq d$, where $d \geq 1$ is an integer and $r_{1}, \ldots, r_{d} \in \mathbb{C}$ are fixed constants.
Show that there is a basis for V consisting of sequences of the form

$$
a_{n}=\lambda^{n}\binom{n}{\ell}
$$

for some $\lambda \in \mathbb{C}$ and $\ell \geq 0$.
[Hint: let $\phi: V \rightarrow V$ denote the (infinite) left shift, as in Pset 6 Q6. One approach is to consider $v=\left(a_{0}, a_{1}, \ldots\right) \in G(\lambda, \phi)$ and find an explicit formula for a_{n}.]
3.(a) Suppose V is an inner product space with inner product $\langle-,-\rangle$ and associated norm $\|\cdot\|$. Prove that the parallelogram law holds for $\|\cdot\|$: that is, for all $v, w \in V$ we have

$$
\|v+w\|^{2}+\|v-w\|^{2}=2\|v\|^{2}+2\|w\|^{2}
$$

(b) For any $n \geq 1$ and $1 \leq p \leq \infty, p \neq 2$, find vectors $v, w \in \mathbb{R}^{n}$ such that

$$
\|v+w\|_{p}^{2}+\|v-w\|_{p}^{2} \neq 2\|v\|_{p}^{2}+2\|w\|_{p}^{2}
$$

4.(a) Suppose V is a finite-dimensional real vector space and $\|\cdot\|$ is a norm on V obeying the parallelogram law: that is,

$$
\|v+w\|^{2}+\|v-w\|^{2}=2\|v\|^{2}+2\|w\|^{2}
$$

for all $v, w \in V$. Prove that there is an inner product $\langle-,-\rangle$ on V such that $\|v\|=\sqrt{\langle v, v\rangle}$.
[Hint: consider the quantity $\frac{1}{4}\left(\|v+w\|^{2}-\|v-w\|^{2}\right)$.]
(b) Prove the same statement as (i) assuming now that V is a complex vector space.
[Hint: it may now help to build an expression from the quantities $\|v \pm w\|^{2}$ and $\|v \pm i w\|^{2}$.]
5. Let $V=\mathbb{R}^{n}$, and identify $V^{*}=\mathbb{R}^{n}$ in the usual way; i.e., a vector $\left(a_{1}, \ldots, a_{n}\right) \in \mathbb{R}^{n}$ corresponds to a linear map $\mathbb{R}^{n} \rightarrow \mathbb{R}$,

$$
\left(x_{1}, \ldots, x_{n}\right) \mapsto a_{1} x_{1}+\cdots+a_{n} x_{n}
$$

For each of the norms $\|\cdot\|_{\infty}$ and $\|\cdot\|_{1}$ on \mathbb{R}^{n}, determine carefully the value of the corresponding dual norms $\left\|\left(a_{1}, \ldots, a_{n}\right)\right\|_{\infty}^{*},\left\|\left(a_{1}, \ldots, a_{n}\right)\right\|_{1}^{*}$ for all $\left(a_{1}, \ldots, a_{n}\right) \in \mathbb{R}^{n} \cong V^{*}$.

