MATH 202A APPLIED ALGEBRA I FALL 2019

Homework week 7

Due by the beginning of class on Friday 15th November (hand in via Gradescope).

1. Suppose V is a finite-dimensional vector space, $\phi: V \to V$ is a nilpotent linear map, $m \ge 1$, $n_1, \ldots, n_m \ge 1$ are integers $(n_1 + \cdots + n_m = \dim V)$ and $v_{i,j}$ $(1 \le i \le m, 1 \le j \le n_i)$ are some basis for V such that

$$\phi(v_{i,j}) = \begin{cases} v_{i,j-1} & : j > 1\\ 0 & : j = 1 \end{cases}$$

as guaranteed by Theorem 4.2.7.

(a) Prove that

$$\dim \ker(\phi^k) = \sum_{i=1}^m \min(k, n_i).$$

(b) Hence, for each integer $r \ge 1$, find an expression for $|\{i: 1 \le i \le m, n_i = r\}|$ (the number of blocks of size r) in terms of the quantities dim ker (ϕ^k) .

[In other words, this shows nilpotent normal form is unique up to permuting the blocks.]

2. Consider the space V of complex sequences $(a_0, a_1, a_2, ...)$ satisfying

$$a_n = r_1 a_{n-1} + r_2 a_{n-2} + \dots + r_d a_{n-d}$$

for all $n \ge d$, where $d \ge 1$ is an integer and $r_1, \ldots, r_d \in \mathbb{C}$ are fixed constants. Show that there is a basis for V consisting of sequences of the form

$$a_n = \lambda^n \binom{n}{\ell}$$

for some $\lambda \in \mathbb{C}$ and $\ell \geq 0$.

[**Hint**: let $\phi: V \to V$ denote the (infinite) left shift, as in Pset 6 Q6. One approach is to consider $v = (a_0, a_1, \ldots) \in G(\lambda, \phi)$ and find an explicit formula for a_n .]

3.(a) Suppose V is an inner product space with inner product $\langle -, - \rangle$ and associated norm $\|\cdot\|$. Prove that the *parallelogram law* holds for $\|\cdot\|$: that is, for all $v, w \in V$ we have

$$||v + w||^{2} + ||v - w||^{2} = 2||v||^{2} + 2||w||^{2}.$$

(b) For any $n \ge 1$ and $1 \le p \le \infty$, $p \ne 2$, find vectors $v, w \in \mathbb{R}^n$ such that

$$||v+w||_p^2 + ||v-w||_p^2 \neq 2||v||_p^2 + 2||w||_p^2$$

4.(a) Suppose V is a finite-dimensional real vector space and $\|\cdot\|$ is a norm on V obeying the parallelogram law: that is,

$$||v + w||^{2} + ||v - w||^{2} = 2||v||^{2} + 2||w||^{2}$$

for all $v, w \in V$. Prove that there is an inner product $\langle -, - \rangle$ on V such that $||v|| = \sqrt{\langle v, v \rangle}$. [**Hint**: consider the quantity $\frac{1}{4} (||v + w||^2 - ||v - w||^2)$.]

(b) Prove the same statement as (i) assuming now that V is a complex vector space. [Hint: it may now help to build an expression from the quantities $||v \pm w||^2$ and $||v \pm iw||^2$.] 5. Let $V = \mathbb{R}^n$, and identify $V^* = \mathbb{R}^n$ in the usual way; i.e., a vector $(a_1, \ldots, a_n) \in \mathbb{R}^n$ corresponds to a linear map $\mathbb{R}^n \to \mathbb{R}$,

$$(x_1,\ldots,x_n)\mapsto a_1x_1+\cdots+a_nx_n.$$

For each of the norms $\|\cdot\|_{\infty}$ and $\|\cdot\|_1$ on \mathbb{R}^n , determine carefully the value of the corresponding dual norms $\|(a_1,\ldots,a_n)\|_{\infty}^*$, $\|(a_1,\ldots,a_n)\|_1^*$ for all $(a_1,\ldots,a_n) \in \mathbb{R}^n \cong V^*$.