MATH 202A

APPLIED ALGEBRA I

FALL 2019

Homework week 6

Due by the beginning of class on Friday 8th November (hand in via Gradescope).

1. Let V be a finite-dimensional vector space over a field F and $\phi: V \rightarrow V$ a linear map.
(a) Prove that if ϕ has an eigenvalue $\lambda \neq 0$ then ϕ is not nilpotent.
(b) Prove that, if $F=\mathbb{C}$ and $\operatorname{spec}(\phi)=\{0\}$ then ϕ is nilpotent. [For this question, do not use Jordan Normal Form itself, though you may use facts that go into it.]
(c) If $F=\mathbb{R}$ and $V=\mathbb{R}^{3}$, find an example of a map ϕ such that $\operatorname{spec}(\phi)=\{0\}$ but ϕ is not nilpotent.
2. Let V be a finite-dimensional vector space and $\phi: V \rightarrow V$ a linear map.

Consider the subspaces

$$
\{0\} \subseteq \operatorname{ker} \phi \subseteq \operatorname{ker}\left(\phi^{2}\right) \subseteq \ldots
$$

(a) Prove that if $\operatorname{ker}\left(\phi^{k}\right)=\operatorname{ker}\left(\phi^{k+1}\right)$, then in fact $\operatorname{ker} \phi^{\ell}=\operatorname{ker} \phi^{\ell+1}$ for all $\ell \geq k$.
(b) Suppose ϕ is nilpotent. Prove that $\phi^{r}=0$ holds for some $r \leq \operatorname{dim} V$. [Do not use the structure theorem of nilpotent maps to answer this part.]
3. Let V be a finite dimensional vector space and $\phi: V \rightarrow V$ a linear map. Suppose $v \in V, v \neq 0$, and suppose that for some non-negative integer $m \geq 0$ we have

$$
\phi^{m}(v) \neq 0
$$

but

$$
\phi^{m+1}(v)=0
$$

Show that $v, \phi(v), \ldots, \phi^{m}(v)$ are linearly independent.
4. Let V be a finite dimensional vector space, and $\phi, \psi: V \rightarrow V$ linear maps. Show that if $\phi \circ \psi$ is nilpotent then so is $\psi \circ \phi$.
5.(a) Let V be finite dimensional and let $\psi: V \rightarrow V$ be a nilpotent map, where $\psi^{k}=0$. Write $\phi=\psi+\lambda$ id for some $\lambda \in F$. Show that for any integer $m \geq 0$,

$$
\phi^{m}=\sum_{r=0}^{\max (k-1, m)} \lambda^{m-r}\binom{m}{r} \psi^{r}
$$

(i.e., when $m \geq k-1$ this is

$$
\lambda^{m} \mathrm{id}+\binom{m}{1} \lambda^{m-1} \psi+\binom{m}{2} \lambda^{m-2} \psi^{2}+\cdots+\binom{m}{k-1} \lambda^{m-k+1} \psi^{k-1}
$$

and for small m you should stop the sum at $\binom{m}{m} \lambda^{0} \psi^{m}$.)
(b) For any integer $m \geq 0$, compute the matrix J_{k}^{m}. Using (a), or otherwise, also compute $J(k, \lambda)^{m}$. Here

$$
J_{k}=\left(\begin{array}{cccccc}
0 & 1 & 0 & \ldots & 0 & 0 \\
0 & 0 & 1 & \ldots & 0 & 0 \\
\vdots & & & & & \\
0 & 0 & 0 & \ldots & 0 & 1 \\
0 & 0 & 0 & \ldots & 0 & 0
\end{array}\right), \quad J(k, \lambda)=\left(\begin{array}{cccccc}
\lambda & 1 & 0 & \ldots & 0 & 0 \\
0 & \lambda & 1 & \ldots & 0 & 0 \\
\vdots & & & & & \\
0 & 0 & 0 & \ldots & \lambda & 1 \\
0 & 0 & 0 & \ldots & 0 & \lambda
\end{array}\right)
$$

are $k \times k$ matrices.
6. Consider the vector space of infinite complex sequences $\left(a_{0}, a_{1}, a_{2}, \ldots\right)$. Let V denote the subspace that satisfy the homogeneous recursion relation

$$
a_{n}=6 a_{n-1}-12 a_{n-2}+8 a_{n-3}
$$

for all $n \geq 3$. [You need not verify that this is a subspace.] Also let $\phi: V \rightarrow V$ denote the "infinite left shift" map

$$
\phi\left(a_{0}, a_{1}, a_{2}, \ldots\right)=\left(a_{1}, a_{2}, a_{3}, \ldots\right)
$$

You should satisfy yourself that this latter sequence is indeed in V, but do not need to write anything.
(a) Prove that the linear map $\psi: V \rightarrow \mathbb{C}^{3}, \psi\left(a_{0}, a_{1}, a_{2}, \ldots\right)=\left(a_{0}, a_{1}, a_{2}\right)$ is an isomorphism, and write down a matrix for ϕ with respect to the basis $B=\psi^{-1}\left(e_{1}\right), \psi^{-1}\left(e_{2}\right), \psi^{-1}\left(e_{3}\right)$ where e_{1}, e_{2}, e_{3} is the standard basis for \mathbb{C}^{3}.
(b) Hence, or otherwise, compute $\operatorname{spec}(\phi)$, and deduce that $\phi-2 \mathrm{id}_{V}$ is nilpotent.
(c) Using Q4(i), or otherwise, and noting that a_{n} is the first entry of $\phi^{n}\left(a_{0}, a_{1}, \ldots\right)$, find a closed-form formula for a_{n} in terms of a_{0}, a_{1}, a_{2}.

