MATH 202A

APPLIED ALGEBRA I

FALL 2019

Homework week 5

Due by the beginning of class on Friday 1st November (hand in via Gradescope).
Given an linear map ϕ between finite dimensional inner product spaces, we write $\sigma_{1}(\phi)$ for the largest singular value of ϕ.

1. If V is a finite-dimensional inner product space and $\phi: V \rightarrow V$ is a normal map with eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$. Prove that the singular values of ϕ are $\left|\lambda_{1}\right|, \ldots,\left|\lambda_{n}\right|$.
2. Let U, V, W be finite-dimensional inner product spaces and $\phi: U \rightarrow V, \psi: V \rightarrow W$ linear maps, show that $\sigma_{1}(\psi \circ \phi) \leq \sigma_{1}(\psi) \sigma_{1}(\phi)$.
3.(a) Let V be a finite dimensional inner product space and $\phi: V \rightarrow V$ a linear map. For any positive integer k, prove that $\sigma_{1}\left(\phi^{k}\right) \leq \sigma_{1}(\phi)^{k}$. Prove that if ϕ is normal then $\sigma_{1}\left(\phi^{k}\right)=\sigma_{1}(\phi)^{k}$.
(b) Consider $V=\mathbb{C}^{2}$ and $\phi(x, y)=(x+(3 / 2) y, y)$. Prove that $\sigma_{1}(\phi)^{1000}=2^{1000}$ but $\sigma_{1}\left(\phi^{1000}\right) \leq$ $1500+\frac{1}{1500}$.
3. Let V be an inner product space (not necessarily finite-dimensional) and $\phi: V \rightarrow V$ a self-adjoint, non-negative definite linear map (i.e., $\langle\phi(v), w\rangle=\langle v, \phi(w)\rangle$ for all $v, w \in V$, and $\langle\phi(v), v\rangle \geq 0$ for all $v \in V$).
(a) Prove carefully that for all $v, w \in V,|\langle\phi(v), w\rangle|^{2} \leq\langle\phi(v), v\rangle\langle\phi(w), w\rangle$.
(b) Prove that if $\langle\phi(v), v\rangle=0$ then $\phi(v)=0$. [If you proved Pset 4 Q1(a) like this already, great; if not this gives a new proof.]
(c) Now suppose $\psi: V \rightarrow V$ is another self-adjoint, non-negative definite linear map and $\langle(\phi+$ $\psi)(v), v\rangle=0$. Prove that $\phi(v)=\psi(v)=0$.
4. Let V be an inner product space (not necessarily finite-dimensional) and let $\phi, \psi: V \rightarrow V$ be two self-adjoint, non-negative definite linear maps such that $\phi^{2}=\psi^{2}$. Suppose moreover that $\phi \circ \psi=\psi \circ \phi$. Prove that $\phi=\psi$.
[Hint: You could look at something like $\langle(\phi+\psi)(\phi-\psi)(v),(\phi-\psi)(v)\rangle$ for arbitrary $v \in V$, and remember Q1. But there are probably many other starting points.]
5. My office has three chairs, arranged in a row. ${ }^{1}$ Every hour, I receive an instruction by email from the university authorities. If the instruction says "FLIP", I roll a fair 2-sided die and accordingly move to one of the chairs I am not currently sitting in, with probability $1 / 2$ each.
If the instruction says "FLOP", I roll a fair 4-sided die and move chairs, or not, based on the rule given in Pset 3 Q7.
So, if my probabilities of being in each chair one hour are $\left(p_{L}, p_{M}, p_{R}\right)$, then the probabilities for the next hour are given by

$$
\psi\left(p_{L}, p_{M}, p_{R}\right)=\left(\frac{1}{2} p_{M}+\frac{1}{2} p_{R}, \frac{1}{2} p_{L}+\frac{1}{2} p_{R}, \frac{1}{2} p_{L}+\frac{1}{2} p_{M}\right)
$$

[^0]if the instruction is "FLIP", and
$$
\phi\left(p_{L}, p_{M}, p_{R}\right)=\left(\frac{3}{4} p_{L}+\frac{1}{4} p_{M}, \frac{1}{4} p_{L}+\frac{1}{2} p_{M}+\frac{1}{4} p_{R}, \frac{1}{4} p_{M}+\frac{3}{4} p_{R}\right)
$$
if the instruction is "FLOP".
The university authorities are a law unto themselves, and their instructions are unpredictable, arbitrary and follow no predictable pattern. In particular you may not assume that FLIP and FLOP occur according to any particular random rule.
I start in the left chair. Show that the probability I am in the left chair again after 1000 straight hours in my office is $1 / 3+\varepsilon$ where $|\varepsilon| \leq 2 \cdot(3 / 4)^{1000}$ (which is around $2.3 \cdot 10^{-125}$).
[Hint: it might help to consider Q1, Q2 and the subspace $\{1,1,1\}^{\perp}$.]

[^0]: ${ }^{1}$ My office does actually now have chairs in. They are not arranged in a row; that bit is a lie.

