MATH 202A

APPLIED ALGEBRA I

FALL 2019

Homework week 4

Due by the beginning of class on Friday 25th October (hand in via Gradescope).

1. Let V be a finite-dimensional inner product space and $\phi: V \rightarrow V$ a self-adjoint linear map.
(a) Suppose ϕ is non-negative definite, and $v \in V, v \neq 0$ satisfies $\langle\phi(v), v\rangle=0$. Prove that ϕ is singular (i.e., not injective / not surjective / not an isomorphism).
(b) Does (a) hold if ϕ is not assumed to be non-negative definite (but is still self-adjoint)? Give either a proof or a counter-example.
2. Let V be a finite-dimensional complex vector space and $\phi: V \rightarrow V$ a linear map. Prove that the following are equivalent: (i) ϕ is diagonalizable and every eigenvalue λ of ϕ satisfies $|\lambda|=1$; and (ii) there exists an inner product $\langle-,-\rangle$ on V such that ϕ is unitary.
[If you can pronounce it, you can say such a ϕ is unitarizable.]
3. Suppose V, W are inner product spaces and $\phi: V \rightarrow W$ is a linear map. (You may not assume V, W are finite-dimensional.)
Suppose there exists an adjoint $\phi^{*}: W \rightarrow V$ for ϕ; i.e., ϕ^{*} is a linear map such that $\langle\phi(v), w\rangle=$ $\left\langle v, \phi^{*}(w)\right\rangle$ holds for all $v \in V$ and $w \in W$.
Let $A>0$ be a given real number, and suppose that $\|\phi(v)\| \leq A\|v\|$ holds for all $v \in V$.
Prove that $\left\|\phi^{*}(w)\right\| \leq A\|w\|$ holds for all $w \in W$.
4. Let V be a finite-dimensional inner product space an $\phi: V \rightarrow V$ a linear map.
(a) Prove that there is a unique choice of self-adjoint linear maps $\sigma, \tau: V \rightarrow V$ such that $\phi=\sigma+i \tau$.
(b) Prove that $\mathcal{F}(\sigma)=\{\operatorname{Re}(z): z \in \mathcal{F}(\phi)\}$.
(c) Let $\lambda_{1} \geq \cdots \geq \lambda_{n}$ be the eigenvalues of σ with multiplicity, and similarly let $\mu_{1} \geq \cdots \geq \mu_{n}$ be the eigenvalues of τ. Prove that

$$
\mathcal{F}(\phi) \subseteq\left\{a+i b \in \mathbb{C}: \lambda_{n} \leq a \leq \lambda_{1}, \mu_{n} \leq b \leq \mu_{1}\right\}
$$

5. Let V be a finite-dimensional inner product space, let $\phi: V \rightarrow V$ be a self-adjoint linear map, and let $U \subseteq V$ be a subspace of codimension 1 (i.e., dimension $\operatorname{dim} V-1$).
Let $\psi: U \rightarrow U$ be the linear map $\left.P_{U} \circ \phi\right|_{U}$.
(a) Prove that ψ is self-adjoint.
(b) If $\lambda_{1} \geq \cdots \geq \lambda_{n}$ are the eigenvalues of ϕ (with multiplicity), and $\mu_{1} \geq \cdots \geq \mu_{n-1}$ are the eigenvalues of ψ (with multiplicity), prove that for each $i, 1 \leq i \leq n-1$, we have $\lambda_{i} \geq \mu_{i} \geq \lambda_{i+1}$.
6. Suppose a group of 100 people, named x_{1}, \ldots, x_{100}, are such that each has exactly 50 friends in the group. As in lectures, let A be the 100×100 matrix with entries $A_{i j}=1$ if $i \neq j$ and x_{i}, x_{j} are friends, and $A_{i j}=0$ otherwise. Suppose $50=\lambda_{1} \geq \cdots \geq \lambda_{n}$ are the eigenvalues of A, and $\lambda_{2} \leq 40$.
Prove that, for any set $S \subseteq\left\{x_{1}, \ldots, x_{100}\right\}$ of size 50 , the number of pairs $x y$ where $x \in S, y \notin S$ and x, y are friends, is at least 250 .
