MATH 202A

APPLIED ALGEBRA I

FALL 2019

Homework week 3

Due by the beginning of class on Friday 11th October (hand in via Gradescope).

1. Suppose V, W are a finite dimensional inner product spaces and $\phi: V \rightarrow W$ is a linear map. Show that if ϕ is injective then $\phi^{*} \circ \phi$ is injective (and hence an isomorphism).
2. Prove that if V is a finite-dimensional inner product space, $\phi: V \rightarrow V$ is a normal operator and $\lambda, \mu \in F$ are scalars with $\lambda \neq \mu$ then $E(\lambda, \phi) \perp E(\mu, \phi)$ (i.e. these subspaces are orthogonal).
3. Suppose V is a finite-dimensional vector space, $\phi: V \rightarrow V$ is a diagonalizable linear map, and $U \subseteq V$ is a ϕ-invariant subspace.
Prove that the restriction $\left.\phi\right|_{U}: U \rightarrow U$ is diagonalizable.
[Hint: the maps Φ_{i} from the proof of Proposition 3.1.7 might come in handy here.]
4. Suppose V is a finite-dimensional vector space and $\phi, \psi: V \rightarrow V$ are two linear maps such that $\phi \circ \psi=\psi \circ \phi$ (i.e., the maps commute).
(a) For any $\lambda \in F$, prove that $E(\lambda, \phi)$ is ψ-invariant.
(b) Suppose that ϕ, ψ are diagonalizable. Prove that there is a basis B for V consisting of simultaneous eigenvectors of ϕ, ψ.
[Hint: remember Q3.]
5. Let V be a finite-dimensional inner product space and $\phi: V \rightarrow V$ a linear map.
(a) Show that λ is an eigenvalue of V if and only if $\bar{\lambda}$ is an eigenvalue of ϕ^{*}.
(b) Show that ϕ is diagonalizable if and only if ϕ^{*} is diagonalizable.
6. Let V, W be finite-dimensional inner product spaces, and $\phi: V \rightarrow W$ a linear map.
(a) Prove that, for any $\lambda \in F, \lambda \neq 0, \operatorname{dim} E\left(\lambda, \phi^{*} \circ \phi\right)=\operatorname{dim} E\left(\lambda, \phi \circ \phi^{*}\right)$.
(b) Determine the relationship between $\operatorname{dim} E\left(0, \phi^{*} \circ \phi\right)$ and $\operatorname{dim} E\left(0, \phi \circ \phi^{*}\right)$.
7. My office has three chairs, arranged in a row. ${ }^{1}$ Every hour, I roll a 4 -sided die and move chairs, or not, according to the following rule:

- if I'm in an end chair, I stay put if I roll a 1,2 or 3 and move to the middle if I roll a 4;
- if I'm the middle chair, I move left on a 1 roll, stay put on a 2 or 3 roll and move right on a 4 roll.
So, if my probabilities of being in each chair one hour are $\left(p_{L}, p_{M}, p_{R}\right)$, then the probabilities for the next hour are given by

$$
\phi\left(p_{L}, p_{M}, p_{R}\right)=\left(\frac{3}{4} p_{L}+\frac{1}{4} p_{M}, \frac{1}{4} p_{L}+\frac{1}{2} p_{M}+\frac{1}{4} p_{R}, \frac{1}{4} p_{M}+\frac{3}{4} p_{R}\right)
$$

I start in the left chair. Show that the probability I am in the left chair again after 1000 straight hours in my office is $1 / 3+\varepsilon$ where $|\varepsilon| \leq 2 \cdot(3 / 4)^{1000}$ (which is around $2.3 \cdot 10^{-125}$).

[^0]
[^0]: ${ }^{1}$ As some of you know, my office doesn't actually have chairs in it right now. Really, sorry about that.

