MATH 202A APPLIED ALGEBRA I FALL 2019

Homework week 2

Due by the beginning of class on Friday 11th October (hand in via Gradescope).

1. For each of the following, determine whether it is an inner product on \mathbb{R}^2 .

(a)
$$\langle (x,y), (x',y') \rangle = xx' - yy'.$$

- (b) $\langle (x,y), (x',y') \rangle = xx' + xy' + yx' + 2yy'.$
- (c) $\langle (x,y), (x',y') \rangle = xx' + xy' + yx' + yy'.$

2. Let V be a finite dimensional inner product space, with inner product $\langle -, - \rangle$ as usual.

(a) Suppose $\phi: V \to V$ a linear map. Define a new operation $\langle -, - \rangle_1: V \times V \to F$ by

$$\langle v, w \rangle_1 = \langle \phi(v), \phi(w) \rangle$$
.

Show that if ϕ is invertible then this is an inner product on V.

- (b) In the set-up of (a), show that if ϕ is not invertible then $\langle -, \rangle_1$ is not an inner product.
- (c) Conversely, suppose $\langle -, \rangle_2$ is yet another inner product on V. Show that there is an invertible linear map $\psi: V \to V$ such that

$$\langle v,w
angle_2=\langle\psi(v),\psi(w)
angle$$
 .

3. Consider the vectors

$$v_1 = (1.1, 1.1, 1.1, 1.1)$$

$$v_2 = (3.3, 3.3, 1.1, 1.1)$$

$$v_3 = (6.6, 4.4, 2.2, 0)$$

$$v_4 = (10, 5.4, 3.2, -0.9)$$

in \mathbb{R}^4 , which carries the usual dot product.

You may assume that

$$\begin{pmatrix} 1.1 & 3.3 & 6.6 & 10 \\ 1.1 & 3.3 & 4.4 & 5.4 \\ 1.1 & 1.1 & 2.2 & 3.2 \\ 1.1 & 1.1 & 0 & -0.9 \end{pmatrix} = \begin{pmatrix} 0.5 & 0.5 & 0.5 & 0.5 \\ 0.5 & 0.5 & -0.5 & -0.5 \\ 0.5 & -0.5 & 0.5 & -0.5 \\ 0.5 & -0.5 & -0.5 & 0.5 \end{pmatrix} \begin{pmatrix} 2.2 & 4.4 & 6.6 & 8.8 \\ 0 & 2.2 & 4.4 & 6.6 \\ 0 & 0 & 2.2 & 4.4 \\ 0 & 0 & 0 & 0.2 \end{pmatrix}$$

Show that there exist coefficients $a_1, a_2, a_3 \in \mathbb{R}$ such that

$$||v_4 - a_1v_1 - a_2v_2 - a_3v_3|| \le 0.2$$

[Please tell me if you spot a mistake in these numbers.]

4. Let $\mathcal{P}_{\leq 4}$ denote the vector space of real-valued polynomials of degree ≤ 4 :

$$\mathcal{P}_{\leq 4} = \{ p(X) = a_0 + a_1 X + \dots + a_4 X^4 \colon a_0, \dots, a_4 \in \mathbb{R} \}.$$

You may use without proof that $B = 1, X, X^2, \ldots, X^4$ and $B' = 1, 1 + X, (1 + X)^2, \ldots, (1 + X)^4$ are two basis for $\mathcal{P}_{\leq 4}$, and that

$$\phi \colon p(X) \mapsto \frac{dp}{dX}$$

and

$$\psi \colon p \mapsto (X \mapsto p(X+1))$$

are linear maps $\mathcal{P}_4 \to \mathcal{P}_4$. (So e.g. $\psi(3+4X) = 3 + 4(X+1) = 7 + 4X$.) Write down:

- (a) $\mathcal{M}(\phi, B, B);$
- (b) $\mathcal{M}(\psi, B, B);$
- (c) $\mathcal{M}(\mathrm{id}, B', B);$
- (d) $\mathcal{M}(\mathrm{id}, B, B');$
- (e) $\mathcal{M}(\phi, B, B')$.

For a subspace $U \subseteq V$, write

$$U^{\perp} = \{ \phi \in V^* \colon \phi(u) = 0 \ \forall u \in U \} \subseteq V^*.$$

Similarly, if $W \subseteq V^*$, write

$$W^{\perp} = \{ u \in V \colon \phi(u) = 0 \ \forall \phi \in W \} \subseteq V.$$

- 5. Prove that if V is finite-dimensional (and so we can identify V with V^{**}) then $(U^{\perp})^{\perp} = U$.
- 6. Let V and W be vector spaces, let $f: V \to W$ be a linear map, and let $f^*: W^* \to V^*$ be the dual map.
 - (a) Prove that $\ker(f^*) = (\operatorname{im} f)^{\perp}$.

Now assume that V, W are finite-dimensional (and so we can identify V with V^{**} and W with W^{**}).

- (b) Prove that $\phi^{**} = \phi$.
- (c) Prove that $(\operatorname{im}(f^*))^{\perp} = \ker f$.
- (d) Prove that $(\ker(f^*))^{\perp} = \operatorname{im} f$.
- (e) Prove that $\operatorname{im}(f^*) = (\ker f)^{\perp}$.

 $\mathbf{2}$