MATH 190A WINTER 2021

Problem Set 10

This problem set is optional. Do not turn it in.

- 1. Let X be any topological space. For each statement, determine whether it is true or false.
 - (a) Suppose $A, B \subseteq X$ are dense in X. Then $A \cap B$ is dense in X.
 - (b) Suppose $A, B \subseteq X$ are open and dense in X. Then $A \cap B$ is open and dense in X.
- **2.** Let X be any topological space. For each statement, determine whether it is true or false.
 - (a) Suppose $A \subseteq X$ is dense and $Y \subseteq X$ is a closed subset. Then $A \cap Y$ is dense in Y with the subspace topology.
 - (b) Suppose $A \subseteq X$ is dense and $Y \subseteq X$ is an open subset. Then $A \cap Y$ is dense in Y with the subspace topology.
 - (c) Suppose $A \subseteq X$ is dense and $Y \subseteq X$ is an open subset. Then $A \cap Y$ is dense in \overline{Y} with the subspace topology.
- **3.** Say a topological space X is *locally compact* if for every point $x \in X$ there exists an open set $U \ni x$ and a closed set $V \supseteq U$ such that V is compact (with the subspace topology).

Prove carefully that if X is a locally compact Hausdorff space, and A_1, A_2, \ldots are open and dense in X, then $\bigcap_{n=1}^{\infty} A_n$ is non-empty.