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NEW EUCLIDEAN THEOREMS BY THE USE OF LAGUERRE TRANSFORMATIONS 

- SOME GEOMETRY OF MINKOWSKI (2+1)-SPACE 

Jay P. Fillmore and Arthur Springer 

Examples of the use of Laguerre transformations to discover 
theorems in the Euclidean and Minkowski planes. 

i0 INTRODUCTION 

i.i. In a Euclidean plane, an oriented line will be called a 

~ ,  an oriented circle will be called a ~/D~2_~, and a 

point will be called a ~ J l ~ .  The term 9j~ will include 

proper cycles and point cycles. Every line underlies two spears, 

every circle underlies two proper cycles. Two proper cycles or a 

proper cycle and a spear touch if the underlying circles or circle 

and line are tangent and the orientations agree at the point of 

tangency. Two spears touch if the underlying lines are parallel 

and the orientations agree. A point cycle touches a proper cycle 

or a spear if, as a point, it is incident with the underlying 

circle or line. 

Classical Laguerre plane geometry uses spears as primitives, and 

cycles as envelopes of spears. A Laguerr@ transformation sends 

spears to spears, cycles to cycles, and preserves the relation 

"touch". Such transformations preserve (up to a positive scale 
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factor) a "separation" which extends the notion of Steiner power 

(of a point and a circle) to two cycles. 

Laguerre [6] clearly defined these transformations in 1882, and 

Pedoe [7 and 8] referred to them as "forgotten geometric 

transformations" in the 1970s. We are not aware that there 

appears in the literature any systematic application of these 

transformations either to obtain theorems or to simplify proofs in 

Euclidean geometry. 

1.2. A key feature of Laguerre geometry, for our purposes, is 

that it can be represented by the metric affine geometry of 

Minkowski space (two space dimensions, one time dimension). 

Points of Minkowski space correspond to cycles, and separation of 

cycles is the square of spatial distance or proper time (with 

appropriate signs). Configurations in a Euclidean plane are 

interpreted as configurations in Minkowski space. Laguerre 

transformations of the Euclidean plane become exactly the 

isometries or similarities of Minkowski space . 

In this paper we show how to make use of Laguerre transformations, 

both from the classical viewpoint and from their representation in 

Minkowski space, to obtain new and striking theorems in Euclidean 

geometry. We focus on one theorem whose proof exhibits these 

ideas: The Laguerre transformation of the Pythagorean Theorem. 

From this one sees how to enunciate other theorems easily in both 

the Euclidean plane and the Minkowski plane (one space dimension, 

one time dimension). This we do in the concluding sections. 

The authors are indebted to the referee for several suggestions 

leading to simplification and clarification. 

2. SECANT SQUARE-SEPARATION 

2.1. The two orientations of a proper cycle are described by 

attaching a sign to the radius of the underlying circle. (we 

assign positive radius to proper cycles in the Euclidean plane 
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which are oriented counter-clockwise.) Two proper cycles have the 

"same" or "opposite" orientations according as these radii have 

the same or opposite 3igns. 

2.2. Two proper cycles of different radii have exactly one center 

of similitude. This point cycle touches (at most) two spears 

which touch the proper cycles. When the radii are equal, the 

point at infinity on the line of centers is the center of 

similitude. 

Let a line through the center of similitude Z of the two proper 

cycles A and A' meet the circle underlying A in points P 

and Q , and meet the circle underlying A' in P' and Q' 

Assume these labeled so that PQ and P'Q' are homothetic from 

Z . Then the product PP'.QQ' of signed distances does not 

depend on the position of the line through Z See Court 

[4, p.186]. We will call this quantity the secant sauare- 

(or just ~ )  of cycles A and A' 

See Figure I. 

Q' 

p, 

Z 

Figure i. Secant square-separation and tangential distance 

2~. In case the point Z lies outside the circles, the length 

of the segment TT' between'the points of tangency T and T' 

with a spear through Z is the tangential distance between the 
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two cycles. In this case, the separation is the square of the 

tangential distance. 

2.4. The separation of a point cycle and a proper cycle is 

defined to be the Steiner power of the point with respect to the 

underlying circle. 

2.5. In general, the separation of two cycles is the square of 

the distance between their centers less the square of the 

difference of their (signed) radii. 

Two cycles touch exactly when their separation is zero. 

2.6. Under a general Laguerre transformation, the separation of 

cycles is multiplied by a positive factor depending only on the 

transformation. This will be seen in 5.8. Laguerre 

transformations which preserve separation are known as 

"restricted" or "equilong". 

3. THE THEOREM OF PYTHAGORAS-LAGUERRE - CLASSICAL DISCOVERY 

3.1. On a circle in the Euclidean plane, chose two diametrically 

opposite points A and B , and a third point C o The circle 

underlies two cycles R and S of opposite orientation. These 

cycles touch the point cycles A, B, C The line tangent to the 

circle at A underlies two spears U and U' which touch R 

and S , respectively. Similarly, from B obtain two spears V 

and V' which touch R and S , respectively. Since AB is a 

diameter of the circle, spears U and V' touch, and spears U' 

and V touch. 

Suppose a Laguerre transformation sends R and S to two proper 

cycles. Five cycles and four spears are obtained. We use again 

the letters A, B, C, R, S to denote the image cycles, and 

U, U', V, V' to denote the image spears. Let X and X' be the 

point cycles where A touches R and S , respectively. Then, 

X and X' touch U and U' , respectively. Similarly, let Y 

and Y' be the point cycles obtained from B See Figure 2. 
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The lines underlying U and U' make equal angles with line 

XX' , as do the lines underlying V and V' Now, two tangents 

to a circle make equal angles with the line joining the points of 

tangency. Since U and V' touch, and U' and V touch, the 

points X,X',Y,Y' are collinear. 

Since a Laguerre transformation multiplies separation by a 

positive factor, we are led to: 

3.2. THEOREM (Pythagoras - Laguerre) Let A, R, B, S be four 

cycles such that each touches the next (cyclically) with the 

four points of tangency being collinear, and R and S having 

opposite orientations. If C is any cycle touching R and 

S , then the square of the tangential distance from A to B is 

the sum of the squares of the tangential distances from B to C 

and from C to A . See Figure 2. 

Points of 
tangency 
o o I ~  

2 2 
a + b = c 

c 

2 

u, 

r U 

Figure 2. Laguerre transformation of the Pythagorean Theorem 

There is a Euclidean proof of this particular theorem, but it is 

not completely trivial - even in the special case that cycles R 

and S have the same radius, opposite orientations, and meet in 

point cycles A and B 
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This classical use of Laguerre transformations was just to lead us 

to such a theorem. Its proof follows from the fact that every 

such configuration of five cycles can be obtained from a Laguerre 

transformation of the configuration of the Pythagorean theorem. 

This will be immediately evident from the viewpoint of Minkowski 

geometry. 

4. MINKOWSKI GEOMETRY 

4.1. Let M 3 be three-dimensional Minkowski space. We regard 

M 3 as a metric affine space, as it is important not to give 

preferential treatment to any one Euclidean plane in M 3 . The 

vector from the point P to the point Q is denoted PQ The 

inner product on the space of vectors is denoted (~i~) and has 

signature (++-) 

This is the familiar geometry of special relativity in which a 

line PQ is time-like, light-like, or space like according as 

(PQIPQ) is negative, zero, or positive, respectively. Here we 

merely establish terminology, point out needed facts, and prove 

one theorem. 

4.2. A plane is orthogonal to a time-like line exactly when, as a 

metric affine plane, it is Euclidean - the inner product 

restricted to vectors between points of the plane has signature 

(++) A plane is orthogonal to a space-like line exactly when it 

is Minkowskian - the inner product restricted to vectors between 

points of the plane has signature (+-) A plane is orthogonal to 

a light-like line exactly when it is singular - the inner product 

restricted to vectors between points of the plane has signature 

(+0) ; in this case, the line lies in the plane or is parallel to 

it. 

4.3. Through two distinct points P and Q there pass exactly 

two, one, or no singular planes according as the line PQ is 

space-, light-, or time-like. 
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4.4. All light-like lines passing through a given point A 

constitute a cone with vertex at A called the light-cone at A . 

The intersection of a light-cone with a Euclidean plane is a 

circle (in the traditional sense) in that plane. This will 

include the possibility of a point. The intersection of a light- 

cone with a Minkowski plane is a "circle" (usually referred to by 

its Euclidean description as an equilateral hyperbola) in that 

plane. This will include the possibility of two light-like lines 

which meet. 

4.5. The intersection of two light-cones whose vertices lie on a 

time-like line lies in the Euclidean plane orthogonal to the line 

joining the vertices and passing through its midpoint. (This 

follows by reasoning like 4.6 to follow.) 

4.6. LEMMA a (A.A. Robb, 1936) Let a line which is either space- 

like or time-like meet the light-cone at A in points P and 

Q , not necessarily distinct. If Z is any point on this line, 

then (ZPIZQ) = (ZAIZA) See Figure 3. 

1 --~ 
PROOF i) Let ~ = ~ PQ , and let M be the midpoint of the 

segment PQ Since P and Q lie on the cone, (AM - ~[AM - ~) 

= 0 and (AM + ~iAM + ~) = 0 The difference of these equations 

is 4(~I~) = 0 Thus, the vectors AM and ~ are orthogonal, 

and (AMiAM) + (~i~) = 0 

a This lemma is attributed to A. A. Robb (1936), who set up a 
co6rdinate-free system of axioms for Minkowski geometry starting 
with a partial order describing "after". (C. W. Misner, K. S. 
Thorne, and J. A. Wheeler, Gravitation, W. H. Freeman, San 
Francisco, 1973, p.20.) The usual physical interpretation of 4.6 
is: The line ZPQ is the world line of an observer fixed at the 
spatial origin Z of an inertial frame. A light ray is sent from 
P to A where it is reflected and arrives back to the observer 
at Q . The square of the Minkowski distance between the events 
Z and A is the product of the times from Z to P and from Z 
to Q . The time intervals depend on the inertial frame, but 
their product does not. 
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2) (ZPIZQ) = (ZM- ~IZM + 3) = (ZMIZM) - (~i~) = (ZMIZM) + (AMIAM) 

= (ZAIZA) QED 

Figure 3. (PP' IQQ') = (AA' IAA') 

4.7. The homothetv with center Z and ratio ~ r 0 is the 

transformation of M 3 which sends X to X' determined by 

ZX' = ZX ~ . Such a transformation sends lines and planes to 

lines and planes of the same likeness, and light-cones to light- 

cones. 

4.8. If Z,A,A' are points on a line of M 3 , with Z different 

from A and A' , then there is a unique homothety with center Z 

sending A to A' 

4.9. THEOREM Suppose a line ZAA' as in 4.8 is either space- 

like or time-like. Let any line through Z meet the light-cone 

at A in points P and Q (not necessarily distinct). This 

line then meets the light-cone at A' in the image points P' 

and Q' under the homothety of 4.8. Then: (PP'IQQ') = 

(AA'IAA') See Figure 3. 

PROOF Note that XX' = XZ + ZX' = ZX (k - i) for any point X and 

X' Then (PP'iQQ') = (ZP{ZQ) (~ - 1) 2 = its image 

(by 4.6) (ZAIZA) (~ - 1) 2 = (AA'IAA') QED 
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5. THE REPRESENTATION OF LAGUERRE GEOMETRY 

5.1. Laguerre geometry was formulated axiomatically by 

van der Waerden and Smid in 1935 [i0]. A model satisfying such a 

system of axioms is obtained by representing spears by singular 

planes and cycles by light cones in Minkowski space. This is the 

viewpoint of Schaeffer [9] who shows that Laguerre transformations 

are determined by their effect on cycles. We will work in terms 

of this model. Intersections of spears and cycles of this model 

with Euclidean planes leads to classical Laguerre transformations 

of cycles in the Euclidean plane; intersections with Minkowski 

planes will lead to Laguerre transformations of "cycles" of the 

Minkowski plane. 

5.2. When referring to the geometry of Minkowski space, we will 

use the terms "point" and "singular plane"; when referring to 

Laguerre geometry of a Euclidean plane, we will use the 

corresponding terms "cycle" (point or proper) and "spear". Except 

in figures, we will hereafter use the same symbol and underscore 

the latter. 

5.3. Choose and fix any Euclidean plane ~ in a Minkowski 

space M 3 We will view this plane as the one containing a 

Euclidean configuration of interest. (Figure 2 is the plane ~ 

of Figure 4.) Let ~ be a vector orthogonal to ~ for which 

5.4. A point A in M 3 represents a cycle A in R~ : The 

underlying circle is the intersection of the light-cone at A 

with R~ . The foot of the perpendicular from A to ~ - is the 

center A 0 of the circle. The (signed) radius is - (~IAoA) 

5.5. The center of similitude Z of two cycles A and B is 

the point Z in which the line AB meets ~ represented by 

If this line does not meet the plane, the center of similitude is 

"at infinity" and the cycles have equal radii. From 4.9, the 

secant square-separation of cycles A and B is (ABIAB) 



Fillmore and Springer 83 

singular plane in M 3 represents a spear in ~ : The 5.6. A 

underlying line is the intersection of the singular plane and 

~ . Any point of the singular plane not on this line represents 

a proper cycle touching the spear, and thus determines the 

orientation of the spear. Two spears touch when the planes are 

parallel. 

Two points of M 3 on a common light-like line represent two 

distinct cycles which touch. The singular plane through this line 

represents the unique spear that also touches these cycles. 

~.7. This representation of Laguerre geometry is classically 

called the method of "isotropic projection". It is customary to 

begin with a Euclidean plane E 2 and take the Minkowski space to 

be M 3 = E 2 • R 1 with inner product xlY 1 + x2Y 2 - XrY r 

A cycle in N~ = E 2 x {0} has center with co6rdinates a I and 

a 2 and signed radius a r See [i,p.136], [3,p.48], [5,p.248] . 

5.8. Similarity transformations of M 3 send lines to lines of 

the same "likeness", planes to planes of the same "likeness", and 

light-cones to light-cones. These transformations represent 

LaQuerre trans~Qrmations of the fixed Euclidean plane n~ : 

The elements of the Laguerre geometry in ~ (cycles, spears, 

secant square-separation,...) are interpreted as elements of 

MinkowsKi space M 3 (points, singular planes, the Minkowski 

metric,...); after a similarity transformation of M 3 , the 

elements of M 3 are interpreted back in the same Euclidean 

plane ~ . 

5.9. The foregoing is the "active" viewpoint. We will also use 

the "passive" viewpoint: The elements of the Laguerre geometry 

in ~ are interpreted as elements of Minkowski space M 3 , these 

elements of M 3 are interpreted in the Laguerre geometry of 

another Euclidean plane ~2 This plane is, in fact, the image 

of ~ under the inverse of the similarity transformation of 

M 3 
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5.10. The transformation known classically as a "Laguerre axial 

transformation" is a reflection in a non-singular plane of 

Minkowski space M 3 [1,p.155], [3,p.56], [5,p.254], [7], [8]. Such 

generate the group of restricted Laguerre transformations. 

6. THE THEOREM OF PYTHAGORAS-LAGUERRE - A PROOF 

As in 5.3, let Figure 2 be the plane ~ of Figure 4. Our first 

task is to find a configuration in Minkowski space M 3 which 

represents the notion of "right triangle" in one Euclidean plane, 

and which can then be examined in another Euclidean plane. 

6.1. Let A and R in M 3 be two points such that the line AR 

is light-like. Denote by ~(AR) the singular plane containing 

this line. Then, in the Euclidean plane ~ , the cycles A and 

touch each other, touch the unique point cycle X represented 

by X = ~ N AR , and touch the unique spear U represented by 

U = ~ A Z(AR) 

R 

U 

Figure 4. Perspective view of Pythagoras-Laguerre 
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6.2. Consider now four points A, R, B, S in M 3 such that the 

lines AR, BK, BS, AS are light-like, and the line RS is 

time-like. Introduce 

x = x= Y = I] 2 C] BR 

V = •2 ~ E(BR) 

Y'= ~ ~ BS, 

V'= H~ n Z(BS) 

With these assumptions, the following five assertions are 

equivalent: 

Regarding Minkowski space M 3 

�9 Points A,R,B,S are coplanar (but not collinear) . 

�9 Lines AR and BS are parallel 

(or lines BR and AS are parallel). 

�9 Planes ~(AR) and ~(BS) are parallel 

(or planes ~(BR) and ~(AS) are parallel). 

Regarding spears and cycles of the Euclidean plane ~ 

�9 Spears U and V' touch 

(or spears U' and V touch). 

�9 The point cycles X, X' Y, Y' touch a common spear 

6.3. If ~2 is any Euclidean plane in Minkowski space M 3 , the 

assertions of 6.2 hold with ~ replaced by ~2 

6.4. In particular, the plane ~2 in which the light cones at R 

and S intersect is Euclidean since line RS is time-like. The 

circles underlying cycles R and S in ~2 then coincide. The 

last two assertions of 6.2, when interpreted in ~2 , become: 

Regarding the Euclidean plane R 2 

�9 One line underlies both spears U and U' , and it is parallel 

to the one line underlying spears V and V' 

�9 The point cycles X and X' coincide, as do Y and Y' 

The points underlying these two point cycles lie on a diameter of 

the circle underlying R and S . 
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6.5. Proof of 3.2. Let A, R, B, S be four cycles of ~ such 

that each touches the next (cyclically), the four points of 

tangency are collinear, and cycles R and S have negative secant 

square-separation; and let C be a cycle touching R and S As 

in 6.4, let ~2 be the Euclidean plane in which the light-cones 

at R and S intersect. This plane contains the points A, B, C 

as point cycles. From the Pythagorean theorem in R 2 , we have 

(ABLAB) = (ACIAC) + (CBOCB) By 5.5, this is the sum of 

separations of cycles in the plane ~ . QED. 

6.6. Figure 4 b shows the light-cones at A, B, C, R, S and the 

cycles they represent on planes ~ and ~2 This is the 

passive interpretation of a Laguerre transformation which takes 

the configuration of the theorem to that of the classical theorem 

of Pythagoras c 

7. ADDITIONAL EXAMPLES IN THE EUCLIDEAN PLANE 

7.1. In M 3 , let Z and A be distinct points and let a space- 

like line meet the light-cone at A at points P and Q . Cf. 

Figure 3. Consider a Euclidean plane containing this line but not 

the point A . The configuration in this Dlane is that which 

describes the Steiner power of Z with respect to the circle A . 

See Figure 5a where ZP.ZQ = (tangential distance Z to A) 2 

b The cycles of Figure 1 have tangential distances in the ratio 
3:4:5, and Figure 4 is a true perspective rendition of the 

corresponding configuration in M 3 The determination of the 
cycles in these figures and the handling of conics in Euclidean 
space made use of Lie's higher sphere geometry. Actual 
calculations were done on a pocket calculator and Figure 3 was 
drawn by hand. The use of Lie geometry in graphics problems will 
be the topic of a future paper by the authors. 
c If one could observe, from a moving inertial frame, the circular 
wave fronts emitted by three pulses of light originating from 
sources at the vertices of a right triangle, one would "see" the 
configuration of the theorem of Pythagoras-Laguerre. 
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Figure 5a. 

7.2. Let the assumptions be as in 7.1, except that the Euclidean 

plane contains none of the points Z, P, Q, A . The configuration 

in this plane is a Laguerre transformation of 7.1. One has 

(ZPJZQ) = (ZAJZA) See 4.6 and Figure 5b. 

Figure 5b. 

z 

Steiner power 

Laguerre transformation 
of Steiner power 
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7.3. A Laguerre transformation applied to the configuration of 

Ptolomy's Theorem on cyclic quadrilaterals yields: If four cycles 

touch two additional cycles which have negative separation, then 

d12d34 + d23d41 = d13d24 , where dij is the tangential distance 

between the i th and jth cycles. A version of such a theorem, 

requiring only that four circles be externally tangent to one 

additional circle, was proved by J. Casey in 1881. [2, Prop.10, 

p.103]. 
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8, EXAMPLES IN THE MINKOWSKI PLANE 

The development of Laguerre geometry for the Minkowski plane is 

completely analogous to that of the Euclidean plane. 

8.1. The assumptions are as in 7.1, except that the plane is a 

Minkowski plane containing the points Z,P,Q but not the 

point A . The configuration in the Laguerre geometry of this 

plane, that is, of oriented Minkowski circles, is that which 

describes the Steiner power of Z with respect to the cycle A 

See Figure 6a. 

8.2. The assumptions are as in 8.1, except that the Minkowski 

plane contains none of the points Z, P, Q, A The configuration 

in this plane is a Laguerre transformation of 8.1. See Figure 6b. 

This the Minkowski analog of 7.2. 

/w W ~%%% 
J % 

tY P Q~ 

Figure 6a. Steiner power in the Minkowski plane 
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Figure 6b. Laguerre transformation of Steiner power 
in the Minkowski plane 
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