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Abstract

We derive bounds for eigenvalues of the Laplacian of graphs using the
discrete versions of the Sobolev inequalities and heat kernel estimates.

1 Introduction

In a graph G with vertex set V (G) and edge set E(G), we define the volume
of a subset X of V (G), denoted by vol (X), to be the sum of the degrees of
vertices in X, i. e.,

vol(X) :=
∑
v∈X

dv

where dv denotes the degree of the vertex v. We note that the volume of G is
vol(V (G)) = vol(G), which is just twice the number of edges in G.

We say that a graph G has isoperimetric dimension δ with an isoperimetric
constant cδ if for every subset X of V (G), the number of edges between X and
the complement X̄ of X, denoted by |E(X, X̄)| , satisfies

|E(X, X̄)| ≥ cδ(vol(X))
δ−1
δ (1)

where we assume vol(X) ≤ vol(X̄) and cδ is a constant depending only on δ.
Let 0 = λ0 ≤ λ1 ≤ . . . ≤ λn−1 denote the eigenvalues of the Laplacian of G

(described in detail in Section 2). We will show that

∑
i6=0

e−λit ≤ cvol(G)

tδ/2
(2)

∗Appeared in Combinatorics, Probability and Computing 4 (1995) 11-26.
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and

λk ≥ c′
(

k

(vol(G))

) 2
δ

(3)

for suitable constants c and c′ which depend only on δ.
To prove this, we will use the following discrete versions of the Sobolev

inequalities (proved in Section 3): For any function f : V (G)→ R,
(i) For δ > 1,∑

u∼v
|f(u)− f(v)| ≥ cδ

δ − 1

δ
min
m

(
∑
v

|f(v)−m|
δ
δ−1 dv)

δ−1
δ

(ii) For δ > 2,

(
∑
u∼v
|f(u)− f(v)|2)1/2 ≥ cδ

(δ − 1)3/2

2δ3/2
min
m

(
∑
v

|f(v)−m|αdv)
1
α

where α = 2δ
δ−2 , and u ∼ v means that u and v are adjacent in G.

The proofs here are intimately related to techniques of estimating eigenvalues
of Riemannian manifolds which can be traced back to the work of Nash [24].
Nevertheless, this paper is self-contained and entirely graph theoretic.1 In a
sense, a graph can be viewed as a discretization of a Riemannian manifold in
Rn where n is roughly equal to δ. The eigenvalue bound in (3) is an analogue
of the Polya conjecture [20] for Dirichlet eigenvalues of regular domains M in
Rn:

λk ≥
2π

wn

(
k

volM

)2/n

where wn is the volume of the unit disc in Rn.
There have been many papers [4, 5, 13, 18, 21] contributing to bridging

the continuous notion of eigenvalues for manifolds (which has been extensively
studied) and the discrete notion of eigenvalues for graphs (which occurred in
numerous applications in approximation and randomized algorithms). Previous
work has been mostly concerned with regular graphs or homogeneous graphs.
In this paper, we consider Laplacians of general graphs and obtain eigenvalue
estimates in terms of the isoperimetric dimension using the same methods as
the continuous case. On one hand, graphs and Riemannian manifolds are quite
different objects. Indeed, many of the theorems and proofs in differential geom-
etry are very difficult to translate into similar ones for graphs (since there are
no high-order derivatives on a graph). In fact, some of the statements of the
theorems in the continuous cases are obviously not true for the discrete (cf. [8]
for more discussion). On the other hand, there is a great deal of overlap between

1For undefined graph-theoretical terminology, the reader is referred to [3]
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these two different areas both in the concepts and methods. Some selected tech-
niques in the continuous case can often be successfully carried out in the discrete
setting. The main objective of this paper is to illustrate the effectiveness of the
methods of Sobolev inequalities and the heat kernel in spectral graph theory.
We remark that in the opposite direction, some eigenvalue bounds for graphs
can be translated into new eigenvalue inequalities for Riemannian manifolds.
This will be treated in a separate paper [11].

A closely related isoperimetric invariant [6] is the Cheeger constant h(G) of
a graph G:

h(G) := min
X⊆V (G)

E(X, X̄)

vol(X)

where vol(X) ≤ vol(X̄).
In fact, the Cheeger constant can be viewed as a special case of the isoperi-

metric constant cδ with δ = ∞. It is not difficult to show that the discrete
analogue of Cheeger’s inequality holds (cf. [1] for regular graphs, and [9] for
general graphs):

2h ≥ λ1 ≥
h2

2
.

Using a result of Gromov [14] on the growth rate of finitely generated groups,
Varopoulos [23] showed that a locally finite Cayley graph of an infinite group
γ with a nilpotent subgroup of finite index has isoperimetric dimension δ de-
pending only on the structure of γ. Diaconis and Saloff-Coste [12] applied these
results to bound the rate of convergence for random walks on finite nilpotent
quotient groups.

2 Preliminaries

Let v1, · · · , vn denote the vertices of a graph G and let di denote the degree of
vi. Here we assume G contains no loops or multiple edges. Generalizations for
weighted undirected graphs will be considered later in Section 5. We define the
matrix L as follows:

L(i, j) =

 di if i = j
−1 if i and j are adjacent
0 otherwise

Let S denote the diagonal matrix with the (i, i)-th entry having value
1√
di

. The

Laplacian of G is defined to be

L = SLS.
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In other words, we have

L(i, j) =


1 if i = j

− 1√
didj

if i and j are adjacent

0 otherwise

The eigenvalues of L are denoted by 0 = λ0 ≤ λ1 ≤ · · · ≤ λn−1. When G is
k-regular, it is easy to see that

L = I − 1

k
A

where A is the adjacency matrix of G.
Let h denote a function which assigns to each vertex v of G a complex value

h(v). Then

〈h,Lh〉
〈h, h〉

=
〈h, SLSh〉
〈h, h〉

=
〈f, Lf〉

〈S−1f, S−1f〉

=

∑
u∼v

(f(u)− f(v))2

∑
v

dvf(v)2
(4)

where h = S−1f .
Let 1 denote the constant function which assumes value 1 on each vertex.

Then S−11 is an eigenfunction of L with eigenvalue 0. Also,

λ1 = min
f⊥S−21

∑
u∼v

(f(u)− f(v))2

∑
v

dvf(v)2
(5)

= min
f

max
m

∑
u∼v

(f(u)− f(v))2

∑
v

dv(f(v)−m)2
(6)

Lemma 1.

(i) ∑
i

λi = n
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(ii) For a graph G on n vertices,

λi ≤
n

n− 1
.

Equality holds if and only if G is the complete graph on n vertices.

(iii) For a graph which is not a complete graph, we have λ1 ≤ 1.

Proof: (i) follows from considering the trace of L. To see (ii), we consider the
following function, for a fixed vertex v0 in G,

f1(v) =

{
1 if v = v0

0 otherwise

By taking c =
dv0∑
v

dv
, we obtain (ii) using (6).

Suppose G contains two nonadjacent vertices a and b, and consider

f2(v) =

 db if v = a
−da if v = b
0 if v 6= a, b.

(iii) then follows from (4).
Remarks on Laplacians and random walks

One of the most common models for random walks on graphs uses the rule of
moving from a vertex to all its neighbors with equal probability. This stochastic
process can be described by the matrix P satisfying

Pf(v) =
∑
u
u∼v

1

du
f(u)

for any f : V (G)→ R.
It is easy to check that

P = I − SLS−1.

Therefore, the Laplacian and its eigenvalues have direct implications for random
walks on graphs. Further discussions of Laplacians and irreducible reversible
Markov chains will be included in Section 5.

3 Sobolev’s inequalities

We will first prove the following.

5



Theorem 1 In a connected graph G with isoperimetric dimension δ and isoperi-
metric constant cδ, for an arbitrary function f : V (G) → R, let m denote the
smallest value such that ∑

v
f(v)<m

dv ≥
∑
u

f(u)≥m

du

Then ∑
u∼v
|f(u)− f(v)| ≥ cδ

δ − 1

δ
(
∑
v

|f(v)−m|
δ
δ−1 dv)

δ−1
δ .

Here we state two useful corollaries. The first one is an immediate conse-
quence of Theorem 1 and the second one follows from the proof of Theorem
1.
Corollary 1: In a connected graph G with isoperimetric dimension δ and
isoperimetric constant cδ, an arbitrary function f : V (G)→ R satisfies∑

u∼v
|f(u)− f(v)| ≥ cδ

δ − 1

δ
min
m

(
∑
v

|f(v)−m|
δ
δ−1 dv)

δ−1
δ .

Corollary 2: In a connected graph G with isoperimetric dimension δ and
isoperimetric constant cδ, for a function f : V (G)→ R and a vertex w, define

fw(v) =

{
min{f(v), f(w)} if f(w) < m
max{f(v), f(w)} if f(w) ≥ m

where m is as defined in Theorem 1.
Then∑

u∼v
|fw(u)− fw(v)|+ aw(f(w)−m) ≥ cδ

δ − 1

δ
(
∑
v∈Sw

|f(v)−m|
δ
δ−1 )

δ−1
δ

where

aw = |{u, v} ∈ E(G) : f(u) ≤ f(w) < f(u)}

and

Sw =

{
{v : f(v) ≥ f(w) if f(w) ≥ m}
{u : f(v) ≤ f(w) if f(w) < m}

Roughly speaking, the proof of Theorem 1 is just a discrete version of “in-
tegration by parts” and by using the definition of δ repeatedly, although the
precise proof is somewhat lengthy.
Proof of Theorem 1:

For a given function f : V (G)→ R, we label the vertices so as to satisfy

f(v1) ≤ f(v2) ≤ · · · ≤ f(vn).
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We define Ai = {{vj , vk} ∈ E(G) : j ≤ i < k} and ai = |Ai|. We will

write f(i) = f(vi) and di = dvi . Define S−i =
∑
j≤i

dj , S+
i =

∑
j>i

dj and

Si = min{S−i , S
+
i }. Clearly, Si = S+

i for f(i) ≥ m and Si = S−i for f(i) < m.
We use the convention that S0 = Sn = 0.

Let h(i) = h(vi) = f(vi)−m, and suppose f(w) = m = f(i0).
Then∑
u∼v
|h(u)− h(v)| =

∑
i

ai(h(i+ 1)− h(i))

≥ cδ
∑
i

S
δ−1
δ

i (h(i+ 1)− h(i))

≥ cδ
∑
i<i0

|h(i)|(S
δ−1
δ

i − S
δ−1
δ

i−1 )

+cδ
∑
i≥i0

|h(i+ 1)|(S
δ−1
δ

i − S
δ−1
δ

i+1 )

= cδ
∑
i<i0

|h(i)|((Si−1 + di)
δ−1
δ − S

δ−1
δ

i−1 )

+cδ
∑
i≥i0

|h(i+ 1)|((Si+1 + di)
δ−1
δ − S

δ−1
δ

i+1 )

≥ cδ
∑
i<i0

|h(i)|δ − 1

δ
· di
S

1
δ
i

+ cδ
∑
i≥i0

|h(i)|δ − 1

δ
· di
S

1
δ
i

≥ cδ
δ − 1

δ

∑
i<i0

|h(i)|
δ
δ−1 di

(|h(i)|
δ
δ−1Si)1/δ

+
∑
i≥i0

|h(vi)|
δ
δ−1 di

(|h(vi)|
δ
δ−1Si)1/δ



≥ cδ
δ − 1

δ


∑
i<i0

|h(i)|
δ
δ−1 di(∑

i<i0

|h(i)|
δ
δ−1 di

)1/δ
+

∑
i≥i0

|h(i)|
δ
δ−1 di

∑
i≥i0

|h(i)|
δ
δ−1 di

1/δ


≥ cδ

δ − 1

δ

(
∑
i<i0

|h(i)|
δ
δ−1 di)

δ−1
δ + (

∑
i≥i0

|h(i)|
δ
δ−1 di)

δ−1
δ


≥ cδ

δ − 1

δ

(∑
i

|h(i)|
δ
δ−1 di

) δ−1
δ
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Therefore Theorem 1 is proved.
We remark that Corollary 2 follows from the fact that for f(w) < m,∑

u∼v
|fw(u)− fw(v)| =

∑
i

f(i)<f(w)

ai(h(i+ 1)− h(i))

≥
∑
i

h(i)<h(w)

|h(i)|(ai − ai−1)− aw|h(w)|

Before we proceed to prove the following Sobolev inequality, here we briefly
describe the main idea of the proof. Although the proof of Theorem 2 is more
complicated than that of Theorem 1, the proof consists of two applications of
the discrete version of “integration by parts”, together with an application of
Theorem 1.

Theorem 2 For a graph G with isoperimetric dimension δ > 2 and isoperi-
metric constant cδ , any function f : V (G)→ R satisfies

(
∑
u∼v
|f(u)− f(v)|2)1/2 ≥ cδ

(δ − 1)3/2

2δ3/2
min
m

(
∑
v

|f(v)−m|αdv)1/α

where α = 2δ
δ−2 .

Proof: We follow the notation in Theorem 1 where h(x) = f(x) − m. For a
real value σ, we define

β(σ) =
∑

{u,v}∈C(σ)

|h(u)− h(v)|

γ(σ) = |C(σ)|

Clearly, ∑
u∼v

(h(u)− h(v))2 =

∫ ∞
0

β(σ)dσ +

∫ 0

−∞
β(σ)dσ

We will establish lower bounds for

∫ ∞
0

β(σ)dσ. (The second part can be lower

bounded in a similar way.)
We define values z0, z1, . . . , zm, by induction as follows:

(1) Set z0 = 0.
(2) For i ≥ 1, choose zi such that∫ zi+1

zi

β(σ)dσ = (zi+1 − zi)
∫ zi+1

zi

γ(σ)dσ
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Claim: ∑
zi≤h(x)≤zi+1

dx ≥ cδ

 ∑
h(x)≥zi+1

dx


δ−1
δ

Proof: For a vertex x, we define

hi(x) =

 h(x) if h(x) ∈ [zi, zi+1]
zi if h(x) ≤ zi
zi+1 if h(x) ≥ zi+1

It follows from the definition that∫ zi+1

zi

γ(σ)dσ =
∑

{x,y}∈E

|hi(x)− hi(y)|

∫ zi+1

zi

β(σ)dσ =
∑

{x,y}∈E

|h(x)− h(y)| · |hi(x)− hi(y)|

≥
∑

{x,y}∈E

(hi(x)− hi(y))2

≥ (
∑

{x,y}∈E

|hi(x)− hi(y)|)2/
∑

zi≤h(x)≤zi+1

dx

≥ (

∫ zi+1

zi

γ(σ)dσ)2/
∑

zi≤h(x)≤zi+1

dx

Since ∫ zi+1

zi

β(σ)dσ = (zi+1 − zi)
∫ zi+1

zi

γ(σ)dσ

we have

|zi+1 − zi|
∑

zi≤h(x)≤zi+1

dx ≥
∫ zi+1

zi

γ(σ)dσ

≥ |zi+1 − zi| min
zi≤σ≤zi+1

γ(σ)

Therefore,

∑
zi≤h(x)≤zi+1

dx ≥ cδ

 ∑
h(x)≤zi+1

dx


δ−1
δ

since

γ(σ) ≥ cδ

 ∑
h(x)≤zi+1

dx


δ−1
δ
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To simplify the discussion, we consider a modified function defined on a path
. . . , u′1, u0, u1, . . . , um where h(ui) = zi for i ≥ 0 and degree of zi is set to be∑
zi≤h(x)≤zi+1

dx (adding loops if necessary). It is easy to see that

∑
u∼v

(h(u)− h(v))2 ≥
∫ ∞

0

β(σ)dσ

=
∑
i

∫ zi+1

zi

β(σ)dσ

=
∑
i

(zi+1 − zi)
∫ zi+1

zi

γ(σ)dσM

=
∑
i

(zi+1 − zi)
∫ zi+1

zi

γ′(σ)dσ

where we define

γ′(σ) = cδ

 ∑
h(x)≤zi+1

dx


δ−1
δ

Let Ti =
∑
j≤i

γ(zj+1 − zj) + γ(zi)zi

From Cor. 2, we have

Ti ≥ cδ
δ − 1

δ
(
∑
j≥i

z
δ
δ−1
j d(uj))

δ−1
δ = cδ

δ − 1

δ
T ′i

δ−1
δ .

and
Ti−1 − Ti ≥ (γ′(zi−1)− γ′(zi))zi−1
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We use the convention that z−i = 0 if i ≥ 0. We consider

P =
∑
i≥1

(zi − zi−1)2γ′(zi)

≥
∑
i≥1

(zi − zi−1)[(zi − zi−1)γ′(zi)]

=
∑
i

zi[(zi − zi−1)γ′(zi)− (zi+1 − zi)γ′(zi+1)

=
∑
i

zi[(zi+1 − zi)(γ′(zi)− γ′(zi+1)) + (zi − zi−1 − zi+1 + zi))(γ
′(zi)]

=
∑
i

(zi+1 − zi)[zi(γ′(zi)− γ′(zi+1)) +
∑
i

[(zi − zi−1)− (zi+1 − zi))]ziγ′(zi)

=
∑
i

(zi+1 − zi)(Ti − Ti+1) +
∑
i

[(zi − zi−1)(ziγ
′(zi)− zi−1γ

′(zi−1)

=
∑
i

(zi+1 − zi)(Ti − Ti+1)−
∑
i

[(zi − zi−1)2γ′(zi)

≥
∑
i

(zi+1 − zi)(Ti − Ti+1)− P

Therefore we have

P ≥ 1

2

∑
i

(zi+1 − zi)(Ti − Ti+1)

≥ 1

2

∑
i

zi[Ti−1 − Ti − (Ti − Ti+1)]

≥ cδ
δ − 1

2δ

∑
i

zi

T ′i δ−1
δ [(1 +

z
δ
δ−1
i d(ui)

T ′i
)
δ−1
δ − 1]− (1− (1−

z
δ
δ−1
i+1 d(ui+1)

T ′i
)
δ−1
δ )


≥ cδ

(δ − 1)2

2δ2

∑
i

ziT
′
δ−1
δ

i

z
δ
δ−1
i d(ui)− z

δ
δ−1
i+1 d(ui+1)

T ′i

≥ cδ
(δ − 1)2

2δ2

∑
i

zi
z

δ
δ−1
i d(ui)− z

δ
δ−1
i+1 d(ui+1)

T ′i
1/δ

(7)
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Now, we substitute for d(ui) and obtain

P ≥ c2δ
(δ − 1)2

2δ2

∑
i

zi

z
δ
δ−1
i (

∑
j≥i

d(uj))
δ−1
δ − z

δ
δ−1
i+1 (

∑
j≥i+1

d(uj))
δ−1
δ

T ′i
1/δ

≥ c2δ
(δ − 1)2

2δ2

∑
i

z
2δ−1
δ−1
i (

∑
j≥i+1

d(uj))
δ−1
δ [(1 +

d(ui)∑
j≥i+1

d(uj)
)
δ−1
δ − 1− (z

δ
δ−1
i+1 − z

δ
δ−1
i )]

T ′i
1/δ

≥ c2δ
(δ − 1)3

2δ3
[
∑
i

z
2δ−1
δ−1
i d(ui)

(
∑
j≥i+1

d(uj))
1
δ−1T ′i

1/δ
−
∑
i

zi(z
δ
δ−1
i+1 − z

δ
δ−1
i )(

∑
j≥i+1

d(uj))
1
δ−1

T ′i
1/δ

]

≥ c2δ
(δ − 1)3

2δ3

∑
i

z
2δ−1
δ−1
i d(ui)

(
∑
j≥i+1

d(uj))
1
δ−1T ′i

1/δ
− P

where the last inequality uses (7). Putting things together, we have

P ≥ c2δ
(δ − 1)3

4δ3

∑
i

z
2δ
δ−2
i d(ui)

z

2
δ−2 + δ

(δ−1)(δ−2)
i (

∑
j≥i+1

d(uj))
1
δ−1 (

∑
j≥i

z
δ
δ−1
j )1/δ

≥ c2δ
(δ − 1)3

4δ3

∑
i

z
2δ
δ−2
i d(ui)

(
∑
j≥i

d(uj))
2
δ

≥ c2δ
(δ − 1)3

4δ3
(
∑
i

z
2δ
δ−2
i d(ui))

δ−2
δ

In a similar way we can also lower bound∫ 0

−∞
β(σ)dσ

Therefore, ∑
i∼j

(h(i)− h(j))2

 1
2

≥
√
cδ

(δ − 1)3/2

2δ3/2
(
∑
i

|h(i)|αdi)
1
α
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since α ≥ 2.

4 The heat kernel of a graph

For a graph G on n vertices, we express its Laplacian

L =

n−1∑
i=0

λiPi

where Pi is the projection to the ith eigenfunction γi. The heat kernel Kt of G
is defined to be the n× n matrix

Kt =
∑
i

e−λitPi

= e−tL

In particular,
K0 = I.

The heat kernel as defined above is in fact quite a natural thing to consider.
It is called the heat kernel since it provides solutions to the temperature distri-
butions at time t when we consider the Riemannian manifold as a homogeneous
isotropic medium. In a graph, the heat kernel can be viewed as a continuous-
time analogue of a random walk. The reader is referred to [7] and [8] for more
background on this topic.

Some useful properties of the heat kernel follow directly from its definition
and can be briefly summarized here:
Lemma 2: For x, y ∈ V (G), we have

(i)

Kt(x, y) =
∑

e−tλiγi(x)γi(y)

where γi is the eigenfunction corresponding to the eigenvalue λi.

(ii) For any 0 ≤ a ≤ t,

Kt(x, y) =
∑
z

Ka(x, z)Kt−a(z, y)

(iii) For f : V (G)→ R,

Ktf(x) =
∑
y

Kt(x, y)f(y).
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(vi) Kt satisfies the heat equation

∂

∂t
Kt = −LKt.

(v)
Kt(x, y) ≥ 0.

(vi)
KtS

−11 = S−11

In particular,

Kt(x, x) =
∑
y

(K t
2
(x, y))2

From here, we will deduce a series of inequalities about ∂
∂tKt which will

eventually lead to a proof of Theorem 3.
We first consider

∂

∂t
Kt(x, x) = 2

∑
y

K t
2
(x, y)

∂

∂t
K t

2
(x, y)

=
∑
y

K t
2
(x, y)

∑
i

(−λi)e−tλi/2γi(x)γi(y)

=
∑
γ

K t
2
(x, y)(−LK t

2
(y, x))

= −
∑
γ

K t
2
(x, y)SLSK t

2
(y, x)

= −
∑
y

K
t
2 (x, y)

∑
z

S(y, y)L(y, z)S(z, z)K t
2
(z, x)

= −
∑
y

K t
2
(x, y)

∑
z

x∼y

1√
dy

(
1√
dy
K t

2
(y, x)− 1√

dz
K t

2
(z, x))

= −
∑
y∼z

(
K t

2
(y, x)√
dy

−
K t

2
(z, x)
√
dz

)2

Now we apply Theorem 1 by considering K t
2
(y, x) as a function of y with

fixed x. For α = 2δ
δ−2 , we have

∂

∂t
Kt(x, x) ≤ −cδ

(δ − 1)2

2δ2

(∑
y

(
K t

2
(y, x)√
dy

−m

)α
dy

)2/α

(8)

14



To proceed, we need the following fact.
Lemma 3: (∑

y

(
K t

2
(x, y)√
dy

−m

)α
dy

) 1
α−1

(3
√
dx)

α−2
α−1

≥
∑
y

(
K t

2
(x, y)√
dy

−m

)2

dy.

Proof: We apply Hőlder’s inequality for 1 = 1
p + 1

q ,∑
i

figi ≤ (
∑
i

fpi )1/p(
∑
i

gqi )
1/q

where we take p = α− 1, q = α−1
α−2 and

fy = |
K t

2
(x, y)√
dy

−m|
α
α−1 ,

gy = |
K t

2
(x, y)√
dy

−m|
α−2
α−1

We then obtain(∑
y

|
K t

2
(x, y)√
dy

−m|αdy

) 1
α−1

(∑
y

|
K t

2
(x, y)√
dy

−m|dy

)α−2
α−1

≥
∑
y

(
K t

2
(x, y)√
dy

−m

)2

dy

It remains to bound
∑
y

|
K t

2
(x, y)√
dy

−m|dy from above.

We define m′ by

m′ :=

√
dx

vol(G)

It follows from Lemma 2 (vi) that∑
y

(
K t

2
(x, y)√
dy

−m′
)
dy =

∑
y

K t
2
(x, y)

√
dy −m′vol(G)

=
(
K t

2
S−11

)
(x)−m′vol(G)

=
√
dx −m′vol(G)

= 0

15



From the definition of m and the fact that K ≥ 0, we have m′ ≥ m ≥ 0. Let

N+
x = {y :

K t
2

(y,x)
√
dy
≥ m′} and N−x = {y :

K t
2

(y,x)
√
dy

< m′}.
Now

∑
y

|
K t

2
(x, y)√
dy

−m′|dy =
∑
y∈N+

x

(
K t

2
(x, y)√
dy

−m′
)
dy +

∑
y∈N−

x

(
m′ −

K t
y
(x, y)√
dy

)
dy

= 2
∑
y∈N−

x

(
m′ −

K t
2
(x, y)√
dy

)
dy

≤ 2
∑
y∈N−

x

m′dy

= 2

√
dx

vol(G)
·
∑
y∈N−

x

dy

≤ 2
√
dx

Therefore,

∑
y

|
K t

2
(x, y)√
dy

−m|dy ≤
∑
y

|
K t

2
(x, y)√
dy

−m′|dy +
∑
y

|m′ −m|dy

≤ 2
√
dx +

∑
y

m′dy

≤ 3
√
dx

The proof of Lemma 3 is complete.
We now return to inequality (7). Using Lemma 3 we obtain

16



∂

∂t
Kt(x, x)

≤ −cδ
(δ − 1)2

2δ2

(∑
y

(
K t

2
(x, y)√
dy

−m

)α
dy

)2/α

≤ −cδ
(δ − 1)2

2δ2

∑
y

(
K t

2
(x, y)√
dy

−m

)2

dy


2(α−1)
α

(3
√
dx)

−2(α−2)
α

≤ −cδ
(δ − 1)2

2δ2
(
∑
y

((K t
2
(x, y))2 − 2mK t

2
(x, x)

√
dy +m2dy))

2(α−1)
α (3

√
dx)−

2(α−2)
α

≤ −cδ
(δ − 1)2

2δ2
(Kt(x, x)− 2mm′

√
dx +m2vol(G))2(α−1

α )(3
√
dx)−

2(α−2)
α

≤ −cδ
(δ − 1)2

2δ2
(Kt(x, x)− dx

vol(G)
)2

(α−1)
α (3

√
dx)−

2(α−2)
α

using the fact that m′ ≥ m.
We then consider

∂

∂t
(Kt(x, x)− dx

vol(G)
)1−2

(α−1)
α

= −2

δ
(Kt(x, x)− dx

vol(G)
)−2(α−1

α ) ∂

∂t
Kt(x, x)

≥ cδ
(δ − 1)2

δ3
(Kt(x, x)− dx

vol(G)
)−2(α−1

α )+2(α−1
α )(3

√
dx)−2

(α−2)
α

≥ cδ
(δ − 1)2

δ3
(3
√
dx)−2

(α−2)
α

using the fact that 1− 2(α−1
α ) = − 2

δ . Therefore, we have

(Kt(x, x)− dx
vol(G)

)−
2
δ ≥ cδ

(δ − 1)2

δ3
(3
√
dx)−2(α−2

α )t+ (1− dx
vol(G)

)−
2
δ

≥ cδ
(δ − 1)2

δ3
(3
√
dx)−2

(α−2)
α t

i.e.,

Kt(x, x)− dx
vol(G)

≤ Cδdx

t
δ
2

where Cδ = 9δ
3δ
2 (c2δ(δ − 1))−δ. Hence,∑

x

Kt(x, x)− 1 ≤ Cδvol(G)

t
δ
2

17



Since ∑
x

Kt(x, x) =
∑
x

(
∑
i

e−λitγ2
i (x)) =

∑
i

e−λit,

we have proved the following:

Theorem 3 ∑
i 6=0

e−λit ≤ Cδvol(G)

t
δ
2

(9)

where Cδ = 9δ
3δ
2 (c2δ(δ − 1))−δ.

From Theorem 3, we derive bounds for eigenvalues.

Theorem 4 The k-th eigenvalue λk of L satisfies

λk ≥ C ′δ(
k

vol(G)
)2/δ

where C ′δ = cδ(δ−1)2

2eδ234/δ .

Proof: From (7) we have

ke−λkt ≤ cδvol(G)

t
δ
2

The function eλkt

t
δ
2

is minimized when t = δ
2λk

. Therefore

k ≤ Cδvol(G) · inf
t

eλkt

t
δ
2

= Cδvol(G) · (2λke

δ
)
δ
2

This implies

λk ≥ δ

2e
(

k

Cδvol(G)
)

2
δ

= C ′δ(
k

vol(G)
)

2
δ

where C ′δ =
cδ(δ − 1)2

2eδ234/δ
.
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5 Generalization to weighted graphs and irre-
ducible reversible Markov chains

A weighted undirected graph Gπ with loops allowed has associated with it a
weight function π : V × V → R+ ∪ {0} satisfying

π(u, v) = π(v, u)

and
π(u, v) = 0 if {u, v} 6∈ E(G) .

The definitions and results in previous sections can be easily generalized as
follows. We define

1. dv, the degree of a vertex v of Gπ by dv =
∑
u

π(v, u)

2. The Laplacian L of Gπ,

L(u, v) =

{
1− π(v,v)

dv
if u = v

− π(u,v)√
dudv

if u 6= v

Let λ0 = 0 ≤ λ1 ≤ · · · ≤ λn−1 denote the eigenvalues of L. Then

λ1 = min
f

max
m

∑
u

∑
v

(f(u)− f(v))2π(u, v)

2
∑
v

dv(f(v)−m)2

3. G has isoperimetric dimension δ and isoperimetric constant cδ if∑
u∈X

∑
v∈X̄

π(u, v) ≥ cδ(vol(X))1− 1
δ

for all X ⊆ V (G) with vol(X) ≤ vol(X̄) where vol(X) =
∑
v∈X

dv.

The results in previous sections can be generalized to the Laplacian of
weighted undirected graphs. We will state these facts but omit the proofs which
follow the proofs in Sections 3 and 4 in a similar fashion.

Theorem 5 In a weighted undirected graph Gπ with isoperimetric dimension δ
and isoperimetric constant cδ , any function f : V (G)→ R satisfies∑

u

∑
v

|f(u)− f(v)|π(u, v) ≥ cδ
δ − 1

2δ
min
m

(
∑
v

|f(v)−m|
δ
δ−1 dv)

δ−1
δ
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Theorem 6 In a weighted undirected graph Gπ with isoperimetric dimension
δ > 2 and isoperimetric constant cδ, any function f : V (G)→ R satisfies

(
∑
u

∑
v

|f(u)− f(v)|2π(u, v))1/2 ≥
√
cδ
δ − 1

2δ
min
m

(
∑
v

|f(v)−m|αdv)1/α

where α = 2δ
δ−2 .

Theorem 7 For a weighted undirected graph G, the eigenvalues of its Laplacian
L satisfy ∑

i 6=0

e−λit ≤ Cδvol(G)

tδ/2

where Cδ = 9δ
2δ
2 (c2δ(δ − 1))−δ and t > 0.

Theorem 8 For a weighted undirected graph G with isoperimetric dimension δ
and isoperimetric constant cδ, the k-th eigenvalue of L satisfies

λk ≥ C ′δ(
k

vol(G)
)2/δ

where C ′δ = cδ
(δ−1)2

2eδ234/8 .

An irreducible reversible Markov chain can be viewed as a weighted undi-
rected graph Gπ with the transition probability matrix P satisfying

P (u, v) =
π(u, v)∑
w

π(w, v)
.

Furthermore, the stationary distribution is just dv∑
v
dv

at the vertex v. We

note that the connectivity of the graph is equivalent to the irreducibility of the
Markov chain. The Laplacian L of Gπ and P have complementary eigenvalues
since

P = I − SLS−1

where S is defined as in Section 2. Therefore the statements in Theorems 5-8
apply to irreducible reversible Markov chains as well.
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