
Discrete Green’s functions ∗

Fan Chung†

University of California, San Diego
La Jolla, CA 92093-0112

S.-T. Yau
Harvard University

Cambridge, MA 02138

Dedicated to the memory of Gian-Carlo Rota

Abstract

We study discrete Green’s functions and their relationship with discrete Laplace equations.
Several methods for deriving Green’s functions are discussed. Green’s functions can be used
to deal with diffusion-type problems on graphs, such as chip-firing, load balancing and discrete
Markov chains.

1 Introduction

Many combinatorial problems involve solving equations of the following general type. Let V denote

a set of states (in the setting of Markov chains ) or a set of vertices ( as in a graph). Let g denote

a given function g : V → R. The problem of interest is to find f satisfying the following discrete

Laplace equation:

∆f(x) =
∑

y

(f(x) − f(y))pxy = g(x) (1)

where pxy denote the transition probability from x to y. For a typical random walk in a graph, pxy

is often taken to be 1/dx for y adjacent to x and 0 otherwise (where dx is the degree of x, defined

to be dx =
∑

y dxy).

For some combinatorial games or diffusion processes, there are additional constraints for finding

a solution f in (1). For a subset S of V , we define the boundary δS of S by

δS = {y 6∈ S : pxy 6= 0 for some x ∈ S}
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For a function σ : δS → R, we say f satisfies the boundary condition σ if f(x) = σ(x) for x in δS.

For example, the problem of evaluating the probability fx,y(z) of a Markov chain hitting x before

hitting y can be formulated as the following problem of solving the Laplace equation with boundary

conditions. We consider S = V − {x, y}, δS = {x, y} and σ(x) = 1, σ(y) = 0. Then fx,y(z) is the

solution for the following equation:

∆f(z) = 0

for all z ∈ S and f satisfies the boundary condition σ.

Suppose δS 6= ∅ and the subgraph induced by S is connected. It is not hard to see [6] that ∆ is

nonsingular as an operator on the space of functions defined on S. The Green’s function is the left

inverse operator of the Laplace operator ∆ (restricted to the subspace of functions defined on S):

G∆ = I

where I is the identity operator.

If we can determine the Green’s function G, then we can solve the Laplace equation in (1) by

writing

f = G∆f = Gg.

We will also consider Green’s functions for the case that there is no boundary. We will discuss a

related example concerning the so-called “hitting time”, the expected number of steps for a Markov

chain to reach a state y with an initial state x. It is worth mentioning that numerous diffusion-type

problems can be treated in a similar way, including chip-firing games, load balancing algorithms and

the mixing of random walks. Thus, Green’s functions provide a powerful tool in dealing with a wide

range of combinatorial problems.

Green’s functions were introduced in a famous essay by George Green [16] in 1828 and have been

extensively used in solving differential equations [2, 5, 15]. The concept of Green’s functions has had

a pervasive influence in numerous areas. Many formulations of Green’s functions occur in a variety

of topics. Articles on discrete Green’s functions or discrete analytic functions appear sporadically in

the literature, most of which concern either discrete regions of a manifold or finite approximations

of the (continuous) equations [3, 12, 17, 13, 19, 21]. In this paper, we consider Green’s functions for

discrete Laplace equations defined on graphs.
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This paper is organized as follows: In Section 2, we will give some basic definitions of Dirichlet

eigenvalues and heat kernels. In Section 3, we derive an explicit formula for Green’s functions in

terms of Dirichlet eigenfunctions. In Section 4, we will consider some direct methods for deriving

Green’s functions for paths. In Section 5, we consider a general form of Green’s function which

can then be used to solve for Green’s functions for lattices. In Section 6, we will evaluate Green’s

functions for several families of graphs including distance regular graphs. In section 7, we consider

Green’s functions for boundaryless cases, and discuss their relation to the problem of expected

hitting time.

2 Dirichlet eigenvalues and the heat kernel

We consider a weighted undirected graph with edge weights wxy. (For readers who are familiar

with Markov chains, we note that a reversible Markov chain with transition probability matrix (pxy)

can be dealt with as a weighted undirected graph with edge weights wxy = pxyπ(x) where π is the

stationary distribution).

We will first give some basic definitions for a normalized Laplacian and and for heat kernels with

Dirichlet boundary conditions.

The discrete Laplace operator ∆ as defined in (1) is not a self-adjoint operator. The corresponding

matrix, also denoted by ∆, has entries

∆(x, y) =




1 − wx,x/dx if x = y and dx 6= 0,
−wx,y/dx if x and y are adjacent,
0 otherwise.

where the degree dx of x is the sum of all wx,y. We here will assume that dx 6= 0 for all x to avoid

degenerated cases. Clearly, ∆ is not a symmetric matrix in general. However, ∆ is equivalent to the

following matrix L

L = T 1/2∆T−1/2

= T−1/2LT−1/2

where T is a diagonal matrix with entries T (x, x) = dx and L is the combinatorial Laplacian:

L(x, y) =




dx − wx,x if x = y,
−wx,y if x and y are adjacent,

0 otherwise.
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It is easy to see that L is a symmetric matrix and we call L the normalized Laplacian. In this

paper, we consider graphs without isolated vertices so that the dx are all nonzero.

For a subset S of vertices, the Dirichlet eigenvalues of L are exactly the eigenvalues of the

submatrix LS with rows and columns restricted to those indexed by vertices in S. Let λ1 ≤ λ2 ≤
. . . ≤ λs denote the eigenvalues of LS , where s = |S|. It is not hard to check (also see [6]) that

λ1 = inf
g

〈g,LSg〉
〈g, g〉

= inf
f

∑
x,y∈S∪δS(f(x) − f(y))2wxy∑

S f2(x)dx
(2)

where f and g range over all nontrivial functions satisfying the Dirichlet boundary condition:

f(x) = 0 = g(x) (3)

for all x in the boundary δS of S.

The celebrated matrix-tree theorem [18] states that the number of spanning trees in a graph Γ is

equal to the determinant of LS , where S is any maximum proper subset of the vertex set. Therefore

the number of spanning trees in a graph Γ is exactly∏s
i=1 λi

∏
x∈S dx∑

x∈S dx
.

We remark that in equation (2), the degrees dx are the degrees in the host graph Γ (not in

the induced subgraph S). When the induced subgraph S is connected, we see from (2) that LS is

nonsingular and λ1 > 0 (see [6]). Thus the inverse of LS , denoted by G, is well-defined. We note

that G is just a symmetric normalized version of the Green’s function G since

G = T 1/2GT−1/2

and we have

T−1/2GT 1/2∆ = 0

For example, suppose we consider a path Pn which can be regarded as an induced subgraph of

a cycle Cm , with m > n + 1. Suppose that the vertices of Pn are 1, 2, . . . , n where the boundary

consists of two vertices 0 and n + 1. Then

∆f(x) =
1
2
(2f(x) − f(x − 1) − f(x + 1))
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and ∆ = L = 1
2L since dx = 2 for all x. The Dirichlet eigenvalues for Pn are 1 − cos kπ

n+1 and the

corresponding eigenfunctions are

φk(j) =

√
2

n + 1
sin

jkπ

n + 1

for k = 1, . . . , n. The problem of determining the Green’s function G for a path will be discussed

later.

For a given connected induced subgraph S of a graph Γ, and for a real parameter t ≥ 0, the

Dirichlet heat kernel of S is defined by

Ht = e−tLS

= I − tLS +
t2

2!
L2 + . . .

Thus,

Ht(x, y) =
s∑

i=1

e−λitφi(x)φi(y) (4)

where λi’s are the eigenvalues of LS and φi’s are the corresponding orthonormal eigenfunctions. It

follows from the definition (4) that Ht satisfies the following heat equation:

d

dt
Htf = −LSHtf (5)

for any f satisfying the Dirichlet boundary condition. Furthermore, we have H0 = I and

lim
t→∞Ht(x, y) = 0 (6)

Thus, Let A = I − LS satisfy

A(x, y) =
wxy√
dxdy

.

We can express Ht in an alternative form:

Ht = e−tetA

= e−t(I + tA +
t2

2!
A + . . .)

= e−t
∑
k≥0

Pk(x, y)
tk

k!

where Pk(x, y) is the sum of the weights of all paths of length k joining x and y. Here, the weight

of a path is the product of all edge weights in the path. We use the convention that P0(x, x) = 1.
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We consider G satisfying

G∆h = h (7)

for any h satisfying the Dirichlet boundary condition as in (3).

In other words, (7) is equivalent to solving for G the equation

G∆S = IS (8)

where all G, ∆S , IS are matrices with rows and columns indexed by elements in S.

We observe that solving for G in (8) is equivalent to finding a symmetric matrix G = T 1/2GT−1/2

which satisfies the corresponding equation:

G LS = IS = L GS . (9)

Therefore, for a connected graph, we have the following formula for the Green function:

G(x, y) =
∑

i

1
λi

φi(x)φi(y) (10)

where φi’s are orthonormal eigenfunctions with associated eigenvalues λi. Let H denote the Dirichlet

heat kernel for a connected induced subgraph S. Then we have

G =
∫ ∞

0

Htdt (11)

since
∫ ∞

0

e−tλidt = 1/λi. And the Green’s function G satisfies

G(x, y) =
∫ ∞

0

d1/2
x Ht(x, y)d−1/2

y dt (12)

=
∑

i

1
λi

d1/2
x φi(x)φi(y)d−1/2

y (13)

for x, y in S.

3 Solving the Laplace equation using Dirichlet eigenfunc-

tions

For a connected induced subgraph S, we want to solve for f satisfying

∆f = g
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for given g defined on S ∪ δS. There are two main steps for deriving a solution f . In this section,

we deal with the first part of finding a solution to ∆f = 0 satisfying the boundary condition σ, a

function defined on the boundary δS.

Theorem 1 The solution f to the following equation

∆f(x) = 0

for x ∈ S, satisfying the boundary condition

f(y) = σ(y)

and for y ∈ δS, can be written as

f(z) =
∑

i


 1

λi

∑
x∈S

x∼y∈δS

dx
−1/2φi(x)σ(y)


 d−1/2

z φi.

for z in S where φi’s are the eigenfunctions of LS .

Proof: We consider f̃(x) = T 1/2f(x) and f̃ : S → R is the solution of the following equation:

LS f̃(x) = 0

for x ∈ S. We can write f̃ as a linear combination of the eigenfunctions φi of LS .

f̃ =
∑

i

aiφi.

which implies

ai = 〈φi, f̃〉.

Now we consider the function

f0(x) =
{

0 if x ∈ S,
σ(x) otherwise.
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Let fS denote the function f restricted to S. Clearly, f−f0 satisfies the Dirichlet boundary condition.

We have

λiai = 〈LSφi, f̃〉
= 〈LSφi, (f̃ − f̃0)〉
= 〈φi, T

−1/2LT 1/2(f̃ − f̃0)〉
= 〈φi, T

−1/2L(f − f0)S〉
= 〈T 1/2φi, ∆(f − f0)S〉
= 〈T 1/2φi,−(∆f0)S〉
= −

∑
x∈S

√
dxφi(x)

1
dx

∑
y∼x

(f0(x) − f0(y))

=
∑
x∈S

∑
y∼x
y∈δS

d−1/2
x φi(x)σ(y).

Consequently,

ai =
1
λi

∑
x∈S

x∼y∈δS

dx
−1/2φi(x)σ(y)

f̃ =
∑

i


 1

λi

∑
x∈S

x∼y∈δS

dx
−1/2φi(x)σ(y)


 φi

and so,

fS(z) =
∑

i


 1

λi

∑
x∈S

x∼y∈δS

dx
−1/2φi(x)σ(y)


 d−1/2

z φi(z).

This completes the proof of Theorem 1. �

Example 1 For a path Pn with vertex set {1, 2, . . . , n}, we assume the boundary condition σ(n +

1) = 0 and σ(0) = 1. The solution f(x) to the equation ∆f = 0 satisfying the boundary condition σ

is the probability of a walk starting from x hitting 0 before hitting n+1. We can solve for f directly

and get

f(z) = 1 − z

n + 1
.
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On the other hand, by Theorem 1, f can be found as follows:

f̃(z) = f(z)d−1/2
z

=
∑

k

akφk(z)

where ak =
1

1 − cos kπ
n+1

sin kπ
n+1√

n + 1
.

Therefore, for z = 1, . . . , n, we have

f(z) =
1

n + 1

n∑
k=1

sin kπ
n+1 sin kzπ

n+1

1 − cos kπ
n+1

= 1 − z

n + 1

which is the probability that a random walk starting from z hits 0 before it hits n + 1.

A solution to the Laplace equation (1) can be described in the following general form:

Theorem 2 In a connected induced subgraph S of a graph Γ, let g denote a function g : S → R

and let σ denote a boundary condition σ : δS → R. A solution f to the Laplace equation

∆f(x) = g(x)

for x ∈ S and for y ∈ δS,

f(y) = σ(y),

can be written as

f = f1 + f2

where f1 is a solution to ∆f1(x) = 0 which satisfies the boundary condition σ, and f2, which satisfies

the Dirichlet boundary condition, is defined by

f2 = Gg.

The proof is immediate. We can use Theorem 1 to determine f1. The evaluation for f2 depends on

the Green’s function. Various methods for determining the Green’s function will be discuss in the

next section.
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4 Green’s function for a path

In the previous sections, there are several explicit formulas for the Green’s function. Instead, here

we consider direct methods for evaluating the Green’s function for a path with Dirichlet boundary

condition. The solutions we will obtain leads to intriguing equalities.

Let the vertex set of Pn be denoted by {1, 2, . . . , n} with boundary {0, n+1}. Since ∆ = L = L/2,

we have LG = GL = I . Here we assume 1 ≤ x < y ≤ n. From LG = I, it follows that

1
2
(2G(x, y) − G(x − 1, y) − G(x + 1, y)) = 0

From GL = I, we have
1
2
(2G(x, y) − G(x, y − 1) − G(x, y + 1)) = 0

with the convention that G(x, y) = 0 if either x or y is not in {1, . . . , n}. Therefore we have

G(x, y) − G(x − 1, y) = G(x − 1, y) − G(x − 2, y)

= G(x − 2, y) − G(x − 3, y)

= . . .

= G(1, y).

This implies that

G(x, y) = xG(1, y).

In a similar way, we can get

G(1, y) = c(n + 1 − y)

for some constant c. Now, we use the fact that

1
2
(2G(x, x) − G(x − 1, x) − G(x + 1, x)) = 1

to get c = 2
n+1 and G(x, x) = cx(n + 1 − x). Thus we have proved the following:

Theorem 3 For a path Pn with vertex set {1, . . . , n} as an induced subgraph with boundary

{0, n + 1}, its Green’s function satisfies

G(x, y) =
2

n + 1
x(n + 1 − y)

for 1 ≤ x ≤ y ≤ n.
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As an immediate consequence of Theorem 3 and equation (10), we obtain the following (somewhat

nontrivial) equality:

Corollary 1 The following equality holds for integers 1 ≤ x ≤ y ≤ n:
n∑

k=1

sin kxπ
n+1 sin kyπ

n+1

1 − cos kπ
n+1

= x(n + 1 − y).

5 Green’s functions for lattices

In this section, we describe a way to determine Green’s functions for cartesian product of graphs.

In particular, this method can be used to evaluate Green’s functions for lattices.

We start with an induced subgraph S of a graph Γ. For α ∈ R, let Gα denote the symmetric

matrix satisfying

(LS + α)Gα = IS

where LS is the Dirichlet Laplacian for the induced subgraph S. Clearly,

Gα(x, y) =
∑

i

1
λi + α

φi(x)φi(y)

where φi’s are orthonormal eigenfunctions of LS associated with eigenvalues λi.

Now we consider two induced subgraphs S and S′ of graphs Γ and Γ′, respectively. We let

S × S′ denote the induced subgraph of the cartesian product of Γ and Γ′ by the subset of vertices

(v, v′) where v ∈ S and v′ ∈ S′. The cartesian product of two graphs (V, E) and (V ′, E′) has

vertex set {(v, v′) : v ∈ V, v′ ∈ V ′} and edges of the form {(v, v′), (v, u′)} or {(v, v′), (u, v′)} where

{u, v} ∈ E, {u′, v′} ∈ E′.

Let C denote a contour in the plane, say, consisting of all α ∈ C satisfying |2 − α| = 2.

Let G and G′ denote the Green’s functions of S and S′, respectively. Then we have the following:

Theorem 4 Suppose S and S′ are induced subgraphs of two graphs Γ and Γ′, which are both regular

of degrees d. The Green’s function G of the cartesian product S×S′ with Dirichlet boundary condition

is

G((x, x′), (y, y′)) =
1
πi

∫
C

Gα(x, y)G′
−α(x′, y′)dα

where C,G,G′ are defined as above.
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Proof: Let φj and φ′
k denote the eigenfunctions of the Laplacian LS and LS′ , with eigenvalues λj

and λ′
k, respectively. The eigenvalues of S × S′ are (λj + λ′

k)/2. We see that

G((x, x′), (y, y′)) = 2
∑
j,k

φj(x)φk(y)φ′
j(x

′)φ′
k(y′)

λj + λ′
k

=
1
πi

∫
C

∑
j,k

φj(x)φk(y)φ′
j(x

′)φ′
k(y′)

(λj + α)(λ′
k − α)

dα

=
1
πi

∫
C

Gα(x, y)G′
−α(x′, y′)dα

�

We can use the same method to obtain a formulation for the following general cartesion product

of two graphs.

Theorem 5 Suppose S and S′ are induced subgraphs of two graphs Γ and Γ′, which are regular of

degrees d and d′, respectively. The Green’s function G of the cartesian product S×S′ with Dirichlet

boundary condition is

G((x, x′), (y, y′)) =
d + d′

2πidd′

∫
C

Gα/d(x, y)G′
−α/d′(x′, y′)dα

where C is a contour consisting of all α ∈ C satisfying |d + d′ − α| = d + d′.

Proof: Let φj and φ′
k denote the eigenfunctions of the Laplacian LS and LS′ , with eigenvalues λj

and λ′
k, respectively. The eigenvalues of S × S′ are

d

d + d′
λj +

d′

d + d′
λ′

k

�

We now consider the two dimensional lattice graph Pm × Pn with vertex set {(x, y) : 1 ≤ x ≤
m, 1 ≤ y ≤ n} and edges of the form {(x, y), (x + 1, y)} and {(x, y), (x, y + 1)}.

Theorem 6 The lattice graph Pm × Pn has Green’s function, for x ≤ y,

G((x, x′), (y, y′)) =
n∑

k=1

8(−1)k−1 sin πkx′
n+1 sin πky′

n+1 Ux−1(2 − cos πk
n+1 )Um−y(2 − cos πk

n+1 )

(n + 1)Um(2 − cos πk
n+1 )

where Un is the Chebyshev polynomial of the second kind.
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Its proof needs the following useful fact:

Theorem 7 For a path P with vertices 1, 2, . . . , n and a real α, the Green’s function Gα satisfies

Gα(x, y) =
2(rx − r−x)(rn+1−y − r−(n+1−y))

(r − r−1)(rn+1 − r−(n+1))

where 2(1 + α) = r + r−1.

Proof: For α = 0, we know from Theorem 3 that G0(x, y) = 2x(n + 1 − y)/(n + 1). For x < y, we

have

0 = (L + α)Gα(x, y)

=
1
2
(2(1 + α)Gα(x, y) − Gα(x + 1, y)− Gα(x − 1, y))

=
1
2
((r + r−1)Gα(x, y) − Gα(x + 1, y) − Gα(x − 1, y)).

This implies

Gα(x + 1, y) − rGα(x, y) =
1
r
(Gα(x, y) − rGα(x − 1, y))

= . . .

=
cy

rx
.

For x ≤ y, we have

Gα(x, y) =
cy

rx−1
+ rG(x − 1, y)

=
cy

rx−1
(1 + r2 + . . . + r2(x−1))

=
c′y(r2x − 1)

rx−1

In a similar way, we get

Gα(x, y) = c(r2x − 1)(1 − r−2(n+1−y))r−x−y .
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To determine the value of c, we consider

1 = (L + α)G(x, x)

=
1
2
((r + r−1)G(x, x) − G(x + 1, x) − G(x − 1, x))

=
c

2
(
(r + r−1)(r2x − 1)(1 − r−2(n+1−x))

r2x
− (r2x − 1)(1 − r−2(n−x))

r2x+1
− (r2(x−1) − 1)(1 − r−2(n+1−x))

r2x−1
)

=
c

2
(
r2x(1 − r−2)(1 − r−2(n+1−x))

r2x−1
+

(r2x − 1)(−1 + r2)r−2(n+1−x)

r2x+1
)

=
c

2
(r2 − 1)(r2x(1 − r−2(n+1−x)) + r−2(n+1−x)(r2x − 1))

r2x+1

=
c

2
(r2 − 1)(r2x − r−2(n+1−x))

r2x+1

=
c

2
(r2 − 1)(1 − r−2(n+1))

r
.

This implies

c =
2r

(r2 − 1)(1 − r−2(n+1))
.

Thus we have

Gα(x, y) =
2(r2x − 1)(1 − r−2(n+1−y))
(r − r−1)(1 − r−2(n+1))rx+y

=
2(rx − r−x)(rn+1−y − r−(n+1−y))

(r − r−1)(rn+1 − r−(n+1))

as claimed. �

By using the above Theorem and the definitions of α, r, we have the following:

Corollary 2 For a real α 6= 0 and 1 ≤ x ≤ y ≤ n, the Green’s function Gα for a path P with

vertices 1, 2, . . . , n satisfies

Gα(x, y) =
2Ux−1(1 + α)Un−y(1 + α)

Un(1 + α)

where U is the Chebyshev polynomial of the second kind.

Now we are ready to prove Theorem 6.

Proof of Theorem 6:

From Theorem 4, it is enough to determine the residues of Gα(x, y)G′−α(x′, y′) for α in the

interior of the contour C. From Theorem 7, the poles of GαG′
−α are exactly at r = eiπk/(n+1)
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satisfying 1 − r−2(n+1) = 0. This implies

α = 1 − cos
πk

n + 1
.

The residue of G′
−α(x′, y′) at α = 1 − cos πk

n+1 is exactly

(−1)k−1 sin πkx′
n+1 sin πky′

n+1

n + 1
.

Therefore the Green’s function of Pm × Pn satisfies

G((x, x′), (y, y′)) = 2 Res Gα(x, y)G′
−α(x′, y′)

=
n∑

k=1

8(−1)k−1 sin πkx′
n+1 sin πky′

n+1 Ux−1(2 − cos πk
n+1 )Um−y(2 − cos πk

n+1 )

(n + 1)Um(2 − cos πk
n+1 ).

�

By combining Theorem 6 and equation (10), we have the following:

Corollary 3 For 1 ≤ x ≤ y ≤ n,

1
m + 1

m∑
k=1

n∑
j=1

sin kπx
m+1 sin kπy

m+1 sin jπx′

n+1 sin jπy′

n+1

2 − cos πk
m+1 − cos πj

n+1

=
n∑

k=1

(−1)k−1 sin πkx′
n+1 sin πky′

n+1 Ux−1(2 − cos πk
n+1 )Um−y(2 − cos πk

n+1 )

Um(2 − cos πk
n+1 ).

6 Green’s functions for distance regular graphs

For two vertices in a graph, the distance is the number of edges in a shortest path joining the two

vertices. A graph Γ is said to be distance regular if for any two vertices x and y of distance k in Γ,

the number of neighbors of y of distance k− 1, k, k +1 from x respectively, are constants depending

only on k (and independent of the choice of x and y). In other words, a graph Γ is distance regular

if Γ is a so-called strong regular covering of a weighted path P (see [11, 14]). For a fixed vertex x,

there is a natural mapping π that maps a vertex y of distance k to x in Γ to vertex vk in P . The

weight of an edge {vk, vk+1} in P is the sum of all edge weights w(y, z) in Γ where π(y) = vk and

π(z) = vk+1. It is not difficult to check that all eigenvalues of Γ are eigenvalues of P . Furthermore,

the multiplicities of eigenvalues in Γ can be determined by the eigenfunctions of P . Namely, any
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eigenvalue λ of Γ has multiplicity |V (Γ)|φ2
j (x) where φ is the orthonormal eigenfunction of λ in P .

The heat kernel H of Γ and the heat kernel h of P are related in a nice way [11]:

Ht(x, y) =
√

π−1(vr)ht(v0, vr).

Thus Green’s functions for distance regular graphs can be deduced from Green’s functions for a

weighted path.

We will treat a general weighted path which can then be used to deal with distance regular graphs.

We consider a general weighted path with edge weights wk,k+1 = w(vk, vk+1), for k = 0, . . . , m. We

will consider two situations with respect to the boundary. (The case with no boundary will be

examined in Section 7.) In the first case the boundary consists of one single vertex v0. In the second

case the boundary is {v0, vm+1}. As a matter of fact, the first case can be viewed as a special case

of the second in the sense that the edge weight of the last edge wm−1,m is zero, although the Green

functions for two cases are quite different.

6.1 The boundary has one single vertex

In this subsection, we consider the Green function G with Dirichlet boundary condition for the

boundary v0. We assume without loss of generality that all edge weights are nonzero. We will first

consider the normalized Green function G(vi, vj) = G(i, j) = G(j, i) which satisfies, for x 6= y,

wx−1,x√
dx

(
G(x, y)√

dx

− G(x − 1, y)√
dx−1

) =
wx,x+1√

dx

(
G(x + 1, y)√

dx+1

− G(x, y)√
dx

) (14)

This implies that for x < y,
G(x, y)√

dy

=
G(x, x)√

dx

.

Since
wx−1,x√

dx

(
G(x, x)√

dx

− G(x − 1, x)√
dx−1

) = 1,

we have

wx−1,x(
G(x, x)

dx
− G(x − 1, x)

dx−1
) = 1

and
G(x, x)

dx
=

1
wx−1,x

+
1

wx−2,x−1
+ . . . +

1
w0,1

We can then derive for G(y, x) =
√

dx√
dy

G(y, x) and G(x, y) =
√

dy√
dx

G(y, x).
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6.2 The boundary has two endpoints

In this subsection, we consider the Green function G with Dirichlet boundary condition for the

boundary {v0, vm+1}. From (14), we have, for x < y,

G(x, y) = cx

√
dy(

1
wy,y+1

+ . . . +
1

wm,m+1
)

= c
√

dxdy(
1

wy,y+1
+ . . . +

1
wm,m+1

)(
1

wx−1,x
+

1
wx−2,x−1

+ . . . +
1

w0,1
)

for some constant c. We can then compute c as follows:

1 = LG(x, x)

=
wx−1,x√

dx

(
G(x, x)√

dx

− G(x − 1, x)√
dx−1

) − wx,x+1√
dx

(
G(x + 1, x)√

dx+1

− G(x, x)√
dx

)

= c
∑

y

1
wy−1,y

.

Therefore we have

c = (
∑

y

1
wy−1,y

)−1

and

G(x, y) =

√
dxdy∑

y
1

wy−1,y

(
1

wy,y+1
+ . . . +

1
wm,m+1

)(
1

wx−1,x
+

1
wx−2,x−1

+ . . . +
1

w0,1
).

7 Green’s function with no boundary

In the remainder of the paper, we consider the case of Green’s functions with no boundary. This

case is slightly more difficult than the case with non-empty boundary and Dirichlet boundary con-

ditions. The Laplace operator ∆ or the normalized Laplacian L as defined in Section 2.1. has a zero

eigenvalue. Again, we consider a connected finite graph Γ so there is exactly one zero eigenvalue

(see [6]). The Green function G is a matrix with its entries, indexed by vertices x and y, defined by

G∆(x, y) = I(x, y) − dy

vol

where vol is the sum of all degrees in Γ. Equivalently, the normalized Green function G =

T−1/2GT 1/2 satisfies

GL = LG = I − P0 = I − φ∗
0φ0 (15)
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where P0 is the projection into the eigenfunction φ0 associated with eigenvalue 0. Here φ0 is taken

to be a 1 × n array and the k-th entry is
√

dk/vol . Furthermore, we require that

GP0 = 0

so that G is uniquely defined. Let the eigenvalues of L be denoted by 0 = λ0 < λ1 ≤ . . . ≤ λn−1

where n is the number of vertices in Γ. It is not hard to see that

G =
∑
i>0

1
λi

φ∗
i φi (16)

=
∫ ∞

0

(Ht − P0)dt. (17)

To illustrate the usage of Green’s functions, we consider the problem of determining the hitting

time Q(x, y) from x to y, the expected number of steps for a reversible Markov chain before state y

is reached, when started from state x. It is known [1] that the hitting time Q(x, y) satisfies

∆Q(x, y) =
{

1 if x 6= y,
1 − vol

dx
if x = y

Let J denote the all 1’s matrix. Then

∆Q = J − vol T−1. (18)

We will show the following relation between the hitting time and the Green function:

Theorem 8 The hitting time Q(x, y) satisfies

Q(x, y) =
vol
dy

G(y, y) − vol
dx

G(x, y)

Proof: The equation in (18) is equivalent to:

LT 1/2QT 1/2 = T 1/2(J − vol T−1)T 1/2

= vol (φ∗
0φ0 − I)

We multiply both sides by G from the left and we get

GLT 1/2QT 1/2 = vol G(φ∗
0φ0 − I)

= −vol G
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which implies, by equation (15),

(I − φ∗
0φ0)T 1/2QT 1/2 = −vol G. (19)

By checking the (x, x)-entry of the above equation of matrices and using the fact that Q(x, x) = 0,

we have

(φ∗
0φ0T

1/2QT 1/2)(x, x) =
1

vol

∑
z

dxdzQ(z, x)

= vol G(x, x). (20)

By checking the (x, y)-entry of (19), we get

√
dxdyQ(x, y) − 1

vol

∑
z

√
dxdydzQ(z, y) = −vol G(x, y). (21)

By combining (20) and (21), we have

√
dxdyQ(x, y) −

√
dx

dy
vol G(y, y) = −vol G(x, y). (22)

Equivalently, we have

√
dxdyQ(x, y) −

√
dx

dy
vol G(y, y) = −vol G(x, y)

√
dy

dx
(23)

as desired. �

Next we evaluate the Green function for a weighted path with no boundary.

Theorem 9 Let the vertex set of a path Pn be {1, 2, . . . , n} and edge weights wx,x+1 for x =

1, . . . , n − 1. The normalized Green function G(x, y), x ≤ y, for Pn satisfies:

G(x, y) = G(y, x)

=

√
dxdy

vol 2
(
∑
z<x

(d1 + . . . + dz)2

wz,z+1
+

∑
y≤z

(dz+1 + . . . + dn)2

wz,z+1

−
∑

x≤z<y

(d1 + . . . + dz)(dz+1 + . . . + dn)
wz,z+1

) (24)

for x < y. The Green function G(x, y) itself is given by G(x, y) = G(x, y)
√

dy/dx.

Proof: We start from the definition in (15). For x 6= y, we have

wx−1,x√
dx

(
G(x, y)√

dx

− G(x − 1, y)√
dx−1

) =
wx,x+1√

dx

(
G(x + 1, y)√

dx+1

− G(x, y)√
dx

) −
√

dxdy

vol
. (25)
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This implies that for x < y,

G(x, y)√
dx

− G(x − 1, y)√
dx−1

=

√
dy(dx−1 + . . . + d1)

vol wx−1,x
,

G(x, y + 1)√
dy+1

− G(x, y)√
dy

= −
√

dx(dy+1 + . . . + dn)
vol wy,y+1

.

By telescoping and summing equations of the above types, it leads to the solution in (24). An

alternative proof is to directly check that (24) satisfies (25). �

Example 2 We consider a path P3 with vertices 1, 2, 3 and edge weights wj,j+1. Its Green function

satisfies

G(1, 1) =
d1

vol 2
(
(d2 + d3)2

w1,2
+

d2
3

w2,3
)

G(1, 2) =
√

d1d2

vol 2
(−d1(d2 + d3)

w1,2
+

d2
3

w2,3
)

G(1, 3) =
√

d1d3

vol 2
(−d1(d2 + d3)

w1,2
− (d1 + d2)d3

w2,3
)

G(2, 2) =
d2

vol 2
(

d2
1

w1,2
+

d2
3

w2,3
).

Example 3 We consider a path Pn with edge weights wj,j+1 = 1 for j = 1, . . . , n − 1 and w1,1 =

wn,n = 1. Its Green function satisfies

G(x, y) = G(x, y)

=
1
n2


∑

z<x

z2 +
∑

z≤n−y

z2 −
∑

x≤z<y

z(n − z)




=
1
n2

(
(y − 1)y(2y − 1)

6
+

(n − y)(n − y + 1)(2n − 2y + 1)
6

− n(x + y − 1)(y − x)
2

)
.

Example 4 We consider the Green function for an n-cube Qn with 2n vertices represented by binary

n-tuples. Two vertices are adjacent if the corresponding n-tuples differ at exactly one coordinate.

Clearly, Qn is distance regular. The projected weighted path has edge weights wj,j+1 =
(
n
j

)
, for

j = 0, . . . , n − 1. By using the Green function G of the weighted path, we can derive the Green

function G̃(x, y) for two vertices at distance k in Qn, for k > 0.

G̃(x, y) =
G(0, k)(

n
k

)
= 2−2n(−

∑
j<k

(
(
n
0

)
+ . . . +

(
n
j

)
)(

(
n

j+1

)
+ . . . +

(
n
n

)
)(

n−1
j

) +
∑
k≤j

(
(

n
j+1

)
+ . . . +

(
n
n

)
)2(

n−1
j

) ).
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So, by Theorem 8, the hitting time between two vertices of distance j in Qn is

2n(G̃(y, y) − G̃(x, y)) = 2−n


∑

j<k

(
(

n
j+1

)
+ . . . +

(
n
n

)
)2(

n−1
j

) +
∑
j<k

(
(
n
0

)
+ . . . +

(
n
j

)
)(

(
n

j+1

)
+ . . . +

(
n
n

)
)(

n−1
j

)



=
∑
j<k

(
n

j+1

)
+ . . . +

(
n
n

)
(
n−1

j

) .

This gives an alternative proof for the expected hitting time for the n-cube, which was previously

examined by Pomerance and Winkler [22].
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