A generalized Alon-Boppana bound and weak Ramanujan graphs

Fan Chung *

Abstract

A basic eigenvalue bound due to Alon and Boppana holds only for regular graphs. In this paper we give a generalized Alon-Boppana bound for eigenvalues of graphs that are not required to be regular. We show that a graph G with diameter k and vertex set V, the smallest nontrivial eigenvalue λ_{1} of the normalized Laplacian \mathcal{L} satisfies $$
\lambda_{1} \leq 1-\sigma\left(1-\frac{c}{k}\right)
$$ for some constant c where $\sigma=2 \sum_{v} d_{v} \sqrt{d_{v}-1} / \sum_{v} d_{v}^{2}$ and d_{v} denotes the degree of the vertex v.

We consider weak Ramanujan graphs defined as graphs satisfying $\lambda_{1} \geq 1-\sigma$. We examine the vertex expansion and edge expansion of weak Ramanujan graphs and then use the expansion properties among other methods to derive the above Alon-Boppana bound.

1 Introduction

The well-known Alon-Boppana bound [8] states that for any d-regular graph with diameter k, the second largest eigenvalue ρ of the adjacency matrix satisfies

$$
\begin{equation*}
\rho \geq 2 \sqrt{d-1}\left(1-\frac{2}{k}\right)-\frac{2}{k} \tag{1}
\end{equation*}
$$

A natural question is to extend Alon-Boppana bounds for graphs that are irregular. Hoory [6] showed that for an irregular graph, the second largest eigenvalue ρ of the adjacency matrix satisfies

$$
\rho \geq 2 \sqrt{d-1}\left(1-\frac{c \log r}{r}\right)
$$

[^0]if the average degree of the graph after deleting a ball of radius r is at least d where $r, d>2$.

For irregular graphs, it is often advantageous to consider eigenvalues of the normalized Laplacian for deriving various graph properties. For a graph G, the normalized Laplacian \mathcal{L}, defined by

$$
\mathcal{L}=I-D^{-1 / 2} A D^{-1 / 2}
$$

where D is the diagonal degree matrix and A denotes the adjacency matrix of G. One of the main tools for dealing with general graphs is the Cheeger inequality which relates the least nontrivial eigenvalue λ_{1} to the Cheeger constant h_{G} :

$$
\begin{equation*}
2 h_{G} \geq \lambda_{1} \geq \frac{h_{G}^{2}}{2} \tag{2}
\end{equation*}
$$

where $h_{G}=\min _{S}|\partial(S)| / \operatorname{vol}(S)$ for S ranging over all vertex subsets with volume $\operatorname{vol}(S)=\sum_{u \in S} d_{u}$ no more than half of $\sum_{u \in V} d_{u}$ and $\partial(S)$ denotes the set of edges leaving S. For k-regular graphs, we have $\lambda_{1}=1-\rho / k$ where ρ denotes the second largest eigenvalue of the adjacency matrix. In general,

$$
\frac{\rho}{\max _{v} d_{v}} \leq 1-\lambda_{1} \leq \frac{\rho}{\min _{v} d_{v}}
$$

which can be used to derive a version of the Cheeger inequality involving ρ which is less effective than (2) for irregular graphs.

In this paper, we will show that for a connected graph G with diameter k, λ_{1} is upper bounded by

$$
\begin{equation*}
\lambda_{1} \leq 1-\sigma\left(1-\frac{c}{k}\right) \tag{3}
\end{equation*}
$$

for a constant c where $\sigma=2 \sum_{v} d_{v} \sqrt{d_{v}-1} / \sum_{v} d_{v}^{2}$. The above inequality will be proved in Section 6.

The above bound of Alon-Boppana type improves a result of Young [10] who derived a similar eigenvalue bound using a different method. In [10] the notion of (r, d, δ)-robust graphs was considered and it was shown that for a (r, d, δ)-robust graph, the least nontrivial eigenvalue λ_{1} satisfies

$$
\begin{equation*}
\lambda_{1} \leq 1-\frac{2 d \sqrt{d-1}}{\delta}\left(1-\frac{c}{r}\right) . \tag{4}
\end{equation*}
$$

Here (r, d, δ)-robustness means for every vertex v and the ball $B_{r}(v)$ consisting of all vertices with distance at most r, the induced subgraph on the complement of $B_{r}(v)$ has average degree at least d and $\sum_{v \notin B_{r}(v)} d_{v}^{2} /\left|V \backslash B_{r}(v)\right| \leq$
δ. We remark that our result in (3) does not require the condition of robustness.

We define weak Ramanujan graphs to be graphs with eigenvalue λ_{1} satisfying

$$
\begin{equation*}
\lambda_{1} \geq 1-\sigma \geq \frac{1}{2} \tag{5}
\end{equation*}
$$

where $\sigma=2 \sum_{v} d_{v} \sqrt{d_{v}-1} / \sum_{v} d_{v}^{2}$.
To prove the Alon-Boppana bound in (3), it suffices to consider only weak Ramanujan graphs. Weak Ramanujan graphs satisfy various expansion properties. We will describe several vertex-expansion and edge-expansion properties involving λ_{1} in Section 3, which will be needed later for proving a diameter bound for weak Ramanujan graphs in Section 4. The diameter bound and related properties of weak Ramanujan graphs are useful in the proof of the Alon-Boppana bound for general graphs.

We will also show that the largest eigenvalue λ_{n-1} of the normalized Laplacian satisfies

$$
\begin{equation*}
\lambda_{n-1} \geq 1+\sigma\left(1-\frac{c}{k}\right) \tag{6}
\end{equation*}
$$

The proof will be given in Section 7.

2 Preliminaries

For a graph $G=(V, E)$, we consider the normalized Laplacian

$$
\mathcal{L}=I-D^{-1 / 2} A D^{-1 / 2}
$$

where A denotes the adjacency matrix and D denotes the diagonal degree matrix with $D(v, v)=d_{v}$, the degree of v. We assume that there is no isolated vertex throughout this paper. For a vertex v and a positive integer l, let $B_{l}(v)$ denote the ball consisting of all vertices within distance l from v. For an edge $\{x, y\} \in E$ we say x is adjacent to y and write $x \sim y$.

Let $\lambda_{0} \leq \lambda_{1} \leq \ldots \leq \lambda_{n-1}$ denote eigenvalues of \mathcal{L}, where n denotes the number of vertices in G. It can be checked (see [2]) that $\lambda_{1}>0$ if G is connected. The Alon-Boppana bound obviously holds if $\lambda_{1}=0$. In the remainder of this paper, we assume G is connected.

Let φ_{i} denote the orthonormal eigenvector associated with eigenvalue λ_{i}. In particular, $\varphi_{0}=D^{1 / 2} \mathbf{1} / \sqrt{\operatorname{vol}(G)}$ where $\mathbf{1}$ is the all 1's vector and
$\operatorname{vol}(G)=\sum_{v \in V} d_{v}$. We can then write

$$
\begin{aligned}
\lambda_{1} & =\inf _{g \perp \varphi_{0}} \frac{\langle g, \mathcal{L} g\rangle}{\langle g, g\rangle} \\
& =\inf _{f \perp D 1} \frac{\sum_{x \sim y}(f(x)-f(y))^{2}}{\sum_{z} f^{2}(z) d_{z}} \\
& =\inf _{f \perp D 1} R(f)
\end{aligned}
$$

where f ranges over all functions satisfying $\sum_{u} f(u) d_{u}=0$ and the sum $\sum_{x \sim y}$ ranges over all unordered pairs $\{x, y\}$ where x is adjacent to y. Here $R(f)$ denote the Rayleigh quotient of f, which can be written as follows:

$$
\begin{aligned}
R(f) & =\frac{\int|\nabla f|}{\int\|f\|^{2}} \\
\text { where } \int\|f\|^{2} & =\sum_{x} f^{2}(x) d_{x} \\
\text { and } \int|\nabla f| & =\sum_{x \sim y}(f(x)-f(y))^{2} .
\end{aligned}
$$

For eigenfunction φ_{i}, the function $f_{i}=D^{-1 / 2} \varphi_{i}$, called the combinatorial eigenfucntion associated with λ_{i}, satisfies

$$
\begin{equation*}
\lambda_{i} f(u) d_{u}=\sum_{v \sim u}(f(u)-f(v)) \tag{7}
\end{equation*}
$$

for each vertex u. In particular, for f satisfying $\sum_{u} f(u) d_{u}=0$, we have

$$
\begin{equation*}
\langle f, A f\rangle \leq\left(1-\lambda_{1}\right)\langle f, D f\rangle \tag{8}
\end{equation*}
$$

and

$$
\begin{equation*}
|\langle f, A f\rangle| \leq \max _{i \neq 0}\left(1-\lambda_{i}\right)\langle f, D f\rangle \tag{9}
\end{equation*}
$$

3 Vertex and edge expansions

For any subset S of vertices, there are two types of boundaries. The edge boundary of S, denoted by $\partial(S)$ consists of all edges with exactly one endpoint in S. The vertex boundary of S, denoted by $\delta(S)$ consists of all vertices not in S but adjacent to vertices in S. Namely,

$$
\begin{aligned}
& \partial(S)=\{\{u, v\} \in E: u \in S \text { and } v \notin S\}=E(S, \bar{S}) \\
& \delta(S)=\{u \notin S: u \sim v \in S \text { for some vertex } v\}
\end{aligned}
$$

In this section, we will examine vertex expansion and edge expansion relying only on λ_{1}. These expansion properties will be needed for deriving diameter bounds for weak Ramanujan graphs which will be used in our proof of the general Alon-Boppana bound later in Section 6.

From the definition of the Cheeger constant, for all vertex subsets S, we have

$$
\frac{|\partial(S)|}{\operatorname{vol}(S)} \geq h_{G} \geq \frac{\lambda_{1}}{2}
$$

Later in the proofs, we will be interested in the case that $\operatorname{vol}(S)$ is small and therefore we will use the following version.

Lemma 1 Let S be a subset of vertices in G. Then

$$
\frac{|\partial(S)|}{\operatorname{vol}(S)} \geq \lambda_{1}\left(1-\frac{\operatorname{vol}(S)}{\operatorname{vol}(G)}\right)
$$

Proof: \quad Suppose f is defined by

$$
f=\frac{\mathbf{1}_{S}}{\operatorname{vol}(S)}-\frac{\mathbf{1}_{\bar{S}}}{\operatorname{vol}(\bar{S})}
$$

where $\mathbf{1}_{S}$ denotes the characteristic function defined by $\mathbf{1}_{S}(v)=1$ if $v \in S$ and 0 otherwise.

The Rayleigh quotient $R(f)$ satisfies

$$
\lambda_{1} \leq R(f)=\frac{|\partial(S)|}{\operatorname{vol}(S)} \cdot \frac{\operatorname{vol}(G)}{\operatorname{vol}(\bar{S})}
$$

For the expansion of the vertex boundary, the Tanner bound [9] for regular graphs can be generalized as follows.

Lemma 2 Let $\bar{\lambda}=\min _{i \neq 0}\left|1-\lambda_{i}\right|$. Then for any vertex subset S in a graph,

$$
\begin{equation*}
\frac{\operatorname{vol}(\delta(S))}{\operatorname{vol}(S)} \geq \frac{1-\bar{\lambda}^{2}}{\bar{\lambda}^{2}+\frac{\operatorname{vol}(S)}{\operatorname{vol}(\bar{S})}} \tag{10}
\end{equation*}
$$

The proof of the above inequality is by using the following discrepancy inequality (as seen in [2]).

Lemma 3 In a graph G, for two subset X and Y of vertices, the number $e(X, Y)=|E(X, Y)|$ of edges between X and Y satisfies

$$
\begin{equation*}
\left|e(X, Y)-\frac{\operatorname{vol}(X) \operatorname{vol}(Y)}{\operatorname{vol}(G)}\right| \leq \bar{\lambda} \frac{\sqrt{\operatorname{vol}(X) \operatorname{vol}(Y) \operatorname{vol}(\bar{X}) \operatorname{vol}(\bar{Y})}}{\operatorname{vol}(G)} \tag{11}
\end{equation*}
$$

where $\bar{\lambda}=\min _{i \neq 0}\left|1-\lambda_{i}\right|$.
The proof of Lemma 3 follows from (9) and can be found in [2]. The proof of (12) results from (11) by setting $X=S$ and $Y=\overline{S \cup \delta(S)}$.

Here we will give a version of the vertex-expansion bounds for general graphs which only rely on λ_{1} and are independent of other eigenvalues.

Lemma 4 In a graph G with vertex set V and the first nontrivial eigenvalue λ_{1}, for a subset S of V with $\operatorname{vol}(S \cup \delta S) \leq \epsilon \operatorname{vol}(G) \leq \operatorname{vol}(G) / 2$, the vertex boundary of S satisfies

$$
\begin{equation*}
\frac{\operatorname{vol}(\delta(S))}{\operatorname{vol}(S)} \geq \frac{2 \lambda_{1}}{1-\lambda_{1}+2 \epsilon} \tag{i}
\end{equation*}
$$

(ii) If $1 / 2 \leq \lambda_{1} \leq 1-2 \epsilon$, then

$$
\begin{equation*}
\frac{\operatorname{vol}(\delta(S))}{\operatorname{vol}(S)} \geq \frac{1}{\left(1-\lambda_{1}+2 \epsilon\right)^{2}} \tag{13}
\end{equation*}
$$

Proof: The proof of (i) follows from Lemma 1 since

$$
\begin{aligned}
\frac{\operatorname{vol}(\delta(S))}{\operatorname{vol}(S)} & \geq \frac{|\partial(S \cup \delta(S))|+|\partial(S)|}{\operatorname{vol}(S)} \\
& \geq \frac{\lambda_{1}(1-\epsilon)\left(\operatorname{vol}(S)+\operatorname{vol}(\delta(S))+\lambda_{1}(1-\epsilon) \operatorname{vol}(S)\right.}{\operatorname{vol}(S)}
\end{aligned}
$$

Therefore

$$
\frac{\operatorname{vol}(\delta(S))}{\operatorname{vol}(S)} \geq \frac{2 \lambda_{1}(1-\epsilon)}{1-\lambda_{1}(1-\epsilon)} \geq \frac{2 \lambda_{1}}{1-\lambda_{1}+2 \epsilon}
$$

To prove (ii), we set $f=\mathbf{1}_{S}+\gamma \mathbf{1}_{\delta(S)}$ where $\gamma=1-\lambda_{1}$. Consider $g=f-c \mathbf{1}_{V}$ where $c=\sum_{u} f(u) d_{u} / \operatorname{vol}(G)$. By the Cauchy-Schwarz inequality, we have

$$
\begin{aligned}
c^{2}=\frac{1}{(\operatorname{vol}(G))^{2}}\left(\sum_{u \in S \cup \delta(S)} f(u) d_{u}\right)^{2} & \leq \frac{\operatorname{vol}(S \cup \delta(S))}{(\operatorname{vol}(G))^{2}} \sum_{u} f^{2}(u) d_{u} \\
& \leq \frac{\epsilon}{\operatorname{vol}(G)} \sum_{u} f^{2}(u) d_{u} .
\end{aligned}
$$

Using the inequality in (8), we have

$$
\begin{aligned}
\langle f, A f\rangle & \leq\langle g, A g\rangle+c^{2} \operatorname{vol}(G) \\
& \leq \gamma\langle g, D g\rangle+c^{2} \operatorname{vol}(G) \\
& =\gamma\langle f, D f\rangle+(1-\gamma) c^{2} \operatorname{vol}(G) \\
& \leq(\gamma+\epsilon)\langle f, D f\rangle \\
& =(\gamma+\epsilon)\left(\operatorname{vol}(S)+\gamma^{2} \operatorname{vol}(\delta(S))\right) .
\end{aligned}
$$

Let $e(S, T)$ denote the number of ordered pairs (u, v) where $u \in S, v \in T$ and $\{u, v\} \in E$. Since $\gamma=1-\lambda \leq 1 / 2$, we have

$$
\begin{aligned}
\langle f, A f\rangle & \geq e(S, S)+2 \gamma e(S, \delta(S)) \\
& \geq(1-2 \gamma) e(S, S)+2 \gamma \operatorname{vol}(S) \\
& \geq 2 \gamma \operatorname{vol}(S)
\end{aligned}
$$

Together we have

$$
\begin{aligned}
\frac{\operatorname{vol}(\delta(S))}{\operatorname{vol}(S)} & \geq \frac{\gamma-\epsilon}{\sigma^{2}(\gamma+\epsilon)} \\
& \geq \frac{1}{(\gamma+2 \epsilon)^{2}}
\end{aligned}
$$

since $\gamma \geq 2 \epsilon$.
Recall that weak Ramanujan graphs have eigenvalue λ_{1} satisfying

$$
\begin{equation*}
\lambda_{1} \geq 1-\sigma \tag{14}
\end{equation*}
$$

where $\sigma=2 \sum_{v} d_{v} \sqrt{d_{v}-1} / \sum_{v} d_{v}^{2}$. Lemma 1 implies that for S with $\operatorname{vol}(S \cup$ $\delta(S)) \leq \epsilon \operatorname{vol}(G)$,

$$
\frac{\operatorname{vol}(\delta(S))}{\operatorname{vol}(S)} \geq \frac{1}{(\sigma+2 \epsilon)^{2}}
$$

For k-regular Ramanujan graphs with eigenvalue $\lambda_{1}=1-2 \sqrt{k-1} / k$, the above inequality is consistent with the bound

$$
\frac{\operatorname{vol}(\delta(S))}{\operatorname{vol}(S)}=\frac{|\delta(S)|}{|S|} \geq \frac{1}{\left(\frac{2 \sqrt{k-1}}{k}+2 \epsilon\right)^{2}}
$$

which is about $k / 4$ when $\operatorname{vol}(S)$ is small. The factor $k / 4$ in the above inequality was improved by Kahale [4] to $k / 2$. There are many applications
(see [1]) that require graphs having expansion factor to be $(1-\epsilon) k$. Such graphs are called lossless expanders. In [1], lossless graphs were constructed explicitly by using the zig-zag construction but the method for deriving the expansion bounds does not use eigenvalues. In this paper, the expansion factor as in Lemma 4 is enough for our proof later.

4 Weak Ramanujan graphs

We recall that a graph is said to be a weak Ramanujan graph as in (14) if

$$
\lambda_{1} \geq 1-\sigma \geq \frac{1}{2}
$$

where

$$
\begin{equation*}
\sigma=2 \frac{\sum_{v} d_{v} \sqrt{d_{v}-1}}{\sum_{v} d_{v}^{2}} . \tag{15}
\end{equation*}
$$

To prove the Alon-Boppana bound, it is enough to consider only weak Ramanujan graphs.

Lemma 5 As defined in (15), σ satisfies

$$
\frac{2 \sqrt{\bar{d}-1}}{\breve{d}} \leq \sigma \leq \frac{2 \sqrt{\bar{d}-1}}{\bar{d}}
$$

where \bar{d} denotes the average degree in G and \breve{d} denote the second order degree, i.e.,

$$
\bar{d}=\frac{\sum_{v} d_{v}}{n} \quad \text { and } \quad \breve{d}=\frac{\sum_{v} d_{v}^{2}}{\sum_{v} d_{v}} .
$$

Proof: The proof is mainly by using the Cauchy-Schwarz inequality. For the upper bound, we note that

$$
\begin{aligned}
\sigma=2 \frac{\sum_{v} d_{v} \sqrt{d_{v}-1}}{\sum_{v} d_{v}^{2}} & \leq 2 \frac{\sqrt{\sum_{v} d^{2} \sum_{v}\left(d_{v}-1\right)}}{\sum_{v} d_{v}^{2}} \\
& =2 \frac{\sqrt{\sum_{v}\left(d_{v}-1\right)}}{\sqrt{\sum_{v} d_{v}^{2}}} \\
& \leq 2 \frac{\sqrt{\sum_{v}\left(d_{v}-1\right)}}{\sum_{v} d_{v} / \sqrt{n}} \\
& \leq 2 \frac{\sqrt{\sum_{v}\left(d_{v}-1\right)}}{\bar{d} \sqrt{n}} \leq \frac{2 \sqrt{\bar{d}-1}}{\bar{d}} .
\end{aligned}
$$

For the upper bound, we will use the fact that for $a, b>1$ and $a+b=c$,

$$
a \sqrt{a-1}+b \sqrt{b-1} \geq c \sqrt{\frac{c}{2}-1}
$$

and therefore

$$
\sum_{v} d_{v} \sqrt{d_{v}-1} \geq \sum_{v} d_{v} \sqrt{\frac{\sum_{v} d_{v}}{n}-1}
$$

Consequently, we have

$$
\sigma=2 \frac{\sum_{v} d_{v} \sqrt{d_{v}-1}}{\sum_{v} d_{v}^{2}} \geq 2 \frac{\sum_{v} d_{v} \sqrt{\frac{\sum_{v} d_{v}}{n}-1}}{\sum_{v} d_{v}^{2}} \sum_{v} d_{v} d_{v} \quad 2 \frac{\sqrt{\bar{d}-1}}{\breve{d}}
$$

as desired.
We remark that for graphs with average degree at least 20, we have $\sigma<1 / 2<\lambda_{1}$.

Theorem 1 Suppose a weak Ramanujan graph G has diameter k. Then for any $\epsilon>0$, we have

$$
k \leq(1+\epsilon) \frac{2 \log \operatorname{vol}(G)}{\log \sigma^{-1}}
$$

provided that the volume of G is large, i.e., $\operatorname{vol}(G) \geq c \sigma^{\log (\sigma)} / \epsilon$ for some small constant c.

Proof: We set

$$
t=\left\lceil(1+\epsilon) \frac{\log (\operatorname{vol}(G))}{\log \sigma^{-1}}\right\rceil
$$

It suffices to show that for every vertex v, the ball $B_{t}(v)$ has volume more than $\operatorname{vol}(G) / 2$.

Suppose $\operatorname{vol}\left(B_{t}(v)\right) \leq \operatorname{vol}(G) / 2$. Let

$$
s_{j}=\frac{\operatorname{vol}\left(B_{j}(u)\right)}{\operatorname{vol}(G)}
$$

By part (i) of Lemma 4, we have $\operatorname{vol}\left(\delta\left(B_{u}(j)\right)\right) \geq 0.5 \operatorname{vol}\left(B_{u}(j)\right)$ for $j \leq t-1$ and therefore $s_{j+1} \geq 1.5 s_{j}$. Thus, if $j \leq t-c_{1} \log \left(\sigma^{-1}\right)$, then $s_{j} \leq \sigma^{4}$ where c_{1} is some small constant satisfying $c_{1} \leq 4(\log 1.5)^{-1}$.

Now we apply part (ii) of Lemma 4 and we have, for $j \leq t-c_{1} \log \left(\sigma^{-1}\right)$,

$$
\frac{s_{j+1}}{s_{j}}=\frac{\operatorname{vol}\left(B_{j+1}(u)\right)}{\operatorname{vol}\left(B_{j}(u)\right)} \geq \frac{\operatorname{vol}\left(\delta\left(B_{j}(u)\right)\right)}{\operatorname{vol}\left(B_{j}(u)\right)} \geq \frac{1}{\left(\sigma+2 s_{j}\right)^{2}} \geq \frac{1}{\left(\sigma+2 \sigma^{4}\right)} .
$$

This implies, for $l \leq t-c_{1} \log \left(\sigma^{-1}\right)$,

$$
\begin{aligned}
\frac{s_{l}}{s_{0}} \geq \prod_{0<j<l} \frac{1}{\left(\sigma+2 s_{j}\right)^{2}} & \geq \prod_{0<j<l} \frac{1}{\left(\sigma+2 \sigma^{4}\right)^{2}} \\
& \geq \frac{1}{\sigma^{2 l}\left(1+2 \sigma^{4}\right)^{2 l}}
\end{aligned}
$$

Since $s_{0} \geq 1 / \operatorname{vol}(G)$ and $s_{l} \leq s_{t} \leq 1 / 2$, we have

$$
\operatorname{vol}(G) \geq \frac{1}{\sigma^{2 l}\left(1+2 \sigma^{4}\right)^{2 l}}
$$

Hence

$$
l \leq \frac{\log (\operatorname{vol}(G))}{\log \left(\sigma^{-1}\right)+2 \sigma^{4}}
$$

However,

$$
(1+\epsilon) \frac{\log (\operatorname{vol}(G))}{\log \left(\sigma^{-1}\right)} \leq t \leq c_{1} \log \left(\sigma^{-1}\right)+\frac{\log (\operatorname{vol}(G))}{\log \left(\sigma^{-1}\right)+2 \sigma^{4}}
$$

which is a contracdiction for G with $\operatorname{vol}(G)$ large, say, $\operatorname{vol}(G) \geq \sigma^{2 c_{1} \log \sigma} / \epsilon$. Thus we conclude that $s_{t} \geq 1 / 2$ and Theorem 1 is proved.

Theorem 2 For a weak Ramanujan graph with diameter k, for any vertex v and any $l \leq k / 4$, the ball $B_{u}(l)$ has volume at most $\epsilon \operatorname{vol}(G)$ if $k \geq c \log \epsilon^{-1}$, for some constants c.

Proof: We will prove by contradiction. Suppose that for $j_{0}=\lceil k / 4\rceil$, there is a vertex u with $\operatorname{vol}\left(B_{v}\left(j_{0}\right)\right)>\epsilon \operatorname{vol}(G)$. Let r denote the largest integer such that

$$
s_{r}=\frac{\operatorname{vol}\left(B_{u}(r)\right)}{\operatorname{vol}(G)}>\frac{1}{2} .
$$

By the assumption, we have $r>k / 4$ and $s_{j_{0}}>\epsilon$. There are two possibilities:

Case 1: $r \geq k / 2$.
By part (i) of Lemma 4, we have $\operatorname{vol}\left(\delta\left(B_{u}(j)\right)\right) \geq 0.5 \operatorname{vol}\left(B_{u}(j)\right)$ for $j \leq k / 2$ and therefore $s_{j+1} \geq 1.5 s_{j}$. Thus, for $j \leq k / 2-c_{1} \log \epsilon^{-1}$, we have $s_{j} \leq \epsilon$ where $c_{1}=1 / \log 1.5$. Since $k / 4 \leq k / 2-c_{1} \log \epsilon^{-1}$, we have a contradiction.

Case 2: $r<k / 2$.
We define

$$
\bar{s}_{j}=\frac{\operatorname{vol}\left(V \backslash B_{u}(j)\right)}{\operatorname{vol}(G)} .
$$

Thus $\bar{s}_{j}<1 / 2$ for all $j \geq k / 2$. We consider two subcases.
Subcase 2a: Suppose $\bar{s}_{j} \geq \epsilon$ for $j \geq k / 2$.
Using Lemma 4 , for j where $r \leq j \leq k / 2$, we have $\bar{s}_{j} \geq 1.5 \bar{s}_{j+1}$. Thus, for some $j_{1} \geq k / 2-c_{1} \log \epsilon^{-1}$, we have $\bar{s}_{j} \geq 1 / 2$ or equivalently, $s_{j} \leq 1 / 2$. By using Lemma 4 again, for $j \leq j_{1}$, we have $s_{j+1} \geq 1.5 s_{j}$ and therefore for any $j \leq j_{1}-c_{1} \log \epsilon^{-1}$ we have $s_{j} \leq \epsilon$. Since $j_{1}-c_{1} \log \epsilon^{-1} \geq k / 2-2 c_{1} \log \epsilon^{-1} \geq$ $k / 4$, we again have a contradiction to the assumption $s_{j_{0}} \geq \epsilon$.
Subcase 2b: Suppose $\bar{s}_{j}<\epsilon$ for $j \geq k / 2$
We apply part (ii) of Lemma 4 and we have, for $j \geq k / 2$,

$$
\frac{\bar{s}_{j}}{\bar{s}_{j+1}} \geq \frac{1}{(\sigma+2 \epsilon)^{2}} .
$$

This implies, for $j_{2}=\lceil k / 2\rceil$,

$$
\frac{\bar{s}_{j_{2}}}{\bar{s}_{k}} \geq \prod_{k / 2<j \leq k} \frac{1}{\left(\sigma+2 s_{j}\right)^{2}} \geq \frac{1}{(\sigma+2 \epsilon)^{k}}
$$

Since $\bar{s}_{k} \geq 1 / \operatorname{vol}(G)$, we have

$$
\bar{s}_{j_{1}} \geq \frac{1}{\operatorname{vol}(G)(\sigma+2 \epsilon)^{k}}
$$

Since the assumption of this subcase is $\bar{s}_{j_{1}}<\epsilon$, we have

$$
k \geq \frac{\log n+\log \epsilon^{-1}}{\log \sigma^{-1}}
$$

We now use Lemma 4 and we have, for $j=k / 2-j^{\prime} \geq r$

$$
\bar{s}_{j} \geq \frac{1}{\operatorname{vol}(G)(\sigma+2 \epsilon)^{k+2 j^{\prime}}}
$$

Therefore, for some $j \leq k / 2-\log \epsilon^{-1} / \log \sigma^{-1}$, we have $\bar{s}_{j}>1 / 2$ which implies $r \geq k / 2-\log \epsilon^{-1} / \log \sigma^{-1}$.

Now we use the same argument as in Case 1 except shifting r by $\log \epsilon^{-1} / \log \sigma^{-1}$. For some $j \leq r-c_{1} \log \epsilon^{-1} \leq k / 2-\log \epsilon^{-1} / \log \sigma^{-1}-c_{1} \log \epsilon^{-1}$, we have $s_{j}<\epsilon$. Since $\log \epsilon^{-1} / \log \sigma^{-1}+c_{1} \log \epsilon^{-1}<k / 4$, this leads to a contradiction and Theorem 2 is proved.

5 Non-backtracking random walks

Before we proceed to the proof of the Alon-Boppana bound, we will need some basic facts on non-backtracking random walks.

A non-backtracking walk is a sequence of vertices $\mathbf{p}=\left(v_{0}, v_{1}, \ldots, v_{t}\right)$ for some t such that $v_{i-1} \sim v_{i}$ and $v_{i+1} \neq v_{i-1}$ for $i=1, \ldots, t-2$. The non-backtracking random walk can be described as follows: For $i \geq 1$, at the i th step on v_{i}, choose with equal probability a neighbor u of v_{i} where $u \neq v_{i-1}$, move to u and set $v_{i+1}=u$. To simplify notation, we call a nonbacktracking walk an NB-walk. The modified transition probability matrix \tilde{P}_{k}, for $k=0,1, \ldots, t-1$, is defined by

$$
\tilde{P}_{k}(u, v)= \begin{cases}P^{k}(u, v) & \text { if } k=0 \tag{16}\\ \sum_{\mathbf{p} \in \mathscr{P}_{u, v}^{(k)}} w(\mathbf{p}) & \text { if } k \geq 1\end{cases}
$$

where the weight $w(\mathbf{p})$ for an NB-walk $\mathbf{p}=\left(v_{0}, v_{1}, \ldots, v_{t}\right)$ with $t \geq 1$ is defined to be

$$
\begin{equation*}
w(\mathbf{p})=\frac{1}{d_{v_{0}} \prod_{i=1}^{t-1}\left(d_{v_{i}}-1\right)} \tag{17}
\end{equation*}
$$

and $\mathscr{P}_{u, v}^{(k)}$ denotes the set of non-backtracking walks from u to v. For a walk $\mathbf{p}=\left(v_{0}\right)$ of length 0 , we define $w(\mathbf{p})=1$.

Although a non-backtracking random walk is not a Markov chain, it is closely related to an associated Markov chain as we will describe below (also see [6]).

For each edge $\{u, v\}$ in E, we consider two directed edges (u, v) and (v, u). Let \hat{E} denote the set consisting of all such directed edges, i.e. $\hat{E}=$ $\{(u, v):\{u, v\} \in E\}$. We consider a random walk on \hat{E} with transition
probability matrix \boldsymbol{P} defined as follows:

$$
\boldsymbol{P}\left((u, v),\left(u^{\prime}, v^{\prime}\right)\right)= \begin{cases}\frac{1}{d_{v}-1} & \text { if } v=u^{\prime} \text { and } u \neq v^{\prime} \\ 0 & \text { otherwise } .\end{cases}
$$

Let $\mathbf{1}_{E}$ denote the all 1 's function defined on the edge set E as a row vector. From the above definition, we have

$$
\begin{equation*}
\mathbf{1}_{E} \boldsymbol{P}=\mathbf{1}_{E} . \tag{18}
\end{equation*}
$$

In addition, we define the vertex-edge incidence matrix B and B^{*} for $a \in V$ and $(b, c) \in \hat{E}$ by

$$
\begin{gathered}
B(a,(b, c))= \begin{cases}1 & \text { if } a=b, \\
0 & \text { otherwise }\end{cases} \\
\left.B^{*}((b, c), a)\right)= \begin{cases}1 & \text { if } c=a \\
0 & \text { otherwise }\end{cases}
\end{gathered}
$$

Let $\mathbf{1}_{V}$ denote all 1's vector defined on the vertex set V. Then

$$
\begin{equation*}
\mathbf{1}_{V} B=\mathbf{1}_{E} . \tag{19}
\end{equation*}
$$

Although \tilde{P}_{k} is not a Markov chain, it is related to the Markov chain determined by \boldsymbol{P} on \hat{E} as follows:

Fact 1: For $l \geq 1$.

$$
\begin{equation*}
\tilde{P}_{l}=D^{-1} B \boldsymbol{P}^{l} B^{*} \tag{20}
\end{equation*}
$$

and for the case of $l=0$, we have $\tilde{P}_{0}=I$.
By combining (19) and (20), we have
Fact 2:

$$
\begin{equation*}
\mathbf{1}_{V} D \tilde{P}_{l}=\mathbf{1}_{E} B^{*}=\mathbf{1}_{V} D \tag{21}
\end{equation*}
$$

Note that $\mathbf{1}_{V} D$ is just the degree vector for the graph G. Therefore (21) states that the degree vector is an eigenvector of \tilde{P}_{l}. Using Fact 1 and 2 , we have the following:

Lemma 6

(i) For a fixed vertex x and any integer $j \geq 0$, we have

$$
\begin{equation*}
\sum_{u} d_{u} \sum_{\mathbf{p} \in \mathscr{P}_{u, x}^{(j)}} w(\mathbf{p})=d_{x} \tag{22}
\end{equation*}
$$

(ii) For a fixed vertex u, we have

$$
\begin{equation*}
\sum_{x} \sum_{\mathbf{p} \in \mathscr{P}_{u, x}^{(j)}} w(\mathbf{p})=\mathbf{1}_{u}\left(I+\tilde{P}_{1}+\ldots+\tilde{P}_{l}\right) \mathbf{1}^{*}=l+1 \tag{23}
\end{equation*}
$$

where $\mathbf{1}_{u}$ denotes the characteristic function which assumes value 1 at u and 0 else where.

Proof: The proof of (22) and (23) follows from the fact that

$$
\mathbf{1}_{V} D \tilde{P}_{j}(x)=\mathbf{1}_{V} D\left(D^{-1} B \mathbf{P}^{j} B^{*}\right)=\mathbf{1}_{E} \mathbf{P}^{j} B^{*}=\mathbf{1}_{E} B^{*}=\mathbf{1}_{V} D(x)
$$

and $\mathbf{1}_{u} \tilde{P}_{j}(x)=w(\mathbf{p})$ for $\mathbf{p} \in \mathscr{P}_{u, x}^{(j)}$.

6 An Alon-Boppana bound for λ_{1}

Theorem 3 In a graph $G=(V, E)$ with diameter k, the first nontrivial eigenvalue λ_{1} satisfies

$$
\lambda_{1} \leq 1-\sigma\left(1-\frac{c}{k}\right)
$$

where σ is as defined in (15), provided $k \geq c^{\prime} \log \sigma^{-1}$ and $\operatorname{vol}(G) \geq c^{\prime \prime} \sigma^{\log \sigma}$ for some absolute constants c's .

Proof: If G is not a weak Ramanujan graph, we have $\lambda_{1} \leq 1-\sigma$ and we are done. We may assume that G is weak Ramanujan.

From the definition of λ_{1}, we have

$$
\begin{equation*}
\lambda_{1} \leq \frac{\sum_{x \sim y}(f(x)-f(y))^{2}}{\sum_{x} f^{2}(x) d_{x}}=R(f) \tag{24}
\end{equation*}
$$

where f satisfies $\sum_{x} f(x) d_{x}=0$.
We will construct an appropriate f satisfying $R(f) \leq 1-\sigma(1-c / k)$ and therefore serve as an upper bound for λ_{1}. We set

$$
t=\left\lfloor\frac{\log (\operatorname{vol}(G))}{\log \sigma^{-1}}\right\rfloor
$$

and choose ϵ satisfying

$$
\epsilon \leq \frac{\sigma}{t} \leq \frac{c \sigma}{k}
$$

by using Theorem 1 where σ is as defined in (15).
We consider a family of functions defined as follows. For a specified vertex u and an integer $l=\lfloor k / 4\rfloor$, we consider a function $g_{u}: V \rightarrow \mathbb{R}^{+}$, defined by

$$
\begin{aligned}
g_{u}(x) & =\left(\mathbf{1}_{u}\left(I+\tilde{P}_{1}+\ldots+\tilde{P}_{l}\right)(x)\right)^{1 / 2} \\
& =\left(\sum_{j=0}^{l} \sum_{\mathbf{p} \in \mathscr{P}_{u, x}^{(j)}} w(\mathbf{p})\right)^{1 / 2}
\end{aligned}
$$

where \tilde{P}_{j} is as defined in (20) and $\mathbf{1}_{u}$ is treated as a row vector. In other words, g_{u} denotes the square root of the sum of non-backtracking random walks starting from u taking i steps for i ranging from 0 to l.

Claim A:

$$
\sum_{u} d_{u} \sum_{x} g_{u}^{2}(x) d_{x}=\sum_{j=0}^{l} \sum_{x} \sum_{\mathbf{p} \in \mathscr{P}_{u, x}^{(l)}} d_{u} w(\mathbf{p}) d_{x}=(l+1) \sum_{x} d_{x}^{2}
$$

where the weight $w(\mathbf{p})$ of a walk \mathbf{p} is as defined in (17).
Proof of Claim A: From the definition of g_{u} and (16), we have

$$
\begin{aligned}
\sum_{u} d_{u} \sum_{x} g_{u}^{2}(x) d_{x} & =\sum_{j=0}^{l} \sum_{x} \sum_{\mathbf{p} \in \mathscr{P}_{u, x}^{(l)}} d_{u} w(\mathbf{p}) \\
& =\sum_{u} d_{u} \mathbf{1}_{u} B\left(I+\tilde{P}_{1}+\ldots+\tilde{P}_{l}\right)(x) \\
& =\sum_{u} d_{u} \sum_{i=1}^{l} \mathbf{1}_{u} D^{-1} B \mathbf{P}^{i} B^{*}(x) d_{x}+\sum_{x} d_{x}^{2} \\
& =\sum_{i=1}^{l} \sum_{u} \mathbf{1}_{u} B \mathbf{P}^{i} B^{*}(x) d_{x}+\sum_{x} d_{x}^{2} \\
& =\sum_{i=1}^{l} \mathbf{1}_{E} \mathbf{P}^{i} B^{*}(x) d_{x}+\sum_{x} d_{x}^{2} \\
& =l \mathbf{1}_{E} B^{*}(x) d_{x}+\sum_{x} d_{x}^{2} \\
& =(l+1) \sum_{x} d_{x}^{2} .
\end{aligned}
$$

Claim A is proved.
Claim B:

$$
\sum_{u} d_{u} \sum_{x \sim y}\left(g_{u}(x)-g_{u}(y)\right)^{2} \leq(l+1-l \sigma) \sum_{x} d_{x}^{2}
$$

where $\sum_{x \sim y}$ denotes the sum ranging over unordered pairs $\{x, y\}$ where x is adjacent to y.
Proof of Claim B:
We will use the following fact for $a_{i}, b_{i}>0$.

$$
\begin{equation*}
\left(\sqrt{\sum_{i} a_{i}}-\sqrt{\sum_{i} b_{i}}\right)^{2} \leq \sum_{i}\left(\sqrt{a_{i}}-\sqrt{b_{i}}\right)^{2} \tag{25}
\end{equation*}
$$

which can be easily checked.

For a fixed vertex u, we apply Claim B:

$$
\begin{aligned}
& \sum_{x \sim y}\left(g_{u}(x)-g_{u}(y)\right)^{2} \\
& =\sum_{x \sim y}\left(\sqrt{\sum_{\substack{\mathbf{p} \in \mathscr{S}_{l}^{(t)} \\
t \leq l}} w(\mathbf{p})}-\sqrt{\sum_{\substack{\mathbf{p}^{\prime} \in \mathscr{P}_{l, y}^{(t)} \\
t \leq l}} w\left(\mathbf{p}^{\prime}\right)}\right)^{2} \\
& \leq \sum_{t \leq l-1} \sum_{r \in V} \sum_{\substack{\mathbf{p} \in \mathscr{P}_{u, r}^{(t)} \\
\mathbf{p}^{\prime}=\mathbf{p} \cup s \in \mathscr{P}_{u, s}^{(t+1)}}}\left(\sqrt{w(\mathbf{p})}-\sqrt{w\left(\mathbf{p}^{\prime}\right)}\right)^{2}+\sum_{\mathbf{p} \in \mathscr{P}_{u, x}^{(l)}} w(\mathbf{p})\left(d_{x}-1\right) \\
& \leq \sum_{t \leq l-1} \sum_{x} \sum_{\mathbf{p} \in \mathscr{P}_{\mathcal{P}, x}^{(t)}}\left(\sqrt{w(\mathbf{p})}-\sqrt{\frac{w(\mathbf{p})}{d_{x}-1}}\right)^{2}\left(d_{x}-1\right)+\sum_{\mathbf{p} \in \mathscr{P}_{\sim, x}^{(l)}} \sqrt{w(\mathbf{p})}\left(d_{x}-1\right) \\
& \leq \sum_{t \leq l-1} \sum_{x} \sum_{\mathbf{p} \in \mathscr{P}_{u, x}^{(t)}} w(\mathbf{p})\left(1+\frac{1}{d_{x}-1}-\frac{2}{\sqrt{d_{x}-1}}\right)\left(d_{x}-1\right)+\sum_{\mathbf{p} \in \mathscr{P}_{u, x}^{(l)}} w(\mathbf{p})\left(d_{x}-1\right) \\
& \leq \sum_{t \leq l-1} \sum_{x} \sum_{\mathbf{p} \in \mathscr{P}_{u, x}^{(t)}} w(\mathbf{p})\left(d_{x}-2 \sqrt{d_{x}-1}\right)+\sum_{\mathbf{p} \in \mathscr{P}_{u, x}^{(l)}} w(\mathbf{p})\left(d_{x}-1\right) .
\end{aligned}
$$

Using Fact 3, we have

$$
\begin{aligned}
& \sum_{u} d_{u} \sum_{x \sim y}\left(g_{u}(x)-g_{u}(y)\right)^{2} \\
& \leq \sum_{t \leq l-1} \sum_{u} d_{u} \sum_{\mathbf{p} \in \mathscr{P}_{u, x}^{(t)}} w(\mathbf{p})\left(d_{x}-2 \sqrt{d_{x}-1}\right)+\sum_{u} d_{u} \sum_{\mathbf{p} \in \mathscr{P}_{u, x}^{(l)}} w(\mathbf{p})\left(d_{x}-1\right) \\
& =l \sum_{x} d_{x}\left(d_{x}-2 \sqrt{d_{x}-1}\right)+\sum_{x} d_{x}^{2} \\
& =l(1-\sigma) \sum_{x} d_{x}^{2}+\sum_{x} d_{x}^{2} \\
& =(l+1-l \sigma) \sum_{x} d_{x}^{2}
\end{aligned}
$$

This proves Claim B.
Claim C: There is a vertex u satisfying

$$
R\left(g_{u}\right) \leq 1-\sigma\left(1-\frac{1}{l+1}\right)
$$

Proof of Claim C:
Combining Claim A and B, we have

$$
\begin{align*}
& \sum_{u} d_{u} \sum_{x \sim y}\left(g_{u}(x)-g_{u}(y)\right)^{2} \\
& \leq(l+1-l \sigma) \sum_{x} d_{x}^{2} \\
& \leq(l+1-l \sigma)\left(\frac{1}{l+1}\right) \sum_{u} d_{u} \sum_{x} g_{u}^{2}(x) d_{x} \\
& =\left(1-\frac{l \sigma}{l+1}\right) \sum_{u} d_{u} \sum_{x} g_{u}^{2}(x) d_{x} \tag{26}
\end{align*}
$$

Thus we deduce that there is a vertex u such that

$$
\begin{align*}
R\left(g_{u}\right) & =\frac{\sum_{x \sim y}\left(g_{u}(x)-g_{u}(y)\right)^{2}}{\sum_{x} g_{u}^{2}(x) d_{x}} \\
& \leq 1-\frac{l \sigma}{l+1} \tag{27}
\end{align*}
$$

We define

$$
\alpha_{v}=\frac{\sum_{x} g_{v}(x) d_{x}}{\sum_{x} d_{x}}=\frac{\sum_{x} g_{v}(x) d_{x}}{\operatorname{vol}(G)}
$$

We consider the function g_{u}^{\prime} defined by

$$
g_{u}^{\prime}(x)=g_{u}(x)-\alpha_{u}
$$

Clearly, g_{u}^{\prime} satisfies the condition that

$$
\sum_{x} g_{u}^{\prime}(x) d_{x}=0
$$

Hence, we have

$$
\begin{align*}
\lambda_{1} \leq R\left(g_{u}^{\prime}\right) & =\frac{\sum_{x \sim y}\left(g_{u}^{\prime}(x)-g_{u}^{\prime}(y)\right)^{2}}{\sum_{x} g_{u}^{\prime 2}(x) d_{x}} \\
& =\frac{\sum_{x \sim y}\left(g_{u}(x)-g_{u}(y)\right)^{2}}{\sum_{x} g_{u}^{2}(x) d_{x}-\alpha_{u}^{2} \operatorname{vol}(G)} . \tag{28}
\end{align*}
$$

Note that by the Cauchy-Schwarz inequality, we have

$$
\left(\sum_{x \in B_{u}(l)} g_{u}(x) d_{x}\right)^{2} \leq \operatorname{vol}\left(B_{u}(l)\right) \sum_{x \in B_{u}(l)} g_{u}^{2}(x) d_{x} .
$$

and therefore

$$
\alpha_{u}^{2} \leq \frac{\operatorname{vol}\left(B_{u}(l)\right)}{\operatorname{vol}(G)^{2}} \sum_{x} g_{u}^{2}(x) d_{x} .
$$

By substitution into (28) and using (35), we have

$$
\begin{align*}
\lambda_{1} \leq R\left(g_{u}^{\prime}\right) & \leq \frac{R(g)}{1-\frac{\operatorname{vol}\left(B_{u}(l)\right)}{\operatorname{vol}(G)}} \leq \frac{1-\sigma\left(1-\frac{1}{l+1}\right)}{1-\frac{\operatorname{vol}\left(B_{u}(l)\right)}{\operatorname{vol}(G)}} \tag{29}\\
& \leq 1-\sigma\left(1-\frac{1}{l+1}\right)+\frac{\operatorname{vol}\left(B_{u}(l)\right)}{\operatorname{vol}(G)} \tag{30}\\
& \leq 1-\sigma\left(1-\frac{c}{l+1}\right) \tag{31}
\end{align*}
$$

The last inequality follows from Theorem 2 and the choice of $\epsilon=\sigma / k$. This completes the proof of Theorem 3.

7 A lower bound for λ_{n-1}

If a graph is bipartite, it is known (see [2]) that $\lambda_{i}=2-\lambda_{n-i-1}$ for all $0 \leq i \leq n-1$ and, in particular, $\lambda_{n-1}=2-\lambda_{0}=2$. If G is not bipartite, it is easy to derive the following lower bound:

$$
\lambda_{n-1} \geq 1+1 /(n-1)
$$

by using the fact that the trace of \mathcal{L} is n. This lower bound is sharp for the complete graph. However if G is not the complete graph, is it possible to derive a better lower bound? The answer is affirmative. Here we give an improved lower bound for λ_{n-1}.

Theorem 4 In a connected graph $G=(V, E)$ with diameter k, the largest eigenvalue λ_{n-1} of the normalized Laplacian \mathcal{L} of G satisfies

$$
\begin{equation*}
\lambda_{n-1} \geq 1+\sigma\left(1-\frac{c}{k}\right) \tag{32}
\end{equation*}
$$

where σ is as defined in (15), provided $k \geq c^{\prime} \log \sigma^{-1}$ and $\operatorname{vol}(G) \geq c^{\prime \prime} \sigma^{\log \sigma}$ for some absolute constants c's.

Proof: By definition, λ_{n-1} satisfies

$$
\begin{equation*}
\lambda_{n-1} \geq \frac{\sum_{x \sim y}(f(x)-f(y))^{2}}{\sum_{x} f^{2}(x) d_{x}}=R(f) \tag{33}
\end{equation*}
$$

for any $f: V \rightarrow \mathbb{R}$.
We will construct an appropriate f such that $R(f) \geq 1+\sigma(1-c / \gamma)$ by considering the following function $f_{u}: V \rightarrow \mathbb{R}^{+}$, for a fixed vertex u, defined by

$$
\eta_{u}(x)= \begin{cases}(-1)^{t} \chi_{u}\left(\tilde{P}_{t}(x)\right)^{-1 / 2} & \text { if } \operatorname{dist}(u, x)=t \leq l \\ 0 & \text { otherwise }\end{cases}
$$

where $l \leq \gamma / 2$. Note that $\left|\eta_{u}(x)\right|=g_{u}(x)$ since we assume that $l \leq \gamma / 2$. Using the same proof in Claim A, we have

Claim A':

$$
\sum_{u} d_{u} \sum_{x} \eta_{u}^{2}(x) d_{x}=\sum_{j=0}^{l} \sum_{x} \sum_{\mathbf{p} \in \mathscr{P}_{u, x}^{(l)}} d_{u} w(\mathbf{p}) d_{x}=(l+1) \sum_{x} d_{x}^{2} .
$$

Claim B':

$$
\sum_{u} d_{u} \sum_{x \sim y}\left(\eta_{u}(x)-\eta_{u}(y)\right)^{2} \geq(l+1+l \sigma) \sum_{x} d_{x}^{2} .
$$

Proof of Claim B':

The proof is quite similar to that of Claim B. For a fixed vertex u, the sum over unordered pair $\{x, y\}$ where $x \sim y$,

$$
\begin{aligned}
& \sum_{x \sim y}\left(\eta_{u}(x)-\eta_{u}(y)\right)^{2} \\
& \leq \sum_{t \leq l-1} \sum_{r \in V} \sum_{\substack{\mathbf{p} \in \mathscr{P}_{u, r}^{(t)} \\
\mathbf{p}^{\prime}=\mathbf{p} \cup s \in \mathscr{P}_{u, s}^{(t+1)}}}\left(\sqrt{w(\mathbf{p})}+\sqrt{w\left(\mathbf{p}^{\prime}\right)}\right)^{2}-\sum_{\mathbf{p} \in \mathscr{P}_{u, x}^{(l)}} w(\mathbf{p})\left(d_{x}-1\right) \\
& \leq \sum_{t \leq l-1} \sum_{x} \sum_{\mathbf{p} \in \mathscr{P}_{u, x}^{(t)}}\left(\sqrt{w(\mathbf{p})}+\sqrt{\frac{w(\mathbf{p})}{d_{x}-1}}\right)^{2}\left(d_{x}-1\right)-\sum_{\mathbf{p} \in \mathscr{P}_{u, x}^{(l)}} \sqrt{w(\mathbf{p})}\left(d_{x}-1\right) \\
& \leq \sum_{t \leq l-1} \sum_{x} \sum_{\mathbf{p} \in \mathscr{P}_{u, x}^{(t)}} w(\mathbf{p})\left(1+\frac{1}{d_{x}-1}+\frac{2}{\sqrt{d_{x}-1}}\right)\left(d_{x}-1\right)-\sum_{\mathbf{p} \in \mathscr{P}_{u, x}^{(l)}} w(\mathbf{p})\left(d_{x}-1\right) \\
& \leq \sum_{t \leq l-1} \sum_{x} \sum_{\mathbf{p} \in \mathscr{P}_{u, x}^{(t)}}^{(t)} w(\mathbf{p})\left(d_{x}+2 \sqrt{d_{x}-1}\right)-\sum_{\mathbf{p} \in \mathscr{P}_{u, x}^{(l)}} w(\mathbf{p})\left(d_{x}-1\right) .
\end{aligned}
$$

Using Fact 3, we have

$$
\begin{aligned}
& \sum_{u} d_{u} \sum_{x \sim y}\left(\eta_{u}(x)-\eta_{u}(y)\right)^{2} \\
& \geq \sum_{t \leq l-1} \sum_{u} d_{u} \sum_{\mathbf{p} \in \mathscr{P}_{u, x}^{(t)}} w(\mathbf{p})\left(d_{x}+2 \sqrt{d_{x}-1}\right)-\sum_{u} d_{u} \sum_{\mathbf{p} \in \mathscr{P}_{u, x}^{(l)}} w(\mathbf{p})\left(d_{x}-1\right) \\
& =l \sum_{x} d_{x}\left(d_{x}+2 \sqrt{d_{x}-1}\right)-\sum_{x} d_{x}^{2} \\
& =l(1+\sigma) \sum_{x} d_{x}^{2}-\sum_{x} d_{x}^{2} \\
& =(l-1+l \sigma) \sum_{x} d_{x}^{2}
\end{aligned}
$$

This proves Claim B'.
Combining Claims A' and B', we have

$$
\begin{align*}
& \sum_{u} d_{u} \sum_{x \sim y}\left(\eta_{u}(x)-\eta_{u}(y)\right)^{2} \\
& \geq(l-1+l \sigma) \sum_{x} d_{x}^{2} \\
& \geq(l-1+l \sigma)\left(\frac{1}{l+1}\right) \sum_{u} d_{u} \sum_{x} \eta_{u}^{2}(x) d_{x} \\
& =\left(1+\frac{l \sigma}{l-1}\right) \sum_{u} d_{u} \sum_{x} \eta_{u}^{2}(x) d_{x} \tag{34}
\end{align*}
$$

Thus we deduce that there is a vertex u such that

$$
\begin{align*}
R\left(\eta_{u}\right) & =\frac{\sum_{x \sim y}\left(\eta_{u}(x)-\eta_{u}(y)\right)^{2}}{\sum_{x} \eta_{u}^{2}(x) d_{x}} \\
& \leq 1+\frac{l \sigma}{l-1} \tag{35}
\end{align*}
$$

We consider the function η_{u}^{\prime} defined by

$$
\eta_{u}^{\prime}(x)=\eta_{u}(x)-\alpha_{u}
$$

where

$$
\alpha_{v}=\frac{\sum_{x} \eta_{v}(x) d_{x}}{\sum_{x} d_{x}}=\frac{\sum_{x} \eta_{v}(x) d_{x}}{\operatorname{vol}(G)}
$$

so that η_{u}^{\prime} satisfies the condition that

$$
\sum_{x} \eta_{u}^{\prime}(x) d_{x}=0
$$

Hence, we have

$$
\begin{aligned}
\lambda_{n-1} \geq R\left(\eta_{u}^{\prime}\right) & =\frac{\sum_{x \sim y}\left(\eta_{u}^{\prime}(x)-\eta_{u}^{\prime}(y)\right)^{2}}{\sum_{x} \eta_{u}^{\prime 2}(x) d_{x}} \\
& =\frac{\sum_{x \sim y}\left(\eta_{u}(x)-\eta_{u}(y)\right)^{2}}{\sum_{x} \eta_{u}^{2}(x) d_{x}-\alpha_{u}^{2} \operatorname{vol}(G)} \\
& \geq 1+\sigma\left(1+\frac{c}{l}\right)-\frac{\operatorname{vol}\left(B_{u}(l)\right)}{\operatorname{vol}(G)} .
\end{aligned}
$$

This completes the proof of Theorem 4.

References

[1] M. Capalbo, O. Reingold, S. Vadhan and A. Wigderson, Randomness conductors and constant-degree lossless expanders, Proceedings of the 34th Annual ACM symposium on Theory of Computing, 2002, 659-668.
[2] F. Chung, Spectral Graph Theory, AMS Publications, 1997, vii+207 pp.
[3] J. Friedman, A proof of Alon's second eigenvalue conjecture and related problems, Mem. Amer. Math. Soc., 195 (2008), pp. viii+100 pp.
[4] N. Kahale, Eigenvalues and expansion of regular graphs, JACM 42, no. 5 (1995), 1091-1106.
[5] P. Hall, On representatives of subsets, J. London Math. Soc. 10 (1) (1935), 26-30.
[6] S. Hoory, A lower bound on the spectral radius of the universal cover of a graph, J. Combin. Theory B, 93 (2005), $33-43$.
[7] S. Hoory, N. Linial and A. Wigderson, Expander graphs and their applications, Bull. Amer. Math. Soc., 43 (2006), 439 - 561.
[8] A. Nilli, On the second eigenvalue of a graph, Discrete Math., 91 (1991), 207-210.
[9] R. M. Tanner, Explicit construction of concentrators from generalized n-gons, SIAM J. Algebraic Discrete Methods, 5 (1984), 287-294.
[10] S. J. Young, The weighted spectrum of the universal cover and an AlonBoppana result for the normalized Laplacian, preprint.

[^0]: *University of California, San Diego. Research supported in part by AFSOR FA9550-09-1-0090

