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Abstract

A Dbasic eigenvalue bound due to Alon and Boppana holds only
for regular graphs. In this paper we give a generalized Alon-Boppana
bound for eigenvalues of graphs that are not required to be regular. We
show that a graph G with diameter k and vertex set V, the smallest
nontrivial eigenvalue A\ of the normalized Laplacian £ satisfies

c
M <1—0(1 k)
for some constant ¢ where 0 =23 d,\/d, — 1/, d? and d,, denotes
the degree of the vertex v.

We consider weak Ramanujan graphs defined as graphs satisfying
A1 > 1 — 0. We examine the vertex expansion and edge expansion of
weak Ramanujan graphs and then use the expansion properties among
other methods to derive the above Alon-Boppana bound.

1 Introduction

The well-known Alon-Boppana bound [8] states that for any d-regular graph
with diameter k, the second largest eigenvalue p of the adjacency matrix
satisfies

2

pZZVdj(l—%)—%. (1)

A natural question is to extend Alon-Boppana bounds for graphs that are
irregular. Hoory [6] showed that for an irregular graph, the second largest
eigenvalue p of the adjacency matrix satisfies

o> 2\/ﬁ<1 B clogr)

r
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if the average degree of the graph after deleting a ball of radius r is at least
d where r,d > 2.

For irregular graphs, it is often advantageous to consider eigenvalues of
the normalized Laplacian for deriving various graph properties. For a graph
G, the normalized Laplacian £, defined by

L=1—-DY2AD1/?

where D is the diagonal degree matrix and A denotes the adjacency matrix
of GG. One of the main tools for dealing with general graphs is the Cheeger
inequality which relates the least nontrivial eigenvalue A; to the Cheeger
constant hg:

h2
2ha > A\ > 76' (2)

where hg = ming |0(5)]/vol(S) for S ranging over all vertex subsets with
volume vol(S) = >_, . ¢ dy no more than half of ), d, and 9(S) denotes
the set of edges leaving S. For k-regular graphs, we have A\; = 1—p/k where
p denotes the second largest eigenvalue of the adjacency matrix. In general,

p p
— <1 - <
max, d, — ~ min, d,

which can be used to derive a version of the Cheeger inequality involving p
which is less effective than (2) for irregular graphs.

In this paper, we will show that for a connected graph G with diameter
k, A1 is upper bounded by

Algl—a(l—%) (3)
for a constant ¢ where o = 23 dy\/d, — 1/, d?> . The above inequality
will be proved in Section 6.

The above bound of Alon-Boppana type improves a result of Young [10]
who derived a similar eigenvalue bound using a different method. In [10]
the notion of (r,d, d)-robust graphs was considered and it was shown that
for a (r,d,d)-robust graph, the least nontrivial eigenvalue \; satisfies

)\1§1—2d d—l(1 C)

_ ¢ 4
“ (1
Here (r,d, §)-robustness means for every vertex v and the ball B, (v) consist-

ing of all vertices with distance at most r, the induced subgraph on the com-
plement of B, (v) has average degree at least d and 3, (1) d2/IV\ B, (v)| <

, .
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5. We remark that our result in (3) does not require the condition of ro-
bustness.
We define weak Ramanujan graphs to be graphs with eigenvalue \; sat-
isfying
M>1—-02>

()

N =

where 0 =23 d,/d, — 1/, d> .

To prove the Alon-Boppana bound in (3), it suffices to consider only
weak Ramanujan graphs. Weak Ramanujan graphs satisfy various expansion
properties. We will describe several vertex-expansion and edge-expansion
properties involving A; in Section 3, which will be needed later for proving
a diameter bound for weak Ramanujan graphs in Section 4. The diameter
bound and related properties of weak Ramanujan graphs are useful in the
proof of the Alon-Boppana bound for general graphs.

We will also show that the largest eigenvalue A,,_1 of the normalized
Laplacian satisfies

Ano1 > 1+0(1— %). (6)

The proof will be given in Section 7.

2 Preliminaries
For a graph G = (V, E), we consider the normalized Laplacian
L=1-D"12AD™1/?

where A denotes the adjacency matrix and D denotes the diagonal degree
matrix with D(v,v) = d,, the degree of v. We assume that there is no
isolated vertex throughout this paper. For a vertex v and a positive integer
[, let Bj(v) denote the ball consisting of all vertices within distance [ from
v. For an edge {z,y} € F we say z is adjacent to y and write z ~ y.

Let A\g < A1 < ... < \—1 denote eigenvalues of £, where n denotes
the number of vertices in G. It can be checked (see [2]) that \y > 0 if G
is connected. The Alon-Boppana bound obviously holds if Ay = 0. In the
remainder of this paper, we assume G is connected.

Let ¢; denote the orthonormal eigenvector associated with eigenvalue
Ai. In particular, g9 = D'/?1/,/vol(G) where 1 is the all 1’s vector and



vol(G) = >, cy dv. We can then write

where f ranges over all functions satisfying >, f(u)d, = 0 and the sum
2 _z~y Tanges over all unordered pairs {z,y} where z is adjacent to y. Here
R(f) denote the Rayleigh quotient of f, which can be written as follows:

v
RO =T

where /HfH2 = ZfQ(ﬂf)d:c
and /|Vf| = Z (f(x) - f(y))z'

T~y

For eigenfunction ¢;, the function f; = DY/ 2@1-, called the combinatorial
eigenfucntion associated with \;, satisfies

Nif (Wdy = (f(u) = f(v)) (7)

for each vertex u. In particular, for f satisfying >, f(u)d, = 0, we have

and

(£, Af)| < max(1 = A) (£, D). ©)

3 Vertex and edge expansions

For any subset S of vertices, there are two types of boundaries. The edge
boundary of S, denoted by 9(S) consists of all edges with exactly one end-
point in S. The vertex boundary of S, denoted by 4(S) consists of all vertices
not in S but adjacent to vertices in S. Namely,

I(S) ={{u,v} €E : ue Sandv ¢ S} = E(S,S)
0 S)={ugsS : u~wvesS for some vertex v}



In this section, we will examine vertex expansion and edge expansion
relying only on A;. These expansion properties will be needed for deriving
diameter bounds for weak Ramanujan graphs which will be used in our proof
of the general Alon-Boppana bound later in Section 6.

From the definition of the Cheeger constant, for all vertex subsets .S, we
have

10(5)]
vol(.S)

A
ZhGZ?l

Later in the proofs, we will be interested in the case that vol(,S) is small and
therefore we will use the following version.

Lemma 1 Let S be a subset of vertices in G. Then

O (1 ).

Proof: Suppose f is defined by

1s 15
vol(S)  vol(9)

=

where 1g denotes the characteristic function defined by 1g(v) = 1ifv € S
and 0 otherwise.
The Rayleigh quotient R(f) satisfies

_13(S)] vol(@)

Avs R(J) vol(S) wvol(S)’

O
For the expansion of the vertex boundary, the Tanner bound [9] for
regular graphs can be generalized as follows.

Lemma 2 Let A\ = min;zo |1 — A;i|. Then for any vertex subset S in a graph,

vol(4(5)) . 22
vol(S) T 24 Yol

(10)

The proof of the above inequality is by using the following discrepancy
inequality (as seen in [2]).



Lemma 3 In a graph G, for two subset X and Y of vertices, the number
e(X,Y) = |E(X,Y)|of edges between X and Y satisfies

e(X,Y) —

vol (X)vol(Y) ’ 5 \/¥ol(X)vol(Y)vol (X )vol(T) o

vol(G) vol(G)
where A = min;zo |1 — N\l

The proof of Lemma 3 follows from (9) and can be found in [2]. The proof
of (12) results from (11) by setting X = S and Y = S U(9).

Here we will give a version of the vertex-expansion bounds for general
graphs which only rely on A\; and are independent of other eigenvalues.

Lemma 4 In a graph G with vertex set V and the first nontrivial eigenvalue
A1, for a subset S of V' with vol(S U dS) < evol(G) < vol(G)/2, the vertex
boundary of S satisfies

vl(§($)) . 2x

W) vol(8) = 1—Aj +2¢ (12)
(ii) If 1/2 < A\ < 1 — 2¢, then
vol(6(S)) 1
wol(S) = (1= M+ 202 (13)
Proof: The proof of (i) follows from Lemma 1 since
vol(8(5)) o [9(SU(5))] +|0(5)]
vol(S) — vol(S)

S A (1 =€) (vol(S) + vol(6(5)) + A (1 — €)vol(S)

- vol(.5)
Therefore

VO](5(S)) > 2)\1(1 —6) > 2/\1
vol(S) —1—XA(l—€) = 1—X1+ 2

To prove (ii), we set f = 15+715(5) where vy = 1—\;. Consider g = f—cly
where ¢ =" f(u)d, / vol(G). By the Cauchy-Schwarz inequality, we have

2 1(SU(S
¢ = @ Vol ( Z flu ) SVOvol Zf2

u€SUS(S)
Z f3(u
Vol




Using the inequality in (8), we have

(f. Af) < (g, Ag) + c*vol(G)

v{g, Dg) + ¢*vol(G)

WL Df) + (1= y)cvol(G)

(v +e){f, Df)

= (v +¢€)(vol(S) + 72v01(5(5))).

<
<

IN

Let e(S,T) denote the number of ordered pairs (u,v) where u € S,v € T
and {u,v} € E. Since y =1 — X < 1/2, we have

(f,Af) > e(S,S) + 2ve(S,0(9))
> (1 —27)e(S,S) + 2yvol(S)
> 2

~yvol(.S)

Together we have

vol(4(9)) e
vol(S) ~ o%(y+e)
1
~ (v +2e)?

since vy > 2e. O
Recall that weak Ramanujan graphs have eigenvalue A; satisfying
M>1l-0 (14)

where 0 =23 dy\/d, — 1/, d?>. Lemma 1 implies that for S with vol(SU
4(5)) < evol(G),
vol(0(S)) 1
> .
vol(S) T (o + 2¢)?

For k-regular Ramanujan graphs with eigenvalue \; = 1 — 2vk — 1/k,
the above inequality is consistent with the bound

vol(6(5)) _ [6(5)] - 1
wl(S) 18 T (2T | g

which is about k/4 when vol(S) is small. The factor k/4 in the above
inequality was improved by Kahale [4] to k/2. There are many applications



(see [1]) that require graphs having expansion factor to be (1 — €)k. Such
graphs are called [ossless expanders. In [1], lossless graphs were constructed
explicitly by using the zig-zag construction but the method for deriving the
expansion bounds does not use eigenvalues. In this paper, the expansion
factor as in Lemma 4 is enough for our proof later.

4 Weak Ramanujan graphs

We recall that a graph is said to be a weak Ramanujan graph as in (14) if

where
(15)

To prove the Alon-Boppana bound, it is enough to consider only weak Ra-
manujan graphs.

Lemma 5 As defined in (15), o satisfies

2\/657—1§0_§2 ccll—l

where d denotes the average degree in G and d denote the second order
degree, 1i.e.,

_ d y d?
dziz” Y and d:Z” ‘.
n Do do
Proof: The proof is mainly by using the Cauchy-Schwarz inequality.
For the upper bound, we note that

SRS WYt WY DI SN
ddy T 2w
/Sl 1)
V2 d;
<2 Z’U(dv — 1)

Zv dU/\/ﬁ

<2VZU_(d“*1)<2 J__l.
- dy/n - d




For the upper bound, we will use the fact that for a,b > 1 and a + b = ¢,

a\/a—l—&—b\/b—qu/g—l
- N
zv:dm/dv 12%}1@ . 1.

Consequently, we have

dy =
>y doVdy =1 ZZvdv\/Z# —l,Vd-1
2 = a2 = 5
204 %Z Z D o d
as desired. O
We remark that for graphs with average degree at least 20, we have
o< 1/2 < M.

and therefore

o=2

Theorem 1 Suppose a weak Ramanujan graph G has diameter k. Then for
any € > 0, we have

2log vol(G)

k<(l+e) logo—1

provided that the volume of G is large, i.e., vol(G) > co'8(%) /e for some
small constant c.

Proof: We set
log(vol(G))“

logo—1

t:{(ue)

It suffices to show that for every vertex v, the ball B;(v) has volume more
than vol(G)/2.
Suppose vol(B;(v)) < vol(G)/2. Let

 vol(B,(w)
T vol(G)

By part (i) of Lemma 4, we have vol(d(B,(j))) > 0.5vol(B,(j)) for j <t—1
and therefore sj 1 > 1.5s; . Thus, if j <t—c; log(c~1), then 55 < o* where
c1 is some small constant satisfying c¢; < 4(log 1.5)~!.



Now we apply part (ii) of Lemma 4 and we have, for j <t —c; log(o™1),

Sy _ vol(Bya(w) _ vol((By(w)) 1 1

5 vol(B,w) — vol(Bj(w) ~ (0425)%° (0 +200)

This implies, for I <t —¢; log(a‘l)7

1
e I B > 1 Gz
= 2
0<j<l U+28] 0<j<! (o +20%)
1

> -
= o2(1 4 20%)2

Since so > 1/vol(G) and s; < s; < 1/2, we have

1
vol(G) > —021(1 20y
Hence
log(vol(@))
~ log(o~1) + 204"
However,
log(vol(G)) 1 log(vol(@))
1 — < t<cl —_—

(1+¢) loglo-1) == cilog(o™") + log(o—1) + 204
which is a contracdiction for G' with vol(G) large, say, vol(G) > o2¢11°87 /¢
. Thus we conclude that s; > 1/2 and Theorem 1 is proved. O

Theorem 2 For a weak Ramanujan graph with diameter k, for any vertex v
and any | < k/4, the ball B,(I) has volume at most evol(G) if k > cloge™!,
for some constants c.

Proof: We will prove by contradiction. Suppose that for jo = [k/4],
there is a vertex u with vol(B,(jo)) > €evol(G). Let r denote the largest
integer such that

_ vol(By(r)) _ 1
TG 2

By the assumption, we have r > k/4 and s, > e. There are two possi-
bilities:

10



Case 1: > k/2.

By part (i) of Lemma 4, we have vol(d(B,(j))) > 0.5vol(By(j)) for j < k/2
and therefore s;11 > 1.5s; . Thus, for j < k/2 — c1loge™!, we have s; < ¢
where ¢; = 1/log 1.5. Since k/4 < k/2 —c1loge™ !, we have a contradiction.

Case 2: r < k/2.
We define

vl B,G)
I vol(G)

Thus 5; < 1/2 for all j > k/2. We consider two subcases.

Subcase 2a: Suppose §; > € for j > k/2.

Using Lemma 4, for j where r < j < k/2, we have 5; > 1.55;,1. Thus,
for some j; > k/2—cjloge™ !, we have 5; > 1/2 or equivalently, s; < 1/2. By
using Lemma 4 again, for j < ji, we have sj;1 > 1.5s; and therefore for any
j<j1—cilog e~ 1 we have sj < €. Since ji —cq log el > k/2—2¢cq log el >
k/4, we again have a contradiction to the assumption s;, > .

Subcase 2b: Suppose 5; < € for j > k/2
We apply part (ii) of Lemma 4 and we have, for j > k/2,

S; 1
—— > .
Siy1 (0 +2€)?

This implies, for jo = [k/2],

S5jq 1 1
gz > | | > .
S, N2 — k
Sk i<k (0 + 2s5) (o + 2¢)

Since 5, > 1/vol(G), we have

1
Si > .
1= Wol(G) (o + 20)F

Since the assumption of this subcase is 55, < €, we have

S logn + loge?

k
- logo—1
We now use Lemma 4 and we have, for j =k/2 —j' > r

1
Si > .
%= vol(G)(o + 2¢)k+2'

11



Therefore, for some j < k/2 —loge 1/logo~!

implies 7 > k/2 —loge™!/logo~!.
Now we use the same argument as in Case 1 except shifting by loge~!/log o™
For some j < r —ciloge ! < k/2 —loge ' /logo™! — c1loge !, we have
s; < €. Since loge™!/logo™ 4 ¢ loge™! < k/4, this leads to a contradiction
and Theorem 2 is proved.

, we have 5; > 1/2 which

1

g

5 Non-backtracking random walks

Before we proceed to the proof of the Alon-Boppana bound, we will need
some basic facts on non-backtracking random walks.

A non-backtracking walk is a sequence of vertices p = (vo,v1,..., V)
for some t such that v;_1 ~ v; and v;y1 # v;—1 for i = 1,...,t — 2. The
non-backtracking random walk can be described as follows: For i > 1, at
the ith step on v;, choose with equal probability a neighbor u of v; where
u # v;—1, move to u and set v;+1 = u. To simplify notation, we call a non-
backtracking walk an NB-walk. The modified transition probability matrix
P, for k=0,1,...,t — 1, is defined by

. Pk (u,v) itk=0
Pe(w,v) =9 S w(p) ifk>1 (16)
pe 2

where the weight w(p) for an NB-walk p = (vg,v1,...,v;) with ¢ > 1 is
defined to be
1

M T ) "

and 331% denotes the set of non-backtracking walks from u to v. For a walk
p = (vp) of length 0, we define w(p) = 1.

Although a non-backtracking random walk is not a Markov chain, it is
closely related to an associated Markov chain as we will describe below (also
see [6]).

For each edge {u,v} in E, we consider two directed edges (u,v) and
(v,u). Let E denote the set consisting of all such directed edges, i.e. E =
{(u,v) . {u,v} € E}. We consider a random walk on E with transition

12



probability matrix P defined as follows:

if v =v'and u # v’

0 otherwise.

1
P((u,v),(u',0")) = {dv—l

Let 1 denote the all 1’s function defined on the edge set E as a row vector.
From the above definition, we have

15P = 1p. (18)

In addition, WeAdeﬁne the vertex-edge incidence matrix B and B* for
a €V and (b,c) € E by

1 ifa=0b,

0 otherwise

B((Z, (bv C)) = {

1 if c=a,

B*((b7c)7a)) = {

0 otherwise.
Let 1y denote all 1’s vector defined on the vertex set V. Then
1yB =1p. (19)

Although P is not a Markov chain, it is related to the Markov chain
determined by P on E as follows:

Fact 1: For | > 1.
P, =D 'BP!B* (20)

and for the case of [ = 0, we have Py = I.
By combining (19) and (20), we have
Fact 2:

1yDP, = 15B* =1y D. (21)

Note that 1y D is just the degree vector for the graph G. Therefore (21)
states that the degree vector is an eigenvector of P;. Using Fact 1 and 2, we
have the following:

13



Lemma 6
(i) For a fized vertex x and any integer j > 0, we have

Zd > w(p) =d, (22)
)(J)
(ii) For a fized vertex u, we have
YN w WI+P+. .+ P =1+1 (23)
x pe]l(f,;

where 1,, denotes the characteristic function which assumes value 1 at u and
0 else where.

Proof: The proof of (22) and (23) follows from the fact that
1y DP;(z) = 1yD(D 'BP'B*) = 1zP'B* = 15B* = 1y D(x)

and 1, P;(x) = w(p) for p € 9”7(1]3; O

6 An Alon-Boppana bound for )\

Theorem 3 In a graph G = (V, E) with diameter k, the first nontrivial
etgenvalue \1 satisfies

A1§1—a(1—£)

where o is as defined in (15), provided k > ¢'loga™! and vol(G) > o087
for some absolute constants c¢’s .

Proof: If G is not a weak Ramanujan graph, we have \; < 1 — ¢ and
we are done. We may assume that G is weak Ramanujan.
From the definition of A, we have

Yany(f (@) = f(1))?
>0 [ (@) ds
where f satisfies ) f(x)d, = 0.

We will construct an appropriate f satisfying R(f) < 1—o(1—c¢/k) and
therefore serve as an upper bound for A;. We set

A1 <

= R(f) (24)

(= |

14



and choose € satisfying
co

k
by using Theorem 1 where o is as defined in (15).
We consider a family of functions defined as follows. For a specified

vertex v and an integer [ = |k/4|, we consider a function g, : V — R™T,
defined by

€<

~19

<

gule) = (LI + Pt ..+ B)a)

(XY ww)”

J=0 pe@ff;

where 15]- is as defined in (20) and 1, is treated as a row vector. In other
words, g, denotes the square root of the sum of non-backtracking random
walks starting from u taking ¢ steps for ¢ ranging from 0 to [.

Claim A:

l

S dY P)d, = ZZ > dww(p)d. =(1+1)) d

=0T pesl)

where the weight w(p) of a walk p is as defined in (17).
Proof of Claim A: From the definition of g,, and (16), we have

15



l
Y dud g2@)da =" > duw(p)

=07 peall),

=Y d1,BI+ P +...+B)(x)
l
=34, 1D 'BP B (a)d, + Y >
u i=1 x

l
=> > 1,BP'B*(x)d, + Y _d>

=1 u
l
=> 1gP'B*(2)d, + Y d>
=1 T
=pB*(z)d, + Y _ d2

=(1+1)) d2.

Claim A is proved.
Claim B:
S du D (gule) — u@) < (1 +1-10) > d2.
u T~y T

where way denotes the sum ranging over unordered pairs {z,y} where x
is adjacent to y.

Proof of Claim B:
We will use the following fact for a;, b; > 0.

(\/XZ:“Z\/XZ:@YSZ(\/@\/QZ (25)

i

which can be easily checked.

16



For a fixed vertex u, we apply Claim B:

Z (gu(x) - gu(y))2

T~y

2

=S| D we) - | > wE)

Y pEP, p'erl),
1<l 1<l

<Yy Y (Ve - Vee) + Y we)d -1

t<IZ1TEV e pe ),

o4 pUsE/<t+l)

I ( pl) (de =1+ D> Vuw(p)(d:—1)

ISI-1 @ pep®) pe2Y,

ZZ Z ( g:—l \/di_)(dw_l)_‘_ Z w(p)(d; — 1)

t<l—-1 =z J;(t) pec%(l)x

ZZZ (0)(de —2V/de = 1)+ D7 w(p)(d ~ D).

) pe sl

Using Fact 3, we have

Zd 3 (gu(x) — gu())?

Ty

<3 Sd Y we)(de -2 )+Zd > w(p)(d: —1)

e W

PEPyx
=1 dp(de —2/dp — 1) + ) _d2
=l(1—0)> d2+> d
=(I+1-10)> d2

This proves Claim B.

Claim C: There is a vertex u satisfying

R(gu)gl_g(l_l—i—l)

17



Proof of Claim C:
Combining Claim A and B, we have

Zd > (gu(@) = g9u(w))”

Ty
<(l+1-10)) d
<(+1-10)(777) Zdngu(x)d

( l+1>zd Zg" (26)

Thus we deduce that there is a vertex u such that

Yoy (9u(2) = 9u(y))?
Zx 91% (x)dac

R(gu) =

We define

Zx Go(z)dy _ Zx Go(2)dy
Y da vol(G)

Ay —

We consider the function g}, defined by

9u(@) = gu(®) —
Clearly, g/, satisfies the condition that
> di(@)ds =
Hence, we have
2
Doy (00(2) — 90, ())
20 9 (€)
2
ey (9u(®) = 9u(y)
2, 9i(@)ds — advol(G)
Note that by the Cauchy-Schwarz inequality, we have

z€By (1) x€By (1)

M < R(g,) =

u

18



and therefore

ag < W ;gi(w)dm.

By substitution into (28) and using (35), we have

Rig) _1-o(l—p5)

A1 < R(gy,) < 1 _ vlBu() = _ vol(Bu(l) (29)
D) ~ vol(G)
< _ —
tmo(l= 7))+ vol(G) (30)
<l-o(1-—2) (31)

The last inequality follows from Theorem 2 and the choice of € = ¢/k. This
completes the proof of Theorem 3. O

7 A lower bound for \,_;

If a graph is bipartite, it is known (see [2]) that A; = 2 — \,_;—1 for all
0 <i<n-—1and, in particular, \,_1 = 2 — Ao = 2. If G is not bipartite, it
is easy to derive the following lower bound:

A1 >141/(n—1)

by using the fact that the trace of £ is n. This lower bound is sharp for
the complete graph. However if G is not the complete graph, is it possible
to derive a better lower bound? The answer is affirmative. Here we give an
improved lower bound for \,_1.

Theorem 4 In a connected graph G = (V, E) with diameter k, the largest
eigenvalue A\p—1 of the normalized Laplacian L of G satisfies

A1 =1+ 0(1 - %) (32)

where o is as defined in (15), provided k > ¢'logo™! and vol(G) > o8
for some absolute constants c’s .

Proof: By definition, \,_1 satisfies

Dy (F (@) = f())?
2o [P (@)de

An-1 > = R(f) (33)

19



for any f:V — R.
We will construct an appropriate f such that R(f) > 1+ o(1 —¢/v) by

considering the following function f, : V. — R™, for a fixed vertex u, defined
by

Nu(z) = (*1)tXu(]5t($))_1/2 if dist(u,z) =t <1
’ 0 otherwise

where [ < /2. Note that |n,(z)| = gu(z) since we assume that [ < /2.
Using the same proof in Claim A, we have

Claim A’:
l
Yodud mp(a)de =Y > dyw(p)d, = (1+1))  da.
u T j=0 = pG@q(f,)z T
Claim B’:

Zd Z Nu(x) — Ny ( ))22(l+1+la)2di.

T~y

Proof of Claim B’:
The proof is quite similar to that of Claim B. For a fixed vertex u, the
sum over unordered pair {z,y} where z ~ y,

37 () — mu(y))?

T~y

<Yy Y (Ve vae) - Y w1

LSI-1TEV e p®) pez,

p’=pUs€,@ff:1)

2

Y YT W<p>+,/;;’<f>1 -1 3 Va@)d 1)

tsl=1 = peoplt) pez),

O I L R MO

N PEPLh

<SS we)(dr2va—1) - Y wp)d - 1),

t<l=1 T peapl) pezl,
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Using Fact 3, we have

ZdZnu nu(y))?

T~y

>3 Y4 ¥ wp)(dm—i—Q\/dxi—) Zd S wp)(d - 1)

t<i—1 u pe) pea),

=1 dy(de +2V/dy — 1) =) _d>
=l(1+0)y d2-> d
=(I—1+10)> d2

This proves Claim B’.
Combining Claims A’ and B’, we have

ZdZnu nu(y))?

r~y

>(1-1+10)) d
1 2
> (l -1+ ZU) (m) zu:duzx:nu(x)d
= (1 + ZL) Zd ZnQ(ac)d
l B 1 u b X !
Thus we deduce that there is a vertex u such that

ZxNy (nu@:) - nu(y))2
> e Ma(2)dy

lo
<14 —
+l—1

R(ny) =

We consider the function 7., defined by

m(z) = nu(z) — ay

where

21
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(35)



so that 7], satisfies the condition that

Z My (2)dz =0

Hence, we have

Yoy (@) i (9))°

> 'Y =
2
o ZxNy (nu(‘r) - nu(y))
© Y (x)dy — a2vol(G)
vol( (1))
>1 1 .
>14+o0(1+ l) ol(@)
This completes the proof of Theorem 4. O
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