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Abstract

We consider the random graph model G(w) for a given expected degree
sequence w = (w1, w2, . . . , wn). If the expected average degree is strictly
greater than 1, then almost surely the giant component in G of G(w) has
volume (i.e., sum of weights of vertices in the giant component) equal to
λ0Vol(G) + O(

√
n log3.5 n), where λ0 is the unique non-zero root of the

following equation;

nX

i=1

wie
−wiλ = (1 − λ)

nX

i=1

wi,

and where Vol(G) =
P

i wi.

1 Introduction

Among the many celebrated results of Erdős and Rényi on random graphs, one
of the most well known theorems is a sharp estimate for the size of the giant
component. For the random graph G(n, p), as introduced by Erdős and Rényi in
1959 [17], every pair of a set of n vertices is chosen to be an edge with probability
p independently. Erdős and Rényi [17] showed that the size (i.e., the number of
vertices) of the giant component of G(n, p) satisfies the following:

Theorem A: If d = np > 1, a graph G of G(n, p) almost surely contains a
giant component with (f(d) + o(1))n vertices, where f(d) is given by

f(d) = 1 − 1
d

∞∑
k=1

kk−1

k!
(de−d)k. (1)

In G(n, p), every vertex has the same expected degree np. Although such a
random graph model is useful in some applications, most real-world networks
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have degree distributions far from being regular. It is therefore not surpris-
ing that the random graph model G(n, p) does not capture many behaviors of
numerous networks.

Here we consider the random graph model G(w) for a given expected degree
sequence w = (w1, w2, . . . , wn), as introduced in [10]. The edges are chosen
independently and randomly as follows. The probability pij that there is an
edge between vi and vj is proportional to the product wiwj (as well as the loop
at vi with probability proportional to w2

i ). Namely,

pij =
wiwj∑

k wk
=

wiwj

Vol(G)
. (2)

Here the expected volume for a subset S of vertices, Vol(S), is defined as follows.

Vol(S) =
∑
vi∈S

wi

and Vol(G) = Vol(V (G)). The (actual) volume of S in a graph G is the sum of
all degrees of vertices in S and is denoted by vol(S).

vol(S) =
∑
vi∈S

di

where di denote the degree of vertex vi. In order to avoid confusion when we
deal with the graph G in a non-probabilistic context, we can view wi as a weight
assigned to vertex vi.

In [10], the following theorem was given concerning the giant components
for graphs in the random graph model G(w).

Theorem B: Suppose that G is a random graph in G(w) with expected degree
sequence w. If the expected average degree d is strictly greater than 1, then the
following holds:
(1) Almost surely G has a unique giant component. Furthermore, the volume
of the giant component is at least (1 − 2√

de
+ o(1))Vol(G) if d ≥ 4

e = 1.4715 . . .,

and is at least (1 − 1+log d
d + o(1))Vol(G) if d < 2.

(2) The second largest component almost surely has size at most (1+o(1))µ(d) log n,
where

µ(d) =
{ 1

1+log d−log 4 if d > 4/e;
1

d−1−log d if 1 < d < 2.

Moreover, with probability at least 1 − n−k, the second largest component has
size at most (k + 1 + o(1))µ(d) log n, for any k ≥ 1. 1

In this paper, we will state a sharp asymptotic estimate for the volume of
the giant component for a random graph in G(w).

1The quantitative estimate of this probability is in the proof of Theorem 1 in [10].
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Theorem 1 If the expected average degree is strictly greater than 1, then al-
most surely the giant component in a graph G in G(w) has volume λ0Vol(G) +
O(

√
n log3.5 n), where λ0 is the unique non-zero root of the following equation:

n∑
i=1

wie
−wiλ = (1 − λ)

n∑
i=1

wi. (3)

We remark that Vol(G) in the statement of Theorem 1 can be replaced by
vol(G) since it was proved in [10] that with probability at least 1 − e−c,

|vol(G) − Vol(G)| ≤
√
cVol(G).

Since the average degree is vol(G)/n, the average degree can also be approxi-
mated by the average expected degree Vol(G)/n.

The paper is organized as follows. Section 2 contains several facts concerning
equation (3). In section 3, we show that the asymptotic formula for the volume of
the giant components of a random graph in G(w) is a generalization of Theorem
A by Erdős and Rényi. Section 4 includes some improved lower bounds for the
volume of the giant component of G ∈ G(w) as a function of the expected
average degree. In Section 5, we give the complete proof of Theorem 1. In
Section 6, we derive a sharp estimate for the number of vertices in the giant
components.

2 Preliminaries

Before we proceed, we examine some basic properties of the solutions to the
equation in (3). The proof is quite straightforward and will be omitted here.

Let d̃ denote the expected second order average degree.

d̃ =
∑

iw
2
i∑

iwi
.

Lemma 1 Suppose the expected second order average degree satisfies d̃ > 1.
Define

f(λ) =
n∑

i=1

wie
−wiλ − (1 − λ)

n∑
i=1

wi.

We have f(0) = 0, f ′(0) < 0, and f ′′(λ) > 0. Hence f(λ) = 0 has a unique
positive solution λ0 (see Figure 1). In particular,

1. If f(x1) ≤ 0 for some positive x1, then λ0 ≥ x1.

2. If f(x2) ≥ 0 for some positive x2, then λ0 ≤ x2.

3. λ0 < 1 since f(1) > 0.
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Figure 1: When d̃ > 1, f(x) has a unique positive root.

0 1

Figure 2: When d̃ < 1, f(x) > 0 for all x > 0.

When d̃ < 1, We have f(0) = 0, f ′(0) > 0, and f ′′(λ) > 0. Zero is the only
non-negative root for f(x) (see Figure 2). This corresponds to the case that
there is no giant component.

The following fact is useful in the proof of the main theorem.

Lemma 2 Suppose that the expected average degree d satisfies

d =
1
n

n∑
i=1

wi ≥ 1 + δ > 1

for some positive constant δ. Define f(λ) =
∑n

i=1 wie
−wiλ − (1 − λ)

∑n
i=1 wi

and let λ0 denote the unique non-zero root of f(λ) = 0. Then there is a positive
constant c = c(δ) such that

f ′(λ0) ≥ c

n∑
i=1

wi.

Proof: Since d̃ ≥ d > 1, the unique root λ0 of f exists. We have

f ′(λ0) =
n∑

i=1

wi −
n∑

i=1

w2
i e

−wiλ0 .

Case 1: λ0 ≥ 1
2 . Since xe−xλ0 attains its maximum at x = 1/λ0, we have

f ′(λ0) =
n∑

i=1

wi −
n∑

i=1

w2
i e

−wiλ0

≥
n∑

i=1

wi −
n∑

i=1

wi
1
eλ0
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= (1 − 1
eλ0

)
n∑

i=1

wi

≥ (1 − 2
e

)
n∑

i=1

wi.

The statement holds for this case.
Case 2: λ0 <

1
2 . We will utilize some convexity inequalities. First we will prove

the following claim.
Now we consider the function h(x) = (x2 + x

λ0
)e−λ0x. We have

h′(x) = (
1
λ0

+ x− λ0x
2)e−λ0x

h′′(x) = −λ0x(3 − λ0x)e−λ0x. (4)

We need the following facts whose proofs will be given at the end of this
section.

Claim A:
(i) h(x) is concave downward over x in (0, 3

λ0
). The maximum value of h(x)

for x in [0,∞) is reached at x0 =
√

5+1
2λ0

.
(ii) d < 2

eλ0
< x0.

(iii) λ0 > 1 − 1
d .

Now, we consider the following function

H(x) =
{
h(x) 0 ≤ x ≤ x0

h(x0) x ≥ x0

Using Claim A (i), H(x) is concave downward and H(x) ≥ h(x) for all x ≥ 0.
We have

f ′(λ0) =
n∑

i=1

wi −
n∑

i=1

w2
i e

−wiλ0

=
n∑

i=1

wi +
1
λ0

n∑
i=1

wie
−wiλ0 −

n∑
i=1

h(wi)

=
n∑

i=1

wi +
1
λ0

(1 − λ0)
n∑

i=1

wi −
n∑

i=1

h(wi)

=
1
λ0

n∑
i=1

wi −
n∑

i=1

h(wi)

≥ 1
λ0

n∑
i=1

wi −
n∑

i=1

H(wi)

≥ 1
λ0

n∑
i=1

wi − nH(
1
n

n∑
i=1

wi)
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=
1
λ0
nd− nH(d).

By Claim A (ii), we have d < 2
eλ0

< x0. Hence, H(d) = h(d).

f ′(λ0) ≥ 1
λ0
nd− nh(d)

=
1
λ0
nd− n(d2 +

d

λ0
)e−λ0d

= nd
1
λ0

(1 − (1 + dλ0)e−λ0d)

≥ nd(1 − (1 + dλ0)e−λ0d).

The function ψ(x) = 1 − (1 + x)e−x is increasing for x in [0,∞). For any
x > 0, ψ(x) > ψ(0) = 0.

Hence we have

f ′(λ0) ≥ ndψ(λ0d)
≥ ndψ(d− 1)
≥ cnd

by choosing c = c(δ) = min{ψ(δ), 1 − 2/e}.
It remains to prove Claim A.

Proof of Claim A: (i) follows from (4).
To prove (ii), we use the fact that λ0 is a root of f and xe−λ0x has its

maximum value 1
eλ0

at x = 1/λ0. Then

(1 − λ0)nd = (1 − λ0)
n∑

i=1

wi

=
n∑

i=1

wie
−λ0wi

≤
n∑

i=1

1
eλ0

=
n

eλ0
.

Thus,

λ0(1 − λ0) ≤ 1
de
.

We have

λ0 ≤ 1
2

(
1 −

√
1 − 4

de

)
or λ0 ≥ 1

2

(
1 +

√
1 − 4

de

)
.
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λ0 <
1
2 implies

λ0 ≤ 1
2

(1 −
√

1 − 4
de

)

=
2
de

1

1 +
√

1 − 4
de

<
2
de
.

Hence, we have d < 2
eλ0

< x0 as desired.
To prove (iii), we consider the function

g(x) =
{
xe−λ0x 0 ≤ x ≤ 1

λ0
1

eλ0
x > 1

λ0
.

We observe that g(x) is concave downward and g(x) ≥ xe−λ0x for all x ≥ 0.
By the definition of λ0, we have

(1 − λ0)nd = (1 − λ0)
n∑

i=1

wi

=
n∑

i=1

wie
−λ0wi

≤
n∑

i=1

g(wi)

≤ ng(d).

By Claim A (ii), d < 2
eλ0

. Thus, g(d) = de−λ0d. We have

1 − λ0 ≤ e−λ0d.

Note that φ(λ) = (1−λ)−e−λd is concave downward over [0,∞). Since φ(0) = 0
and φ′(0) = d − 1 > 0, φ(x) has a unique positive root, which we denote by s.
We have φ(x) > 0, for any 0 < x < s. Since φ(λ0) ≤ 0 and λ0 6= 0, we have
λ0 ≥ s.

Define t = (1 − s)d and then we have
t

d
= 1 − s = e−sd = e−d+t.

Thus t satisfies the following equation:

te−t = de−d. (5)

The function xe−x increases in [0, 1] and decreases in [1,∞]. There is a unique
t < 1 satisfying equation (5).

We have
λ0 ≥ s = 1 − t

d
> 1 − 1

d
.

The proof of Claim A is finished and therefore the proof of Lemma 2 is complete.
�
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3 Theorem 1 ⇒ Theorem A

In this section we want to show that the formula for the size of the giant compo-
nent for a random graph in G(n, p) as derived by Erdős and Rényi in Theorem
A is a special case of Theorem 1. In other words, if we restrict the expected
degree sequence to the case when all degrees are equal, then we recover the
theorem of Erdős and Rényi.

Theorem 2 Theorem 1 implies Theorem A of Erdős and Rényi for G(n, p) .

Proof: In G(n, p), we have w1 = w2 = · · · = wn = np = d. Equation (3)
becomes

e−dλ = 1 − λ.

Let λ = 1 − 1
dz. We have

e−d+z =
z

d
.

Or equivalently,
z = de−dez.

Here we use the following version of the well-known Lagrange inversion formula:

Lagrange inversion formula
Suppose that z is a function of x and y in terms of another analytic function φ
as follows:

z = x+ yφ(z).

Then z can be written as a power series in y as follows:

z = x+
∞∑

k=1

yk

k!
D(k−1)φk(x)

where D(t) denotes the t-th derivative.
We apply the above formula with x = 0, y = de−d, and φ(z) = ez. Then we

have

z =
∞∑

k=1

yk

k!
D(k−1)ekx |x=0

=
∞∑

k=1

kk−1

k!
yk

=
∞∑

k=1

kk−1

k!
(de−d)k

This is exactly Equation (1) in Theorem A of Erdős and Rényi. �
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4 Lower bounds

Theorem 1 gives an implicit formula for the volume of the giant component for
a random graph with a given expected degree sequence. It is often useful to
deduce some bounds which depend only on the expected average degree d. Of
particular interest is the following question:

Among all random graphs G(w) with the same expected average degree d,
which degree distributions minimize or maximize the volume of the giant com-
ponent?

One obvious example comes to mind. Almost surely G(m, p) with mp =
Ω(logm) is connected. By adding n−m vertices to G(m, p) with weights zero,
we get a random graph G(w) with the expected average degree d = mp

n , which
almost surely has a giant component with volume Vol(G).

One might be inclined to conjecture the random graph with equal expected
degrees generates the smallest giant component among all possible degree dis-
tribution with the same volume. The answer is “yes” for 1 < d ≤ e

e−1 , and a
surprising “no” if d is sufficiently large.

We will prove the following theorem.

Theorem 3 When d ≥ 4
e , almost surely the giant component of G ∈ G(w) has

volume at least (
1
2
(
1 +

√
1 − 4

de

)
+ o(1)

)
Vol(G).

We remark that 1
2 (1 +

√
1 − 4

de) = 1 − 1
de + O( 1

d2 ) improves the bound in
Theorem B. In fact, this bound is best possible as d approaches infinity as shown
by the following example.

Example: Let m = bn3/4c and y = 1 + n
m(d− 1) ≈ (d− 1)n1/4. We choose the

expected degrees

w1 = w2 = · · · = wm = y, wm+1 = · · · = wn = 1.

The expected average degree of this random graph G(w) is

my + (n−m)
n

= d.

Let x0 = 1 − 1
de . To show the giant component of G has volume at most

(x0 + o(1))Vol(G), it is sufficient to verify f(x0) ≥ 0. Here

f(λ) =
n∑

i=1

wie
−wiλ − (1 − λ)

n∑
i=1

wi.

We have

f(x0) =
n∑

i=1

wie
−wix0 − (1 − x0)

n∑
i=1

wi

9



= mye−yx0 + (n−m)e−x0 − (1 − x0)nd

≥ n

e
(e

1
de − 1 −O(n−1/4))

≥ 0

as desired.
We are now ready to prove Theorem 3.

Proof of Theorem 3: We note that the function g(z) = ze−zλ reaches its
maximum value at z = 1

λ . We have

f(λ) =
n∑

i=1

wie
−wiλ − (1 − λ)

n∑
i=1

wi

≤
n∑

i=1

1
λ
e−1 − (1 − λ)

n∑
i=1

wi

=
n

eλ
(1 − λ(1 − λ)de).

Since λ0 is a solution of f(λ) = 0, we have

λ0(1 − λ0) ≤ 1
de

which implies either λ0 ≤ 1
2 (1 −

√
1 − 4

de) or λ0 ≥ 1
2 (1 +

√
1 − 4

de ).

We will show that λ0 ≤ 1
2 (1 −

√
1 − 4

de) is not true by proving f(1
2 ) ≤ 0.

We note that

f(
1
2

) =
n∑

i=1

wie
−wi/2 − 1

2

n∑
i=1

wi

≤ 2ne−1 − 1
2
nd

=
n

2
(
4
e
− d)

≤ 0.

Thus we conclude that λ0 ≥ 1
2 (1 +

√
1 − 4

de). �
When d is small and not in the range covered by Theorem 3, we can still

derive the following lower bound.

Theorem 4 When 1 < d ≤ e
e−1 , then almost surely G(w) has a giant com-

ponent of size at least (λ1 + o(1))Vol(G), where λ1 is the nonzero root of the
following equation:

e−λd = 1 − λ. (6)

In other words, among all random graphs G(w) with fixed expected average de-
gree d, the Erdős-Rényi random graph G(n, d

n ) has the smallest giant component
(measured in volume).
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Proof: Consider the function

g(x) =
{
xe−λ1x 0 ≤ x ≤ 1

λ1
1

eλ1
x > 1

λ1
.

We observe that g(x) is concave downward and g(x) ≥ xe−λ1x for all x ≥ 0. We
have

f(λ1) =
n∑

i=1

wie
−λ1wi − (1 − λ1)nd

≤
n∑

i=1

g(wi) − (1 − λ1)nd

≤ ng(
1
n

n∑
i=1

wi) − (1 − λ1)nd

≤ n(g(d) − (1 − λ1)d).

Since λ1 is an increasing function of d, dλ1 is also an increasing function of
d. When d = e

e−1 , it is easy to verify λ = 1 − 1
e is the other root of equation

(6). Therefore, dλ1 ≤ 1, when d ≤ e
e−1 . In particular, we have

g(d) = de−λ1d.

Hence

f(λ1) ≤ n(g(d) − (1 − λ1)d)
= nd(e−λ1d − (1 − λ1))
= 0

By Remark 1, we have λ0 ≥ λ1 as desired. �.

5 The proof of the main theorem

A main tool that we use in the proof of the main theorem is a relaxed version of
the Azuma’s inequality (as seen in Theorem 1 of [12]) which can be described
as follows:

Suppose that Ω is a probability space and F denote a σ-field on Ω (i.e., a
collection of subsets of Ω which contains ∅ and Ω, and is closed under unions,
intersections, and complementation.) A filter F is an increasing chain of σ-
subfields

{0,Ω} = F0 ⊂ F1 ⊂ · · · ⊂ Fn = F .
A martingale (obtained from) X is associated with a filter F and a sequence of
random variables X0, X1, . . . , Xn satisfying Xi = E(X | Fi) and, in particular,
X0 = E(X) and Xn = X . For undefined terminology on martingales, the reader
is referred to [19].
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For c = (c1, c2, . . . , cn) a vector with positive entries, a martingale X is said
to be c-Lipschitz if

|Xi −Xi−1| ≤ ci (7)

for i = 1, 2, . . . , n.
If the c-Lipschitz condition is not satisfied, we can still consider the following

relaxed version:
A martingaleX is said to be near-c-Lipschitz with an exceptional probability

η if ∑
i

Pr(|Xi −Xi−1| ≥ ci) ≤ η. (8)

Theorem C (Theorem 1 as in [12]) For non-negative values, c1, c2, . . . , cn,
a martingale X is near-c-Lipschitz with an exceptional probability η. Then X
satisfies

Pr(|X − E(X)| < a) ≤ 2e
− a2

2
Pn

i=1 c2
i + η.

The idea for the proof of Theorem 1 is to first prove that the volume of giant
component concentrates on its expected value E(Vol(GCC)) and then show that
E(V ol(GCC))/Vol(G) can be approximated by the non-zero root of equation
(3). To do so, we need to establish several useful facts.

Lemma 3 With probability at least 1− 2n−k, a vertex with weight greater than
max{8k, 2(k + 1 + o(1))µ(d)} log n is in the giant component of G(w).

Proof: Consider a vertex vi with weight wi ≥ max{8k, 2(k+1+o(1))µ(d)} logn.
For a random graph G in G(w), let di denote the degree of vi in G. Then, di

is the sum of independent 0-1 random variables with E(di) = wi. For any
non-negative value λ, we have

Pr(di − E(di) < −λ) ≤ e
− λ2

2E(di) .

By choosing λ = wi/2, we have

Pr(di < wi/2) ≤ e−wi/8 ≤ n−k.

With probability at least 1−n−k, vi is in a connected component of size at least
wi/2. If this connected component is not the giant component, then the second
largest component must have size at least wi/2. However, from Theorem B, this
can only happen with probability at most n−k because of the assumption that

wi/2 ≥ (k + 1 + o(1))µ(d) log n.

Hence, with probability at least 1 − 2n−k, a vertex with weight greater than
max{8k, 2(k + 1 + o(1))µ(d)} log n is in the giant component. �
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Lemma 4 For any k > 2, with probability at least 1 − 6n−k+2, we have

|Vol(GCC) − E(Vol(GCC))| ≤ 2C1(k + 1)2
√
k − 2

√
n log2.5 n,

where C1 = 10µ(d) + 2µ(d)2.

Proof: Let L = L(k) be the set of vertices with weight greater than max{8k, 2(k+
1 + o(1))µ(d)} log n. If L 6= ∅, we form a new graph G∗ by adding a new vertex
v∗ to G(w) and add edges from v∗ to each vertex in L. G(w) almost surely has
a giant component, so does G∗. Let X denote the volume of the giant compo-
nent in G∗. (While computing the values for Vol of the giant component in G∗,
we use the convention that the weight of v∗ is zero.) If L = ∅, we simply let
X = Vol(GCC).

We wish to show the concentration of the random variable X . It is sufficient
to prove the following claim.
Claim:

Pr(|X − E(X)| < λ) ≤ 4n−k+2

where λ = 2C1(k + 1)2
√
k − 2

√
n log2.5 n.

We observe that X does not depend on whether {u, v} is an edge if both
u and v are in L. We list all pairs of vertices with at least one vertex not in
L by {f1, f2, . . . , fm},where m =

(
n
2

) − (|L|
2

)
. (The order of edges in the list is

arbitrarily chosen.) For i = 0, 1, 2, . . . ,m, let Fi denote the σ-field generated
by exposing pairs f1, f2, . . . , fi. We apply Theorem C on the edge-exposing
martingale X with Xi = E(X |Fi) and Xm = X . We wish to find a good
Lipschitz or near-Lipschitz bound for |Xi − Xi−1|. By definition, Xi−1 is the
conditional expectation of Xi. Choosing the pair fi as an edge can change X
by at most the volume of a small component. Let vi be a vertex of the pair fi

not in L. (If there is a tie, break arbitrarily.) Let Gvi be the random graph
obtained by deleting vi from G(w). The possible small component containing v
before fi is exposed can be broken into at most di largest connected components
excluding the giant component in Gvi .

First, we apply Theorem B to the random graph Gvi . Note that the average
degree of Gvi is (1 + o(1))d. Thus, with probability at least 1 − n−k, all small
components of Gvi have size at most (k + 1 + o(1))µ(d) log n. Also, for any
positive λ′, the degree di of vi can be upper bounded by

Pr(di > wi + λ′) < e
− λ2

2(wi+λ′/3) .

By choosing λ′ = wi + 2k logn, we have

Pr(di > 2wi + 2k logn) < e
− λ2

2(wi+λ/3)

= e
− (wi+2k log n)2

2(wi+(wi+2k log n)/3)

< n−k.
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Thus, with probability at least 1 − 2n−k, we have

|Xi −Xi−1| ≤ di × (k + 1 + o(1))µ(d) log n
< (2wi + 2k logn)(k + 1 + o(1))µ(d) log n
< (10k logn+ 2(k + 1 + o(1))µ(d) log n)(k + 1 + o(1))µ(d) log n
< C1(k + 1)2 log2 n

where C1 = 10µ(d) + 2µ(d)2 is a bounded positive number.
Now we apply Theorem C on martingale X with ci = C1(k + 1)2 log2 n and

η ≤ (
n
2

)
2n−k. For any positive λ, we have

Pr(|X − E(X)| > λ) ≤ 2e
− λ2

2
Pn

i=1 c2
i + η

≤ 2e
− λ2

2C2
1 (k+1)4n log4 n + 2n−k+2.

For λ = 2C1(k + 1)2
√
k − 2

√
n log2.5 n, we have

Pr(|X − E(X)| > λ) ≤ 4n−k+2

as desired. �
Proof of Theorem 1:

For any vertex v with weight wv, the probability that v is not in the giant
component of G(w) can be estimated as follows. To simplify the notation, we
write Ck = max{8k, 2(k+ 1 + o(1))µ(d)}.
Case a: wv ≥ Ck logn. By Lemma 3, we have

Pr(v 6∈ GCC) ≤ 2
nk
.

Case b: wv ≤ Ck logn. Let Gv be the random graph by removing v from G.
Expose every pairs of vertices in Gv. Let H be the giant component of Gv.
Apply Lemma 4 to Gv, with probability at least 1 − 6

(n−1)k−2 , we have

|Vol(H) − E(Vol(H))| ≤ 2C1(k + 1)2
√
k − 2

√
n log2.5 n.

Now we expose the pairs of vertices containing v. We have

Pr(v 6∈ GCC|H) =
∏

vj∈V (H)

(1 − wvwjρ)

= e
−Pvj∈V (H) wvwjρ+

P
vj∈V (H) w2

vw2
j ρ2

= e−wvVol(H)ρ(1+O(wv d̃ρ)).

The probability that v is not in the giant component can be estimated as follows:

Pr(v 6∈ GCC) = E(Pr(v 6∈ GCC|H)) +O(n−k+2)
= E(e−wvVol(H)ρ) +O(n−k+2)

= e−wvE(Vol(H))ρ+O(k2wiρ
√

n log2.5 n) +O(n−k+2). (9)
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Note that GCC can be formed fromH by joining at most dv’s small components.
Thus, we have

|E(GCC) − E(H)| ≤ E(dv)(k + 1 + o(1))µ(d) log n+ 2n−k

= wv(k + 1 + o(1))µ(d) log n+ 2n−k

= O(wvk logn).

By substituting E(H) by E(Vol(GCC)) +O(wvk logn) in (9), we have

Pr(v 6∈ GCC) = e−wvE(Vol(GCC))ρ+O(w2
vkρ log n)+O(k2wvρ

√
n log2.5 n) +O(n−k+2)

= (1 +O(k3ρ
√
n log3.5 n))e−wvE(Vol(GCC))ρ +O(n−k+2).

Together, we have

Vol(G) − E(vol(GCC))

=
∑

v

wv Pr(v 6∈ GCC)

=
∑

wv<Ck log n

wv Pr(v 6∈ GCC) +
∑

wv≥Ck log n

wv Pr(v 6∈ GCC)

=
∑

wv<Ck log n

wv

[
(1 +O(k3ρ

√
n log3.5 n))e−wvE(Vol(GCC))ρ +O(n−k+2)

]

+
∑

wv≥Ck log n

wvO(2n−k)

=
∑

wv<Ck log n

wve
−wvE(Vol(GCC))ρ +O(k3

√
n log3.5 n).

We choose k to be a constant large enough satisfying

Ck ≥
{ 2

(1− 2√
de

)
if d > 4

e ,

2

(1− 1+log d
d )

if 1 < d < 2.

By Theorem A, we have CkE(Vol(GCC))ρ ≥ 2. In particular, for any vertex v
with wv ≥ Ck log n, we have

e−wvE(Vol(GCC))ρ ≤ n−2.

Thus, ∑
wv≥Ck log n

wve
−wvE(Vol(GCC))ρ = O(n−1).

Therefore we have

Vol(G) − E(vol(GCC)) =
∑

v

wve
−wvE(Vol(GCC))ρ +O(

√
n log3.5 n).
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Let x0 = Vol(GCC)
Vol(G) and f(x) =

∑n
i=1 wie

−wix − (1 − x)
∑n

i=1 wi, we have

f(x0) = O(
√
n log3.5 n). (10)

The equation f(x) = 0 has only two roots x = 0 and x = λ0. Note that f(x)
is concave upward with |f ′(0)| = n(d2 − d), and |f ′(λ0)| > cnd. Consider a
small interval I around 0 with diameter O(

√
n log3.5 n). The preimage f−1(I)

has diameter at most O(n−1/2 log3.5 n). Since x0 is bounded away from 0 by a
small constant, we have |x0 − λ0| = O(n−1/2 log3.5 n). Therefore, almost surely
the giant component has volume

λ0Vol(G) +O(
√
n log3.5 n).

Theorem 1 is proved. �

6 The complement of the giant component and
its size

As we know, the giant component almost surely exists if the expected average
degree d > 1. We consider the remaining graph G′ after removing the giant
component.

For a random graph G in the Erdős-Rényi model G(n, p), where p = d/n, if
d > 1, there is a unique c < 1 satisfying

ce−c = de−d.

We write λ0 = 1− c
d . For any vertex v, the probability that v ∈ S is known [19]

to be
e−λ0d = e−d+c =

c

d
.

Hence S has ( c
d + o(1))n vertices. After removing the giant component from

G(n, p), the remaining graph can be viewed as a random graph in G(n′, p),
where n′ ≈ c

dn.
The above fact can be generalized to the random graph model G(w). The

following theorem is based on the proof of Theorem 1 and we omit the proof
here.

Theorem 5 Suppose the expected average degree d is strictly greater than 1.
Let G′ denote the remaining graph of a random graph G in G(w) by removing
the giant component. Then almost surely G′ is an induced subgraph on a random
subset S satisfying.

1. Any vertex vi is contained in S with probability e−λ0wi where λ0 is as
defined in (3).

2. For any vi, vj ∈ S, the probability that vivj is an edge of GS is wiwj/Vol(G).
The induced subgraph GS is a random graph with given expected degrees

{(1 − λ0)wi}vi∈S .

16



3. G′ \GS consists of at most O(log n) components each with size O(log n).

We further analyze the size of the giant component. The proof is similar
and will be omitted.

Theorem 6 If the expected average degree is strictly greater than 1, then almost
surely the giant component in a random graph of given expected degrees wi, i =
1, . . . , n, has n−∑n

i=1 e
−wiλ0 +O(

√
n log3.5 n) vertices and (λ0 − 1

2λ
2
0)Vol(G) +

O(
√

Vol(G) log3.5 n) edges where λ0 is as defined in (3).

7 Comparing theoretical results with the data
from the collaboration graph

To illustrate the effectiveness of our results, we use an example of the collab-
oration graph of the second kind. Based on the data of Mathematics Review
[18], there are about 401,000 authors as vertices. Two vertices are joined by
an edge if there is a paper by exactly two authors. There are about 284,000
edges. The giant component has 176,000 vertices and 248,000 edges. Suppose
we model this collaboration graph as a random graph with some given expected
degrees wi. Although we do not know the exact values of wi’s, we can make the
following deductions using the theorems in the previous section.

By Theorem 6, we have

λ0(2 − λ0) ≈ Vol(GCC)
Vol(G)

≈ 248000
284000

.

Solving the above equation, we have λ0 ≈ 0.644.
For a fixed vertex vi, the degree of vi follows the Poisson distribution with

expected value wi. Namely, for a fixed k, the probability that vi has degree
k is wk

i

k! e
−wi . Let nk denote the number of vertices of degree k. Then by the

linearity of the expectation, we have

E(nk) ≈
∑
i=0

wk
i

k!
e−wi .

Theorem 6 implies that the size of the giant component satisfies:

|GCC| ≈ n−
n∑

i=1

e−λ0wi

= n−
n∑

i=1

e(1−λ0)wie−wi

=
∑
k≥0

nk −
n∑

i=1

∞∑
k=0

(1 − λ0)k

k!
wk

i e
−wi
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≈
∑
k≥0

nk(1 − (1 − λ0)k)

=
∑
k≥1

nk(1 − (1 − λ0)k) (11)

Here we estimate nk by

nk ≈ E(nk) ≈
n∑

k=1

wk
i

k!
e−wi .

Grossman [18] has computed the nk’s as follows:

n0 n1 n2 n3 n4 n5 n6 n7 n8 n9 · · ·
166381 145872 34227 16426 9913 6670 4643 3529 2611 2032 · · ·

Table 1: The degree sequence of the collaboration graph of the second kind.

By substituting the above nk’s into (11), the size of giant component is
supposed to be about 177, 400. This is rather close to the actual value 176, 000,
within an error bound of less than 1%.

In Figure 3 and Figure 4, we have plotted the degree distribution and the
distribution of the sizes of connected components of the collaboration graph of
the second kind.
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Figure 3: Degree distribution of the col-
laboration graph of the second kind.

Figure 4: Size distribution of connected
components of the collaboration graph
of the second kind.
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