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Abstract. Expander graphs are known to facilitate effective routing and most real-world networks
have expansion properties. At the other extreme, it has been shown that in some special graphs,
removing certain edges can lead to more efficient routing. This phenomenon is known as Braess’s
paradox and is usually regarded as a rare event. In contrast to what one might expect, we show
that Braess’s paradox is ubiquitous in expander graphs. Specifically, we prove that Braess’s paradox
occurs in a large class of expander graphs with continuous convex latency functions. Our results
extend previous work which held only when the graph was both denser and random and for random
linear latency functions. We identify deterministic sufficient conditions for a graph with as few as a
linear number of edges, such that Braess’s Paradox almost always occurs, with respect to a general
family of random latency functions.

1. Introduction

Over the last few decades the study of graph expanders has grown from a mere whisper to a
widespread phenomenon with diverse consequences, contributing to deep results in number theory,
group theory, and geometry (see [24]). However, at its heart the study of expanders continues to be
focused on the applications to computer science, including the construction of super concentrators,
good error correcting codes, and randomness amplifiers (see [16]).

In the effort to understand the “small world” phenomenon in real world networks, there has
been extensive research attempting to capture the universal characteristics of numerous social,
technological, and biological networks. The expander property is one of the primary behaviors that
has been extensively studied in this context. Some of the many real world networks found to exhibit
expansion include the internet, collaboration graphs, social networks, and the power grid, among
others (see [27]). In many cases the good behavior of these networks has been tied to expansion
properties of the network which serves as the basis for the efficient approximation of the maximum
multi-commodity flow problem [21, 23, 34], even with online distributed algorithms [10, 18].

Together these results have formed a core of folklore to the effect that any network which is an
expander (or close enough to an expander, in the case of the internet [11, 25]) will automatically
behave well under various routing situations. However, this folklore has a potentially significant
shortcoming in that it fails to account for the “game theoretic” aspects of routing. More specifically,
these results fail to account for the selfish routing of individual units of flow, which has long been
known to have an adverse affect on the performance of a network [3, 4]. In fact, our results show
that this effect is present even in the supposedly efficient routing on expanders and thus, Braess’s
paradox must be accounted for in real world routing situations.

To be precise, in 1968 Dietrich Braess made the counter-intuitive observation that there exists
a road network such that the selfish routing behavior can be improved by closing a road, even
though (or perhaps because) the removed road can be transited quickly [3, 4]. A simplified version
of the Braess’s original network due to Leonard Schulman appears in the work of Roughgarden [31].
This simplified version of the network considers selfishly routing one unit of flow from s to t in
the network in Figure 1. In Figure 1(a), the presence of the edge with zero transit cross allows
every “piece” of flow to avoid the constant travel time edges, resulting in an overall latency of 2.
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(a) Original Network with equilibrium latency 2
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(b) Modified network with equilibrium latency 3
2

Figure 1. Braess’s Paradox

In contrast, when the zero transit cost edge is removed, as in Figure 1(b), every “piece” of the flow
is forced to use one of the constant travel time edges, yielding an overall latency of 3/2.

This observation has come to be called Braess’s paradox and in many ways can be viewed as the
start of the modern study of the “Price of Anarchy” [20, 28]. In this context, our results can be
informally stated as follows.

Theorem 1 (nontechnical). If G is a sufficiently good expander with source-sink pair (s, t) with
deg(s) ≈ deg(t), and the latency functions are randomly chosen from a reasonable class of contin-
uous, convex, latency functions, then with high probability there is a subgraph G′ and a traffic rate
R such that the selfish routing on G′ incurs less latency than the selfish routing on G.

Thus, the exceedingly counter-intuitive, and hence presumably rare, phenomenon of Braess’s
paradox is anything but rare. In fact because of the widespread occurrence of expanders in numerous
real world networks, not only is Braess’s paradox not a rare phenomenon, it can occur in the
networks we interact with on a daily basis.

1.1. Previous Work. Given the potential real world applicability of Braess’s paradox, it is unsur-
prising that since its discovery a significant amount of work has gone into attempting to understand
the paradox, both anecdotally [7, 19] and theoretically [9, 17, 29, 30]. Unfortunately, many of the
theoretical arguments regarding Braess’s paradox are based on a “worst case” analysis of designer
instances, and fail to give insight into the real world occurrences of Braess’s paradox. In many
ways, these designer instances are captured by the result of Milchtaich which says that for an undi-
rected non-series parallel network G there is a choice of latency functions and flow so that Braess’s
paradox occurs [26]. Furthermore, if G is series parallel there is no such choice of latency functions
and flow. Alternatively, this may be viewed as saying that Braess’s paradox occurs if and only if
Figure 1 is a topological minor of the network with the given source-sink pair. However, since this
result requires the freedom to determine the latency functions on each edge, it is not useful in prac-
tically recognizing Braess’s paradox. In fact, Roughgarden has shown that (unless P = NP) there
is not a polynomial time algorithm to approximate the best selfish routing subnetwork to within a
factor of n/2 [31]. Further, Roughgarden and Tardos showed that even if the latency functions are
restricted to be affine, there is a not a 4/3-approximation algorithm [32]. Although there have been
some indications that Braess’s paradox can be recognized by limiting to latency functions near the
class of strictly affine latency functions [8], the results of Roughgarden and Tardos imply that, in
general, it is impossible to recognize when Braess’s paradox will occur. Thus, from a real world
point of view, the natural question is: how prevalent is Braess’s paradox?

Valiant and Roughgarden began to answer this question by showing that Braess’s paradox occurs
in dense random graphs for reasonably chosen latency functions, that is, in G(n, p) with p ∈
Ω
(
n−1/2+ζ

)
[33]. For a similar class of latency functions, Chung and Young, were able to extend this
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to p > c log(n)/n [5]. As Erdős-Rényi graphs have nearly uniform degrees, and in particular are very
far from observed real world networks, these previous results have limited practical applications.
The goal of this work is to extend these results to a much broader class of latency functions and
graphs, and in doing so, capture the behavior of Braess’s paradox on real world networks.

1.2. Comparison with Previous Work. For any α > 0 and β ∈ (0, 1) we will say that a graph on
n vertices is an (α, β)-expander if for every set of vertices U , |Γ(U) ∪ U | ≥ min

{
(1 + α) |U | , (1 + β)n2

}
,

where Γ(U) is the collection of vertices adjacent to some vertex in U . That is, we define Γ(U) =
{v ∈ V | ∃u ∈ U, v ∼ u}. It can be readily seen that with high probability the standard Erdős-Rényi
graph with edge density p > c log(n)/n is a (3/5np, 1/4)-expander. We will show that Braess’s paradox
occurs in the class of (α, β)-expanders which includes graphs with highly skewed degree distribu-
tions, such as power-laws. As a consequence, (α, β)-expanders encompass such real world networks
as the internet [6], collaboration networks [12], the power grid [35], etc., which is in contrast with
previous results which focused on nearly regular graphs [5, 33]. Additionally, our result does not
require a global minimum degree condition, only a local degree condition around s and t. In fact,

unlike [33] and [5] which require average degree Ω
(
n

1
2

+ζ
)

and Ω(log(n)), respectively, our results

hold for graphs with constant average degree.
Furthermore, by understanding the commutation relationships between convex functions and

their inverses, we extend the class of latency functions from the affine functions considered in
[5, 33] to a general class of convex latency functions, reflecting the greater diversity of real world
latency functions. In this process, we reveal a fundamental commutation relationship which fails
to hold for a general concave function, indicating that in a network where the latency per unit of
flow is decreasing, Braess’s paradox is unlikely to occur.

Finally, by focusing on specific deterministic properties of the underlying network and latency
functions, we are able to decouple the total flow routed from the expansion properties of the
network. Specifically, we focus on properties such as the expansion, the degrees of s and t, and
the parameter κ defined by the neighborhoods of s and t. In contrast to the results of [5, 33] for
G(n, p), where α, κ, deg(s),deg(t) ∈ Θ(np), our generalizations allow these parameters to vary from
each other significantly, needing only to satisfy constraints similar to those in [5, 33].

Before formally stating our results we will need to be more explicit about the type of instances we
are considering. Specifically, we will impose specific structural properties on the underlying network
parametrized by κ, certain “smoothness” conditions on the distribution of latency functions over
that graph, and that these properties are sufficiently strong relative to each other. We will refer to
instances which satisfy the necessary technical conditions as δ-reasonable instances.

Theorem 1. Let G be an (α, β)-expander, let s and t be a source sink pair such that deg(t) =
(1 + o(1)) deg(s), let ` = {`e}e∈E(G) be the latency functions for G. If for any sufficiently small

fixed δ > 0, (G, `) is a δ-reasonable instance, then with probability at least 1−e−Ω(min{κ,deg(s)}) there
is a traffic rate R such that Braess’s paradox occurs.

We will defer the full definition of a δ-reasonable instance until Section 2, and instead provide
here a large class of δ-reasonable instances in order to illustrate to the broad scope of our results.
We first note that κ is a locally defined functions of the degrees which depends on G, s and
t, and that κ + 1 is at least the minimum degree of G. Thus, if G is an (α, β)-expander with
minimum degree going to infinity and, for some fixed k, the latency functions are of the form
Akx

k +Ak−1x
k−1 + · · ·+A1x+B where each Ai is a strictly positive, bounded, continuous random

variable and B is a positive, continuous (except at 0) random variable with P(B = 0) > 0, then
(G, `) is a δ-reasonable instance for all δ > 0 and Braess’s paradox occurs for some traffic rate on
the order of deg(s). Although this class of instances captures the essential features of δ-reasonable
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instances, as we will see in Section 2, the class of δ-reasonable instances is larger than this class,
and in particular includes graphs with constant average degree.

Broadly speaking our proof follows the techniques previously employed by Valiant and Rough-
garden in [33] and the first two authors in [5]. Specifically, in Section 3, we use the expansion
properties of the network to show that latency cost of traversing the central portion of the network
is essentially zero, much like the removed edge in the example depicted in Figure 1. The structural
properties necessary for this proof are similar to those in [33] in that the β expansion property
assures that there are Θ(n) edge disjoint paths of length at most two between sufficiently large

sets, much as there are many edge disjoint paths of length 2 in G
(
n, n−1/2+ζ

)
when ζ > 0. The α

expansion property captures the expansion properties necessary to iteratively grow these large sets
in a similar manner as in [5]. The observation that the latency cost of traversing the central part of
the network may alternatively be thought of as the observation that the latency distances from s are
concentrated about given value. In Section 4 we give an implicit formula for this value. Combining
the observation that the latency distance is essentially concentrated with some additional balance
considerations (in particular that deg s = (1 + o(1)) deg t), allows the whole network to be treated
similarly to a giant “fuzzy” instance of the example depicted in Figure 1. From this viewpoint, in
Section 5 we analyze a specific class of subgraphs to prove Theorem 1. We also provide an infinite
class of examples to illustrate the importance of the condition deg(t) = (1 + o(1)) deg(s).

2. Preliminaries

2.1. Nash Equilibrium Flows. In order to more formally define “selfish routing”, we consider
a single commodity flow on an undirected network G with a specified source-sink pair (s, t) and
latency functions ` = {`e}e∈E(G). Let P be the set of simple paths from s to t. A flow f on G from s

to t is defined as a function f : P → R≥0. The flow on an edge, denoted fe, is
∑
{P∈P|e∈E(P )} f(P ).

We will say an edge e is flow carrying if fe > 0 and a vertex is flow carrying if it is adjacent to a flow
carrying edge. The latency of a path P with respect to a flow f is then `f (P ) =

∑
e∈E(P ) `e(fe).

It is important to note that the latency of a path depends on the entire flow function, not just the
value of the flow along a given path.

We wish to consider specific classes of flows that capture the idea of “selfish routing.” One of
the ways of quantifying this is to insist that the flow is at Nash equilibrium, that is, the flow f is
such that for any two P1, P2 ∈ P, `f (P1) ≤ `f (P2) whenever f(P1) > 0. Notice that this implies
that if P1 and P2 are flow carrying paths, then `f (P1) = `f (P2) and thus no “unit” of flow has any
incentive to change its routing. And so, given a traffic rate R and a Nash equilibrium flow f , we
can define L(G, `,R, f) as the common latency of all flow carrying paths at Nash equilibrium. We
note that this value has been shown to exist and be unique [2] and so the dependence on f can be
dropped. With this notation, Braess’s paradox is the observation that there exists a selfish routing
instance (G, `,R) and a subgraph G′ of G such that L(G′, `, R) < L(G, `,R). For a given instance,

ρ = max
G′⊂G

L(G, `,R)

L(G′, `, R)

is referred to as the Braess ratio of the instance.
In order to prove our results we will exploit some known structural properties of Nash equilibrium

flows, and so to that end, we collect a few such results which will be important to our purposes in
the following lemma.

Lemma 2. Given an instance (G, `,R) and a Nash equilibrium flow f , define for each vertex v,
ds(v) as the shortest path from v to s with respect to the latencies `(f). Define dt(v) analogously.
The following properties then hold for all Nash equilibrium flows f .
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(1) If f is a Nash equilibrium flow for traffic rate R on the network G with latencies `, then
for every vertex v we have ds(v) + dt(v) ≥ L(G, `,R) with equality if v is a flow carrying
vertex.

(2) [31] If f is a Nash equilibrium flow achieving traffic rate R for the instance (G, `), then for
all edges e = {u, v}, |ds(v)− ds(u)| ≥ `e(fe) with equality whenever fe > 0.

(3) [13, 22] For every network G and continuous, strictly increasing latency functions `, L(G, `,R)
is continuous and strictly increasing function of R.

(4) [31] There is a Nash equilibrium flow f so that the set of edges with fe > 0 is acyclic when
considered as a directed graph.

It will be useful to note that by part (3) of this lemma, for any sufficiently large L and fixed
G and `, there is a solution to L = L(G, `,R), since the overall latency is continuous and strictly
increasing. Thus we define the function RG(L), which is the unique traffic rate R such that the
instance (G, `,R) has latency L. If the underlying network is clear from context, we will denote
this as R(L).

Additionally, at various times we will need to use Chernoff and Hoeffding bounds in order to
concentrate various random variables around their expectation. For the sake of concreteness we
provide the two specific forms in the following lemma.

Lemma 3 (Chernoff-Hoeffding Bounds [1, 15]). Let Xi be a collection of independent random
variables such that ai ≤ Xi ≤ bi. Define X =

∑
iXi, then for all ε ∈ (0, 1)

P(|X − E [X]| ≥ εE [X]) ≤ 2e
− 2ε2E[X]2∑

i(bi−ai)2 .

If in addition the Xi are identically distributed with Xi ∈ {0, 1} and, then

P(X − E [X] ≥ εE [X]) ≤ e−
ε2E[X]

3 and P(X − E [X] ≤ −εE [X]) ≤ e−
ε2E[X]

2 .

2.2. δ-Reasonable Instances. Our characterization of an instance as a δ-reasonable instance
can be thought of as controls on three properties, the structural and expansion properties of the
underlying network, the “smoothness” and “compactness” properties of the distribution of latency
functions, and a restriction on the quantitative relationships between these properties.

Often we will abuse notation and use a distribution as a placeholder for a random variable dis-
tributed according to that distribution. Now, inspired by the work of Valiant and Roughgarden [33]
and building on our previous work [5], we will say a pair of independent distributions (H,B) form
a reasonable pair of distributions if

• P(H ∈ H∗) = 1, where H∗ is the set of convex, strictly increasing functions h such that
h(0) = 0,
• there exist Hmin, Hmax ∈ H∗ such that Hmax(0) = Hmin(0) = 0 and P(Hmin ≤ H ≤ Hmax) =

1,
• there exist H1, H2 ∈ H∗ where H1(0) = H2(0) = 0 and H1 < H2 otherwise, such that for

all ε > 0, P((1− ε)H1 ≤ H ≤ H1) > 0 and P((1− ε)H2 ≤ H ≤ H2) > 0, and
• there is some interval IB = [0, ν] with ν > 0 such that for every non-trivial subinterval
J ⊆ IB, P(B ∈ J) > 0.

Although the conditions on H may seem unnatural at first glance, it includes, as we have noted
previously, a large natural class of random convex functions. Specifically, if we have continuously
distributed positive random variables A1, . . . , Ak, then the distribution over polynomials A1x +
A2x

2 + · · ·+Akx
k satisfies the conditions for H. As a consequence, these reasonable distributions

can be viewed as a strict generalization of the reasonable distributions of Valiant and Roughgarden
[33].
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Given a graph G we will say that it has reasonable latency functions if the latency on each
edge e is he(x) + be where (he, be) is independently generated according to a reasonable pair of
distributions (H,B). For later convenience of notation, we will assume without loss of generality
that for all h ∈ H, h(x) = 0 for any x ≤ 0. If in addition, the graph G is an (α, β)-expander, we
will say the instance (G, `) is a δ-reasonable instance if

• For some ν > 0, B has a continuous distribution on [0, ν] except potentially at 0,
• αP(B ≤ δ/log(n)) > 4,
• κ = minv∈Γ(s)∪Γ(t) deg(v)− 1 is such that κ is ω(1),
• min {deg(s),deg(t)} is o(ακP(B ≤ δ)P(B ≤ δ/log(n))), and

Although not all of the proofs that will follow need the full power of δ-reasonable instances, for
simplicity we will assume a δ-reasonable instance for all subsequent results since the entirety of the
proof of the occurrence of Braess’s paradox requires δ-reasonable instances. We note as well that
the additional constraints imposed on (H,B) by being a δ-reasonable instance can be satisfied by
assuming that B has some positive probability of being 0, and otherwise is a continuous distribution
over some range of positive values.

2.3. Braess Subgraphs. Fundamental to recognizing Braess’s paradox is the construction of the
underlying subgraph with better selfish routing behavior. In order to simplify our search for an
improving subgraph we restrict ourselves to the class of subgraphs detailed below.

If (G, `) is an instance with reasonable latency functions, for constants c, ε > 0 we define by
G′(c, ε) the random subgraph created by the following procedure which is similar to the one orig-
inally appearing in Valiant and Roughgarden [33]. For any subset S ⊆ V (G), we will denote by
G[S] the subgraph of G induced by S. We will partition V (G) − {s, t} into three sets of vertices
VX1, V1X and VU and then G′(c, ε) will be G[VX1∪{s, t}]∪G[V1X ∪{s, t}]∪G[VU ∪{s, t}]. That is,
G′(c, ε) will have the same vertex set as G and the subset of edges that are either adjacent to s or t,
together with edges that are entirely contained in one of V1X , VX1, or VU . It will be convenient to
be able to discuss the graphs generated by these sets as well, thus we define G′S(c, ε) as the graph
G[{s, t} ∪ VS ]. Now define an edge e adjacent to s or t as a 1-type edge if its latency function
he(xe) + be is such that (1 − ε)H1 ≤ he ≤ H1 and c ≤ be ≤ (1 + ε)c and let p1 be the probability
that an edge is 1-type. Similarly we say that an edge is X-type if it is adjacent to s or t and its
latency function is such that (1 − ε)H2 ≤ he ≤ H2 and 0 ≤ be ≤ εc and let the probability of an
edge being X-type be pX .

For any vertex in Γ(s)∪Γ(t)−Γ(s)∩Γ(t), if it is adjacent to s via a 1-type edge assign it to V1X

with probability pX and to VU otherwise. If it is adjacent to s via a X-type edge assign it to VX1

with probability p1 and VU otherwise. Conversely, if it is adjacent to t, assign it to V1X if it is via
an X-type edge with probability p1 and if it is via a 1-type edge with probability pX . Otherwise,
assign it to VU .

Now consider the vertices in Γ(s) ∩ Γ(t). Those vertices which are adjacent to s via a 1-type
edge and t via an X-type edge are assigned to V1X , while those edges that are adjacent to s via an
X-type edge and t via a 1-type edge are assigned to VX1. The remaining vertices in Γ(s)∩Γ(t) are
assigned to VU .

The remaining vertices are assigned with probability p1pX to V1X , with probability p1pX to VX1

and with probability 1 − 2p1pX to VU . For an illustration of this distribution see Figure 2. Note
that if G has n+ 2 vertices the expected sizes of V1X and VX1 are p1pXn and the expected size of
VU is (1− 2p1pX)n.
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Figure 2. Illustration of probability of belonging to a given set

Lemma 4. If (H,B) is a reasonable distribution, then for any c ≤ ν and sufficiently small ε, ε′ > 0,
(1− ε′)p1pXn ≤ |V1X | , |VX1| ≤ (1 + ε′)p1pXn,

(1− ε′)p1pX deg(s) ≤ |V1X ∩ Γ(s)| , |VX1 ∩ Γ(s)| ≤ (1 + ε′)p1pX deg(s),
(1− ε′)p1pX deg(t) ≤ |V1X ∩ Γ(t)| , |VX1 ∩ Γ(t)| ≤ (1 + ε′)p1pX deg(t),

(1− ε′)(1− 2p1pX)n ≤ |VU | ≤ (1 + ε′)(1− 2p1pX)n,
(1− ε′)(1− 2p1pX) deg(s) ≤ |VU ∩ Γ(s)| ≤ (1 + ε′)(1− 2p1pX) deg(s), and
(1− ε′)(1− 2p1pX) deg(t) ≤ |VU ∩ Γ(t)| ≤ (1 + ε′)(1− 2p1pX) deg(t),

with probability at least 1−O
(
e−min{deg(s),deg(t)}).

Proof. We will only prove the results for V1X as all the other arguments are analogous. We consider
the vertices in four classes, Γ(s) − Γ(t), Γ(t) − Γ(s), Γ(s) ∩ Γ(t), and the remaining vertices. It
suffices to show that for each of these four classes the probability of belonging to V1X is independent
and equal to p1pX , and the result follows by Chernoff bounds.

Now we note that the probability of a vertex being in V1X depends only on its adjacencies to s
and t and thus no vertex depends on the same collection of edges, and thus the assignments to V1X

are independent. Consider then a vertex in Γ(s)− Γ(t). Such a vertex vertex is in V1X only if the
edge adjacent to s is a 1-type edge, which occurs with probability p1. Then with probability pX
this vertex is in V1X , and so the total probability of a vertex in Γ(s)− Γ(t) being in V1X is p1pX .
A similar argument holds for a vertex in Γ(t) − Γ(s). Now if a vertex is in Γ(s) ∩ Γ(t), it is V1X

if and only if the edge adjacent to s is 1-type and the edge adjacent to t is X-type, which occurs
with probability p1pX . Finally, if the vertex is not adjacent to s or t, then the probability it is in
V1X is p1pX by construction. �

3. Concentration of Latency

If we were to fix a graph G and a traffic rate R (or overall latency L), then for any vertex v,
ds(v) can be thought of as a random variable depending on the choices of latency function. In
this context, the following lemma can be thought of as saying that for flow carrying vertices ds(v)
concentrates around a particular (unknown) value.
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Lemma 5. Let G be an (α, β)-expander on n vertices, let s and t be a source sink pair, and
let (H,B) be reasonable distributions. For any fixed δ > 0, if (G, `) is a δ-reasonable instance
and L is constant, then for any two flow carrying vertices u, v other than s and t, we have
that |ds(u)− ds(v)| ≤ 7δ and |dt(u)− dt(v)| ≤ 7δ with probability at least 1 − e−Ω(κ), where
κ = minv∈Γ(s)∪Γ(t)−{s,t} deg v − 1.

Proof. Without loss of generality we may assume that deg(s) ≤ deg(t). Now by the properties
of the Nash equilibrium flow from Lemma 2, for every flow carrying vertex v, ds(v) + dt(v) = L
and thus it suffices to prove that |ds(u)− ds(v)| ≤ 7δ for any pair of flow carrying vertices. Let
vs be the flow carrying vertex (other than s) which minimizes ds(vs) and similarly let vt be the
flow carrying vertex (other than t) which maximizes ds(vt) (and hence minimizes dt(vt)). Since the
latency functions on a flow carrying edge are strictly positive, {s, vs} , {t, vt} ∈ E(G). Furthermore,
since ds(vs) ≤ L, the flow on the edge {s, vs} is at most H−1

min (L) and thus the total flow R is at

most deg(s)H−1
min (L) and the flow out of vs is at most H−1

min(ds(vs)) ≤ H−1
min (L).

By Chernoff bounds, with probability at least 1− e−P(B≤δ)κ/8 there are at least κP(B≤δ)/2 vertices
v ∈ V (G) − {s} such that b{v,vs} ≤ δ. By the pigeonhole principle at most half of these edges

have flow more than 4H−1
min(L)/P(B≤δ)κ. Thus there are at least κ/4P(B≤δ) + 1 vertices v such that

ds(v) ≤ ds(vs) +Hmax

(
4H−1

min(L)/P(B≤δ)κ
)

+ δ. Thus define c0 = ds(vs) +Hmax

(
4H−1

min(L)/P(B≤δ)κ
)

+ δ
and U0 = {v | ds(v) ≤ c0}.

We will now inductively define a sequence Ui and ci, such that Ui ⊂ Ui+1, G[Ui] is connected,
and ci < ci+1, stopping when |Γ(Ui) ∪ Ui| ≥ (1 + β)n/2. Furthermore, each Ui will be defined
as {v ∈ V (G) | ds(v) ≤ ci}. We note that since each Ui will be connected, |Γ(Ui) ∪ Ui| = |Γ(Ui)|.
Thus, suppose ci and Ui are defined and |Γ(Ui)| < (1 + β)n/2 and let γ = δ/log(n). Now consider

the vertices in Γ(Ui) \Ui. With probability at least 1− e−P(B≤γ)α|Ui|/8 there are at least αP(B≤γ)/2 |Ui|
vertices in V (G)\Ui that are adjacent to Ui across an edge e with be ≤ γ. Let U ′i be the set of such
vertices and let Ei be a set of edges witnessing membership in U ′i . That is, for each v ∈ U ′i there
is a unique edge e ∈ Ei such that be ≤ γ and e ∈ {v} × Ui. Now since Ui and its complement form
an s− t cut in G and all the latency functions are zero only if there is zero flow on the edge, there
are precisely R units of flow crossing the cut. But then, at most half of the edges in Ei have flow
greater than 4R/P(B≤γ)α|Ui|, and thus at least half of the vertices v ∈ U ′i are such that

ds(v) ≤ ci +Hmax (4R/P(B≤γ)α|Ui|) + γ.

Thus define ci+1 = ci + Hmax (4R/P(B≤γ)α|Ui|) + γ and Ui+1 = {v ∈ V (G) | ds(v) ≤ ci+1}. By the
above, we have that

|Ui+1| ≥ |Ui|+
1

4
P(B ≤ γ)α |Ui| =

(
1 +

1

4
P(B ≤ γ)α

)
|Ui| ≥

(
1 +

1

4
P(B ≤ γ)α

)i+1

|U0| .

Now let i∗ be the first i such that |Γ(Ui)| ≥ (1 + β)n/2. Thus

i∗ ≤
log
(

(1+β)n
2|U0|

)
log
(
1 + 1

4P(B ≤ γ)α
) ≤ log

(
(1+β)n
κP(B≤δ)

)
log
(
1 + 1

4P(B ≤ γ)α
) .
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For sufficiently large n, since κ→∞ and αP(B ≤ γ) > 4, i∗ ≤ log(n). Thus

ci∗ ≤ c0 + γi∗ +

i∗−1∑
i=0

Hmax

(
4R

P(B ≤ γ)α |Ui|

)

≤ c0 +
δ

log(n)
log(n) +

i∗−1∑
i=0

Hmax

(
4R

P(B ≤ γ)α
(
1 + 1

4P(B ≤ γ)α
)i |U0|

)

≤ c0 + δ +

i∗−1∑
i=0

(
1 +

1

4
P(B ≤ γ)α

)−i
Hmax

(
4R

P(B ≤ γ)α |U0|

)

≤ c0 + δ +Hmax

(
4R

P(B ≤ γ)α |U0|

) ∞∑
i=0

2−i

≤ ds(vs) +Hmax

(
4H−1

min (L)

P(B ≤ δ)κ

)
+ 2δ + 2Hmax

(
16R

P(B ≤ γ)αP(B ≤ δ)κ

)
,

where the third inequality follows from observing that for λ > 0, Hmax((1 +λ)x) ≤ (1 +λ)Hmax(x)
by the convexity of Hmax and Hmax(0) = 0. Now since P(B≤γ)ακ/deg(s) → ∞ and κ → ∞, for
sufficiently large n this is at most ds(vs) + 7/3δ.

Noting that

i∗−1∑
i=0

e−
P(B≤γ)α|Ui|

8 ≤
i∗−1∑
i=0

e−
P(B≤γ)α(1+1

4 P(B≤γ)α)
i
P(B≤δ)κ

32 ≤
i∗−1∑
i=0

e−
P(B≤γ)α2iP(B≤δ)κ

32

≤

(
i∗−1∑
i=0

e−2i

) P(B≤δ)P(B≤γ)κα
32

≤

( ∞∑
i=0

e−2i

) P(B≤δ)P(B≤γ)κα
32

≤
(

3

5

) P(B≤δ)κ
8

And thus, the probability of this procedure failing is at most e−Ω(κ). So this construction procedure
succeeds with probability at least 1− e−Ω(κ) → 1, since κ� 1.

In a similar way we can define c∗j = ds(vt) −Hmax

(
4H−1

min(L)

P(B≤δ)κ

)
− 2δ − 2Hmax

(
16R

P(B≤γ)αP(B≤δ)κ

)
≥

ds(vt)− 7/3δ and Vj∗ = {v ∈ V (G) | ds(v) ≥ cj∗} and have that |Γ(Vj∗)| ≥ (1 + β)n2 . Without loss
of generality we may assume that Ui∗ ∩ Vj∗ = ∅ and thus, as |Γ(Ui∗)|+ |Γ(Vj∗)| ≥ (1 + β)n, there

are at least β
2n edge disjoint paths of length at most 2 between U∗ and V ∗. Hence, with probability

at least 1− e−
P(B≤δ)2βn

16 , there are at least β/4n of these paths such that all edges e on the path have
be ≤ δ. But then at most half of these paths carry more than 8R/βn units of flow, implying that

cj∗−ci∗ ≤ 2δ+Hmax

(
8R
βn

)
, which for sufficiently large n is at most 7/3δ. Thus, ds(vt)−ds(vs) ≤ 7δ,

as desired. �

In order to understand the flow structure of the Nash equilibrium flow for a δ-reasonable instance,
it is also necessary to understand the range of potential latencies distances of the non-flow carrying
vertices. The following corollary shows that the distinction between flow carrying and non-flow
carrying vertices is essentially meaningless for ds(·). Again, thinking in terms of ds(v) as a random
variable, this is saying that in some sense this random variable is independent of whether the vertex
v is flow carrying (which can also be viewed as a random variable). As a result we have the following
corollary.
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Corollary 6. Let G be an (α, β)-expander on n vertices, let s and t be a source sink pair, and let
(H,B) be a pair of reasonable distributions. For any fixed δ > 0, if (G, `) is a δ-reasonable instance
and L is constant, then for any two vertices u, v, other than s and t, we have that |ds(u)− ds(v)| ≤
12δ and |dt(u)− dt(v)| ≤ 12δ with probability at least 1− e−Ω(κ).

Proof. Again, we assume without loss of generality that deg(s) ≤ deg(t) and let v′s and v′t be the
vertices (other than s and t) which minimize and maximize ds(·), respectively. Now by a slight
modification of the argument used in the proof of Lemma 5 there is a path of latency at most 5δ
from v′s to the set of flow carrying vertices, and similarly for v′t. Let us be the end of the path
from v′s which is flow carrying, and similarly let ut be the end of the path from v′t which is flow
carrying. Thus dt(v

′
s) ≤ 5δ + dt(us) = 5δ + L− ds(us). Furthermore, since ds(v

′
s) + dt(v

′
s) ≥ L, we

have L − ds(v′s) ≤ 5δ + L − ds(us). Now ds(v
′
t) ≤ L + ds(ut) and thus combining the inequalities

we have
L+ ds(v

′
t)− ds(v′s) ≤ 5δ + L+ ds(ut)− ds(us).

But by assumption ds(v
′
t) ≥ ds(v′s), and so since us and ut are flow carrying |ds(v′t)− ds(v′s)| ≤ 12δ,

completing the proof. �

We also control the behavior of the latency distances in (G′1X (c, ε) , `, R(L)), (G′X1 (c, ε) , `, R(L)),
and (G′U (c, ε) , `, R(L)) by the following corollary.

Corollary 7. Let G be an (α, β)-expander on n vertices, let s and t be a source sink pair, and
let (H,B) be a pair of reasonable distributions. For any fixed ε, δ > 0, if (G, `) is a δ-reasonable
instance, L is constant, and p = min {p1pX , 1− 2p1PX}, then for any two vertices u, v in any of the
instances (G′1X (c, ε) , `, R(L)), (G′X1 (c, ε) , `, R(L)), or (G′U (c, ε) , `, R(L)), other than s and t, we

have that |ds(u)− ds(v)| ≤
(

8 + 4
log(1+p)

)
δ and |dt(u)− dt(v)| ≤

(
8 + 4

log(1+p)

)
δ with probability

at least 1− e−Ω(κ).

This result follows immediately by the combined proof of Lemma 5 and Corollary 6 and the
observation that every vertex in any of the three graphs is present independently with probability
at least p. Specifically, in all of the growth stages instead of considering only the vertices which are
adjacent via an edge with small constant term, we also limit to those that are in the correct graph.

At this point it is worth noting that the condition that αP
(
B ≤ δ

log(n)

)
> 4 is not tight, and can

be replaced by αP
(
B ≤ δ

log(n)

)
> c > 0 for some fixed constant c.

4. “Expectation” of Latency Distance

Now if ds(v) is viewed as a random variable which, by the above, concentrates about some value
then the natural questions is what value? That is, what is serving the role of “E [ds(v)]”? As we
will see below, this is a more difficult question than usual when analyzing a random variable. In
fact, in order to find this value even in a special case, we need to following two technical lemmas.

Lemma 8. If H is part of a reasonable distribution pair, then for any fixed constant T , the function
E
[
H−1

]
(x) =

∫
h−1(x)dH(h) exists and is continuous, concave, and strictly increasing on [0, T ].

Proof. First we note that since for any fixed x ∈ [0, T ], H−1
max(x) ≤ h−1(x) ≤ H−1

min(x), the integral
converges and thus there is a limit function. Now consider a sequence of functions h1, . . . , hk chosen

from H, and let H−1
k = − 1

k

∑k
i=1 h

−1
k . Each H−1

k is a convex function, and furthermore, by the

law of large numbers for all x ∈ [0, T ], H−1
k (x)→ −E

[
H−1

]
(x). That is, H−1

k converges point-wise

to −E
[
H−1

]
and thus −E

[
H−1

]
is convex [14]. Furthermore, this implies that the convergence is

uniform. But since each of the H−1
k are continuous, the uniform convergence implies that E

[
H−1

]
is also continuous.

10



Let x < y, then

E
[
H−1

]
(y)− E

[
H−1

]
(x) =

∫
h−1(y)− h−1(x)dH(h) ≥

∫ H2

(1−ε)H2

h−1(y)− h−1(x)dH(h).

But now since (1 − ε)H2 ≤ h ≤ H2 this implies that H−1
2 (x) ≤ h−1(x) ≤ H−1

2 ( x
1−ε). Thus,

for sufficiently small ε > 0, x
1−ε ≤

x+y
2 , and thus h−1(x) ≤ H−1

2 (x+y
2 ). Hence E

[
H−1

]
(y) −

E
[
H−1

]
(x) ≥ P((1− ε)H2 ≤ H ≤ H2)

(
H−1

2 (y)−H−1
2 (x+y

2 )
)
> 0. �

Lemma 9. If (H,B) is a reasonable pair of distributions where B has a continuous distribution
on [0, ν] except possibly at 0, then for any deg(s), deg(t), and L ≤ ν, there is a unique value
cs = cs (H,B,deg(s),deg(t),L) such that

deg(s)

∫∫ cs

0
h−1(cs − b)dB(b)dH(h) = deg(t)

∫∫ L−cs
0

h−1(L − cs − b)dB(b)dH(h).

Proof. First note by Lemma 8, the function E
[
H−1

]
exists, and is concave and continuous. Thus

by rearranging the order of integration it suffices to show that there is a solution to

deg(s)

∫ cs

0
E
[
H−1

]
(cs − b) dB(b) = deg(t)

∫ L−cs
0

E
[
H−1

]
(L − cs − b) dB(b).

Now since B has a continuous distribution except potentially at 0 and E
[
H−1

]
is continuous, both

sides of this equation are continuous functions of cs on (0,L). Furthermore, the left hand side is
clearly an increasing function of cs while the right hand side is a decreasing function of cs. Observing

that
∫ 0

0 E
[
H−1

]
(−b) dB(b) = 0 and that

∫ L
0 E

[
H−1

]
(L − b) dB(b) > 0, completes the proof. �

Given a graph with a designated source sink pair and a pair of reasonable distributions (H,B),
we will refer to cs as the balance point of the instance when it is defined. As we see in the following
lemma the balance point serves as the role of “E [ds(v)]”.

Lemma 10. Let G be an (α, β)-expander on n vertices, let s and t be a source sink pair, and let
(H,B) be a pair of reasonable distributions where B has a continuous distribution function except
potentially at 0. For any fixed δ > 0, if (G, `,R) is a δ-reasonable instance and cs,L − cs < ν,
then for any vertex v, other than s and t, we have that ds(v) ≤ cs + 13δ with probability at least

1− e−Ω(κ).

Proof. We proceed by contradiction. Suppose v is a vertex such that ds(v) > cs + 13δ, then by
Corollary 7, every other vertex u, other than s and t, has ds(u) ≥ cs + δ. In particular, every flow
carrying vertex u has ds(u) ≥ cs+δ and dt(u) ≤ L− cs−δ. This implies that every edge e adjacent
to s with be ≤ cs + δ, carries a positive amount of flow, thus the expected amount of flow on an

edge is at least
∫∫ cs+δ

0 h−1(cs+δ−b)dB(b)dH(h). Similarly the expected amount of flow on an edge

adjacent to t is at most
∫∫ L−cs−δ

0 h−1 (L − cs − δ − b) dB(b)dH(h). Thus, for each edge e adjacent

to s, we define Se as the random variable that is 0 if be > cs + δ and h−1
e (cs − δ − be) otherwise,

and let S =
∑

e Se. We define similarly Te for each edge adjacent to t and let T =
∑

e Te. Then

Rs = E [S] = deg(s)

∫∫ cs+δ

0
h−1(cs + δ − b)dB(b)dH(h), and

Rt = E [T ] = deg(t)

∫∫ L−cs−δ
0

h−1 (L − cs − δ − b) dB(b)dH(h).

Now, since H is bounded below by Hmin and all functions in H are convex, 0 ≤ Se, Te ≤ H−1
min (L).

Thus, assuming that Rs ≥ Rt, by Hoeffding bounds the probability that T ≥ S is at most
11



2 exp

[
− (Rs−Rt)2(√

deg(s)+
√

deg(t)
)2
H−1

min(L)2

]
, by Hoeffding bounds. Thus in order to prove the contra-

diction, it suffices to show that Rs −Rt is large enough. However we have that

Rs −Rt = deg(s)

∫∫ cs+δ

0
h−1(cs + δ − b)dB(b)dH(h)

− deg(t)

∫∫ L−cs−δ
0

h−1 (L − cs − δ − b) dB(b)dH(h)

= deg(s)

∫ cs+δ

0
E
[
H−1

]
(cs + δ − b) dB(b)

− deg(t)

∫ L−cs−δ−b
0

E
[
H−1

]
(L − cs − δ − b) dB(b)

> deg(s)

∫ cs

0
E
[
H−1

]
(cs − b) dB(b)− deg(t)

∫ L−cs
0

E
[
H−1

]
(L − cs − b) dB(b)

+ deg(s)

∫ cs+δ

cs

E
[
H−1

]
(cs + δ − b) dB(b)

+ deg(t)

∫ L−cs
L−cs−δ

E
[
H−1

]
(L − cs − δ − b) dB(b)

= deg(t)

∫ L−cs
L−cs−δ

E
[
H−1

]
(L − cs − δ − b) dB(b).

But since B is locally dense around cs and L− cs, by the definition of cs and Lemma 9 this implies
that for any fixed δ, Rs −Rt is Ω(deg(s) + deg(t)), completing the proof. �

Now consider the situation in G′U (c, ε). We first consider the effect of the sub-sampling on the
balance point calculation, specifically let

E(K, ε, c) =

∫∫ K

0

(
pX1[c,(1+ε)c](b)1[(1−ε)H1,H1](h) + p11[0,εc](b)1[(1−ε)H2,H2](h)

)
h−1(K−b)dH(h)dB(b).

Thus we have that if c′s is the balance point for G′U (c, ε) then

deg(s)

(∫ c′s

0
E
[
H−1

](
c′s − b

)
dB(b)− E

(
c′s, ε, c

))

= deg(t)

(∫ L−c′s
0

E
[
H−1

](
L − c′s − b

)
dB(b)− E

(
L − c′s, ε, c

))
.

Of particular interest, is the case where deg(t) = (1 + o(1)) deg(s), and in this case we have
c′s = (1 + o(1))cs for any fixed ε > 0.

5. Braess’s Paradox

Returning to the viewpoint of ds(v) being a random variable, the previous two sections say that
in a δ-reasonable instance with deg(t) = (1 + o(1)) deg(s), we have that ds(v) concentrates around
its “expected value” and further we can identify that expected value as L/2 if L is sufficiently
small. Additionally, these properties are preserved when passing to the subgraph G′1X , G′X1, and
G′U and moreover, the “expectation” for vertices in G′U does not change too much. This control
on ds(t) allows us to explicitly compare RG(L) and RG′(L/2,ε)(L(1− µ)), in order to prove that
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L(G′(L/2, ε), `, RG(L)) < L. As a consequence, we have a Braess ratio of at least 1
1−µ and thus we

are able to prove Theorem 1.

Proof of Theorem 1. Without loss of generality we will assume that deg(s) ≤ deg(t). We first fix
B < ν/2. In order to show Braess’s paradox occurs we will show that for some sufficiently small ε,
µ, and δ, we have R < R′ where L(G, `,R) = 2B and L(G′(B, ε), `, R′) = 2B(1 − µ). Specifically,
we show that the flow to achieve latency 2B(1− µ) in G′U and G′1X is not too much smaller than
the flow on those edges in G. Then we analyze the flow in G′X1 and show that the flow gained in
this subgraph is larger than the flow previously lost. Thus to achieve latency 2B(1− µ) in G′ it is
necessary to send more flow than to achieve latency 2B in G, and thus by the monotonicity of the
latency, Braess’s paradox occurs.

Let ε > 0 be fixed with a specific value determined later in the proof. As ε is fixed p =
min {p1px, 1− 2p1pX}, is also fixed. We first consider the flow in G′U relative to those edges in
G. First we note that since deg(t) = (1 + o(1)) deg(s), we have that cs = B + o(1). Then by the
argument in Section 4 this implies that c′s = B + o(1). For each edge e in G′U adjacent to s, let fe
be the flow in G and f ′e be the flow in G′U . Then, by Corollary 7, he(fe) + be ≤ B+ 13δ+ o(1) and

he(f
′
e)+be ≥ B−

(
9 + 4

log(1+p)

)
δ+o(1) and hence fe−f ′e ≤ h−1

e (B−be+13δ+o(1))−h−1
e (B−be−(

9 + 4
log(1+p)

)
δ+o(1)). But for sufficiently large n, this is at most h−1

e (B−be+14δ)−h−1
e (B−be−(

10 + 4
log(1+p)

)
δ). Now by Chernoff bounds the degree of s in G′U is at least (1 − ε′) deg(s) with

probability at least 1− e−Ω(deg s). Thus, since h−1
e (B − be + 14δ)− h−1

e (B − be −
(

10 + 4
log(1+p)

)
δ)

is a bounded random variable it has finite expectation. Thus by Hoeffding bounds,∑
e∈{s}×U ′

h−1
e (B + 14δ − be)− h−1

e (B −
(

10 +
4

log(1 + p)

)
δ − be) ≤ C(δ, ε) deg(s)

for some C(δ, ε) with probability at least 1−e−Ω(deg(s)). We now wish to show that limδ→0C(δ, ε) = 0
for any fixed ε. In order to do this it suffices to show that

lim
δ→0

E
[
h−1
e (B + 14δ − be)− h−1

e (B −
(

10 +
4

log(1 + p)

)
δ − be)

]
= 0.

But an easy calculation shows that the expectation is at most

P(B ≤ B ≤ B + 14δ)E
[
H−1

]
(14δ)

+

∫ B

0
E
[
H−1

]
(B + 14δ − b)− E

[
H−1

](
B −

(
10 +

4

log(1 + p)

)
δ − b

)
dB(b).

Now since E
[
H−1

]
(B + 14δ − b) − E

[
H−1

](
B −

(
10 + 4

log(1+p)

)
δ − b

)
≤ E

[
H−1

]
(B + 14δ), by

the dominated convergence theorem, as δ → 0,∫ B

0
E
[
H−1

]
(B + 14δ − b)− E

[
H−1

](
B −

(
10 +

4

log(1 + p)

)
δ − b

)
dB(b)→ 0.

Further, since E
[
H−1

]
(14δ) → 0 as δ → 0, this expectation necessarily approaches 0. Thus, by

controlling δ, the amount of flow “lost” in G′U can be controlled.
Now we consider the amount of flow “gained” by G′1X and G′X1 relative to those edges in G.

Let R1X and R′1X be the flow leaving s on edges in G′1X in G and G′1X , respectively. Define RX1

and R′X1 analogously. Similarly to above let fe and f ′e denote the flow on an edge in G and G′1X
13
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Figure 3. Modified Canonical Braess’s Paradox Example

respectively. Now if e is adjacent to s and e′ is adjacent to t, the we have that

H1(f ′e) + (1 + ε)B +

(
8 +

4

log(1 + p)

)
δ +H2(f ′e′) + εB ≥ 2B(1− µ).

But then this implies that

H1

(
R′1X

(1− ε′)p1pX deg(s)

)
+H2

(
R′1X

(1− ε′)p1pX deg(t)

)
≥ (1− 2µ− 2ε)B −

(
8 +

4

log(1 + p)

)
δ.

Using the fact that deg(t) ≥ deg(s), this implies that (H1 +H2)
(

R′1X
(1−ε′)p1pX deg(s)

)
≥ (1 − 2µ −

2ε)B − 13δ. Combining this with the similar statement for R′X1, we have

R′1X +R′X1 ≥ 2(1− ε′)p1pX deg(s)(H1 +H2)−1((1− 2µ− 2ε)B −
(

8 +
4

log(1 + p)

)
δ).

Now consider the behavior of R1X , for each edge e in G1X we have that (1 − ε)H1(fe) + B ≤
B + 14δ, and thus fe ≤ H−1

1

(
14δ
1−ε

)
and thus R1X ≤ (1 + ε′)p1pX deg(s)H−1

1

(
14δ
1−ε

)
. Similarly,

RX1 ≤ (1 + ε′)p1pX deg(s)H−1
2

(
B+14δ

1−ε

)
. Thus, by letting ε′, δ → 0, it suffices to show that there is

some ε, µ > 0 such that

2p1pX deg(s)(H1 +H2)−1((1− 2µ− 2ε)B)− p1pX deg(s)H−1
2

(
B

1− ε

)
> 0.

It then suffices to show that 2(H1 +H2)−1(B)−H−1
2 (B) > 0, as then if µ, ε are sufficiently small

then there is a “gain” of flow on G′1X ∪G′X1. Since the loss of flow on G′U can be bounded in terms
of δ for a fixed µ and ε, a sufficiently small choice of δ yields the result. But now we note that

2(H1 +H2)−1(B) > 2(2H2)−1(B) = 2H−1
2 (B/2) ≥ H−1

2 (B). �

At this point it worth noting that the condition deg(t) = (1 + o(1)) deg(s) is necessary. Consider
the following modification of the canonical example of Braess’s paradox. The vertex s is attached
to the vertex v with S edges each having latency function x 7→ εx + 1 and to vertex w with S
edges having latency function x 7→ x+ ε. Similarly, t is attached to v with T edges having latency
function x 7→ x + ε and to w with T edges having latency function εx + 1. Finally, there is a 0
latency edge between v and w (see Figure 3).

A quick calculation shows that if S ≤ T

L =


2ε+ R

S + R
T R ≤ (1− ε)S

ε
1+ε

R
S + 2ε2+ε+1

ε+1 + R
T (1− ε)S < R ≤ (1− ε)T

ε
1+ε

(
R
S + R

T

)
+ 2 ε

2+1
ε+1 (1− ε)T < R

.
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Now in the case of deleting the edge between v and w, the latency is

L′ = 1 + ε+
(εS + T )(S + εT )

(1 + ε)(S + T )ST
R.

Letting δ = S
T and taking the difference we have

L − L′ =


ε− 1 + 1+2ε−ε2+δ

(1+δ)(1−ε)
δR
S R ≤ (1− ε)S

ε(ε−1)
1+ε + 2ε+δ−ε2

(1+ε)(1+δ)
δR
S (1− ε)S < R ≤ (1− ε)T

(1−ε)2
(1+ε)2

− (1−ε)2
(1+ε)(1+δ)

δR
S (1− ε)T < R

.

Fixing ε, and letting δ be arbitrarily small can see that the in order for L − L′ > 0, δR
S can not

go to 0. That is, R is on the order of S
δ = T. But in this case the L is on the order of T

S which is
not bounded by a constant. Hence, when the graph is unbalanced we should not expect Braess’s
paradox to occur if the latency is Θ(1).
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