Lecture Note 9

June 3, 2003

1 Isoperimetric inequalities

Let $G=(V, E)$. Let $S \subseteq V$. Define the vertex boundary, $\delta(S):=v \notin S: v \sim u \in S$ and the edge boundary, $\partial(x, y) \in E: x \in S, y \notin S$.

Problem 1
Given m, find S with $m \leq \operatorname{vol} S \leq \operatorname{vol} \bar{S}$ st $|\partial(S)|$ is minimum.

Problem 2

Given m, find S with $m \leq \operatorname{vol} S \leq \operatorname{vol} S^{c}$ st $|\delta(S)|$ is minimum.

Let $S \subseteq V$

Definition

$$
\begin{aligned}
h_{G}(S) & =\frac{|d S|}{\operatorname{vol}(S)} \\
h_{G}=\min _{\substack{S \\
v o l S \leq v o l \bar{S}}} h_{G}(S) & =\min \frac{|\partial S|}{S} \frac{\min (v o l S, v o l \bar{S})}{}
\end{aligned}
$$

$$
\begin{aligned}
g_{G} & =\min \frac{\operatorname{vol} \delta S}{S} \min (\text { vol } S, \text { vol } \bar{S}) \\
\bar{g}_{G} & =\begin{array}{c}
\min \\
S
\end{array} \frac{|\delta S|}{\min (|S|,|\bar{S}|)} \\
\bar{S} & =\min \frac{|\partial S|}{\min (\text { vol } S, \text { vol } \bar{S})}
\end{aligned}
$$

h_{G} is known as Cheeger's constant.

Cheeger's inequality

For G connected,

$$
2 h \geq \lambda_{1} \geq \frac{h^{2}}{2}
$$

where $h=h_{G}$ and λ_{1} is the smallest nonzero eigenvalue of the Laplacian of a graph.

Proof:
Suppose S achieves $h_{G}=h_{G}(S)=\frac{|\partial S|}{v o l S}$.

$$
\lambda_{1}=\inf _{\substack{f \\ \sum f(x) d_{x}=0}} \frac{\sum_{x \sim y}(f(x)-f(y))^{2}}{\sum f^{2}(x) d_{x}}
$$

Define

$$
g(x)=\left\{\begin{array}{rll}
\frac{1}{\text { volS }} & : & x \in S \\
-\frac{1}{\text { vol }} \bar{S} & : x \notin S
\end{array}\right.
$$

Therefore,

$$
\begin{aligned}
\lambda_{1} & =\leq \frac{\sum_{x \sim y}(g(x)-g(y))^{2}}{\sum g^{2}(x) d_{x}} \\
& =\frac{|\partial S|\left(\frac{1}{\text { volS}}+\frac{1}{\text { vol } \bar{S}}\right)^{2}}{\text { vol } S \frac{1}{\text { volS }}+\operatorname{vol} \bar{S} \frac{1}{(v o l \bar{S})^{2}}} \\
& =\frac{|\partial S| \text { volG }}{\text { volSvol } \bar{S}}
\end{aligned}
$$

$$
\begin{aligned}
& =h \frac{v o l G}{v o l \bar{S}} \\
& \leq 2 h
\end{aligned}
$$

For every x,

$$
\sum_{\substack{y \\ y \sim x}}(f(x)-f(y))=\lambda_{1} f(x) d_{x}
$$

f achieves λ_{1}.
Arrange vertices $v_{0}, v_{1}, \ldots, v_{n-1}$ such that

$$
f\left(v_{1}\right) \leq f\left(v_{2}\right) \leq \ldots
$$

and

$$
\begin{gathered}
\sum_{f(v) \geq o} d_{v} \geq \frac{v o l G}{2} . \\
c_{i}=\left\{\left\{v_{k}, v_{l}\right\} \in E: k \leq i, l \geq i\right\} \\
\alpha=\min _{i} \frac{\left|c_{i}\right|}{\min \left(\sum_{j \leq i} d_{j}, \sum_{j \geq i} d_{j}\right)} \geq h_{G}
\end{gathered}
$$

Define

$$
\begin{aligned}
& g(x)=\left\{\begin{array}{rl}
f(x) & : \\
0 & f(x) \geq 0 \\
0 & \text { otherwise }
\end{array}\right. \\
& \lambda_{1}=\frac{\sum_{v \in V^{+}} f(v) \sum_{u \sim v} f(v)-f(u)}{\sum_{v \in V^{+} f^{2}(v) d_{v}}}, V^{+}=\{v: f(v) \geq 0\} \\
& \geq \frac{\sum_{\{u, v\} \in E^{+}}(g(u)-g(v))^{2}}{\sum_{v \in V^{+}} g^{2}(v) d_{v}}, E^{+}=\left\{\text {edges incident to } V^{+}\right\} \\
&=\frac{\sum_{\{u, v\} \in E}(g(u)-g(v))^{2} \sum_{\{u, v\} \in E^{+}}(g(u)+g(v))^{2}}{\sum_{v \in V^{+}} g^{2}(v) d_{v} \sum_{\{u, v\} \in E^{+}}(g(u)+g(v))^{2}} \\
& \geq \frac{\left(\sum_{\left.\{u, v\} \in E^{+}\left|g^{2}(u)-g^{2}(v)\right|\right)^{2}}^{\sum_{v \in V^{+} g^{2}(v) d_{v}\left(2 \sum_{v \in V^{+}} g^{2}(v) d_{v}\right)}}\right.}{} \geq \frac{\left(\sum_{i} c_{i} \mid g^{2}\left(v_{i}\right)-g^{2}\left(v_{i-1} \mid\right)^{2}\right.}{2 \sum_{v \in V^{+}} g^{2}(v) d_{v}}
\end{aligned}
$$

$$
\begin{aligned}
& \left(c_{i} \geq \alpha \sum_{j \leq i} d_{j}\right) \\
\geq & \frac{\left(\sum_{i} \alpha \sum_{j \leq i} d_{j}\left(g^{2}\left(v_{i}\right)-g^{2}\left(v_{i-1}\right)\right)\right)^{2}}{2 \sum_{v \in V+} g^{2}(v) d_{v}} \\
\geq & \frac{\alpha^{2}}{2}\left(\frac{\sum g^{2}\left(v_{i}\right) d_{i}}{\sum g^{2}\left(v_{i}\right) d_{i}}\right)^{2} \\
\geq & \frac{h^{2}}{2}
\end{aligned}
$$

$Q_{n}, 2^{n}$ vertices $=\left\{a_{1} \cdots a_{n}: a_{i} \in\{0,1\}\right\}$
Number of edges $=n 2^{n-1}$, where $\left\{a_{1} \cdots a_{n}\right\} \sim\left\{b_{1} \cdots b_{n}\right\} \Longleftrightarrow$ the Hamming distance is 1.
$h_{Q_{n}}=\frac{\partial(S)}{\operatorname{vol}(S)},|S| \leq 2^{n-1}$
Boolean function $f:\{0,1\}^{n} \rightarrow\{0,1\}$
binary strings of length n
$Q^{n}, S \subseteq V\left(Q^{n}\right)$
$S=\{x: f(x)=1\}$
x is critical for f in i if $f(x) \neq f\left(x^{(i)}\right)$
Define $c(f, x)=\left\{i: f(x) \neq f\left(x^{(i)}\right)\right\}$
Critical complexity, $c(f)$ is defined as

$$
c(f)=\max _{x} c(f, x)
$$

Now we can view Q^{n} as having 2 identical copies of Q^{n-1}, Q_{1} and Q_{2} and an edge joining a vertex from Q_{1} to its copy in Q_{2}. Then there are 2^{n-1} edges joining Q_{1} to Q_{2}. Hence
$h_{Q_{n}} \leq \frac{1}{n}$ since $\operatorname{vol}\left(Q_{1}\right)=n 2^{n-1}$.
Claim: $h_{Q_{n}} \geq \frac{1}{n}$
To prove the claim we need a lemma.
Let $S \subseteq V\left(Q^{n}\right) . G_{S}:$ induced subgraph in S.

Lemma

$$
\begin{gathered}
|S| \geq 2^{d} \text { i.e. } \log |S| \geq \frac{\sum_{v \in S} d_{S}(v)}{|S|} \\
d: \text { average degree in } G_{s}
\end{gathered}
$$

Proof:
By induction on $|S|$.
True for $|S|=1$.
Suppose it is true for $|S| \leq|S|$. Split Q^{n} into 2 copies of Q^{n-1}, called $Q^{(1)}$ and $Q^{(2)}$.
Let $S_{i}=S \cap V\left(Q^{(i)}\right), G_{1}=G_{S_{1}}$.
Let $Z=$ no. of edges between S_{1} and $S_{2},\left|S_{1}\right| \leq\left|S_{2}\right|$. By induction hypothesis,

$$
\begin{aligned}
\left|S_{1}\right| \log \left|S_{1}\right| & \geq \sum_{v \in S_{1}} \operatorname{deg}_{S_{1}}(v) \\
& =\sum_{v \in S_{1}} \operatorname{deg}_{S}(v)-Z
\end{aligned}
$$

Similarly $\left|S_{2}\right| \log \left|S_{2}\right| \geq \sum_{v \in S_{2}} \operatorname{deg}_{S}(v)-Z$.
Hence $\left|S_{1}\right| \log \left|S_{1}\right|+\left|S_{2}\right| \log \left|S_{2}\right| \geq \sum_{v \in S} \operatorname{deg}_{S}(v)-2 Z$.

$$
\begin{aligned}
|S| \log |S| & \geq\left|S_{1}\right| \log (2 \log |S|)+\left|S_{2}\right| \log \left(\left|S_{2}\right|+\left|S_{1}\right|\right) \\
& \geq\left|S_{1}\right| \log \left|S_{1}+\left|S_{2}\right| \log \right| S_{2}|+2| S_{1} \mid \\
& \geq \sum_{v \in S} \operatorname{deg}_{S}(v)\left(\text { Because }\left|S_{1}\right| \geq Z\right)
\end{aligned}
$$

With this Lemma, we can prove the claim.

