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In the next two lectures, we will be looking at random walks as graphs, and their relation
to the eigenvalues of the graph. There is a good book on random walks by David Aldous and
Jim Fill called Reversible Markov Chains and Random Walks on Graphs; it is available on-line at
http://www.stat.berkeley.edu/users/aldous/RWG/book.html.

First, some definitions. Given a graph G, a walk w is a sequence of vertices v0, v1, . . . , vs. The
vertices need not be distinct, but consecutive vertices must be adjacent, that is, vi ∼ vi+1. A lazy
walk is a walk where we allow consecutive vertices to be the same, that is, either vi = vi+1 or
vi ∼ vi+1. We can think of a walk as starting a at some vertex and “walking” along the edges. The
study of random walks originated with the study of stochastic processes; vertices were states of the
process and edges possible transitions between the states.

Define P (u, v) to be the conditional probability Pr[vi+1 = v|vi = u]. This is the probability of
going from vertex u to vertex v along the walk. Obviously, we must go somewhere, so for all u,∑

v

P (u, v) = 1.

Since we are dealing with undirected graphs, we will insist that u ∼ v implies P (u, v) 6= 0 and
P (v, u) 6= 0. As an example, consider an equal probability walk, where the probability of visiting
any neighbor of a vertex is proportional to the degree of the vertex. That is,

P (u, v) =

{
1
du

u ∼ v
0 otherwise.

We also have an initial distribution f , which is the probability of starting a a given vertex. Since
we must start somewhere, it has the property∑

v

f(v) = 1.

Observe that P and f have a natural interpretation as a matrix and (row) vector. The product
fP then gives the probability distribution on the vertices after taking one step in the walk. Let us
look at this more closely:

(fP )(v) =
∑
u

f(u)P (u, v)
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Since u 6∼ v implies P (u, v) = 0, this simplifies to

(fP )(v) =
∑
u∼v

f(u)P (u, v)

But this is just the sum, over all neighbors u of v, of the probability of starting at u and making a
transition to v. After 2 steps, the distribution is (fP )P , and after s steps, the distribution is fP s.

There is an important definition from the theory of random walks, and that is of an ergodic walk.
A random walk is ergodic when there is a unique stationary distribution π such that for all starting
distributions f ,

lim
s→∞

fP s = π.

The necessary conditions for a walk to be ergodic are irreducibility and non-periodicity. They may
sound like foreign words, but in fact, they have very simple interpretations in our graph-theoretic
view of random walks. The former simply says that the graph must be connected, and the latter
says that the graph is not bipartite. It turns out that these are also sufficient conditions, but we
will show this later.

Another definition we will need is that of a reversible random walk, which is an ergodic random
walk with the property

π(u)P (u, v) = π(v)P (v, u).

A reversible random walk is just a weighted, undirected graph. To see this, pick weight assignment
wuv = cπ(u)P (u, v) = wvu, where c is some constant. Conversely, given an undirected, weighted
graph, the underlying random walk has transition probabilities P (u, v) = wuv/du, where du =∑
v wuv.
Let us now return to our example of a simple graph with some isolated vertices. The weight of

each edge is 1, so P = D−1A. Why this is may seem rather opaque, but recall that

P (u, v) =

{
1
du

u ∼ v
0 otherwise.

Let us try to calculate P s = (D−1A)s efficiently. Unfortunately, P is not symmetric, so we cannot
diagonalize it. But notice that

D−1A = D−
1
2D−

1
2AD−

1
2D

1
2

= D−
1
2 (I − L)D

1
2 ,

where L is the normalized combinatorial Laplacian we have seen earlier, and which we know is
symmetric. Now P s = D−

1
2 (I − L)sD

1
2 .

So what is the stationary distribution π for a simple graph with no isolated vertices? We claim
Vol(G)π = ~1D = (dv1 , dv2 , . . . , dvn), where Vol(G) =

∑
v dv. To see this, observe that πP = π since

(πP )(v) =
∑
u

π(u)P (u, v) =
∑
u∼v

du
Vol(G)

· 1
du

=
dv

Vol(G)
= π(v).

So
lim
s→∞

πP s = π,
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and π must be the stationary distribution.
How quickly does fP s we converge to π? One way to measure this is to look at ‖fP s−π‖, where

‖ · ‖ is the `2-norm, defined as √√√√ n∑
i=1

x2
i

for an n-vector x. We have

‖fP s − π‖ = ‖fD− 1
2 (I − L)D

1
2 −

~1D
Vol(G)

‖

= ‖fD− 1
2
(
(I − L)D

1
2 − φT0 φ0

)
D

1
2 ‖. (?)

Here, φ0 is the first eigenvector of L. Recall that,

φ0 =
~1D

1
2√

Vol(G)

Now let’s check (?):

〈fD− 1
2 , φ0〉φ0D

1
2 = 〈fD− 1

2 ,
~1D

1
2√

Vol(G)
〉
~1D

1
2D

1
2√

Vol(G)

=
〈f,~1〉√
Vol(G)

·
~1D√
Vol(G)

=
1√

Vol(G)
·

~1D√
Vol(G)

=
~1D

Vol(G)
.

Returning to our calculation at (?), let M = (I − L)s − φT0 φ0. Then

‖M‖ = sup
v

〈Mv, v〉
〈v, v〉

= max
i 6=0
|1− λi|s.

So

‖fP s − π‖ ≤ ‖fD− 1
2 ‖ · ‖M‖ · ‖D 1

2 ‖
≤ ‖fD− 1

2 ‖ · (max
i 6=0
|1− λi|s) ·

√
dmax

We’re almost there. Let’s calculate ‖fD− 1
2 ‖:

‖fD− 1
2 ‖ =

√∑
v

(
f(v)d−

1
2

v

)2 =
√∑

v

f2(v)d−1
v ≤

(∑
v

f(v)
)
d
− 1

2
min = d

− 1
2

min.

Thus

‖fP s − π‖ ≤
√
dmax

dmin
(max
i 6=0
|1− λi|s).
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A side note: from here, we get the sufficient and necessary conditions for convergence:

λ1 6= 0 (G is connected)
λn−1 6= 2 (G is not bipartite)

Now let λ′ = min{λ1, 2− λn−1}. Then

‖fP s − π‖ ≤
√
dmax

dmin
e−s log(1−λ′).

The above extends easily to lazy walks. Let

w′uv =

{
wuv u 6= v

wuv + cdv u = v,

where c is some constant. Then

P ′(u, v) =

{
wuv

dv(1+c) u 6= v
wuv+cdv
dv(1+c) u = v.

So λ′i = λi
1+c . This means that we can converge even if the graph is bipartite! To maximize

convergence rate, choose c = 1
2 (λ1 + λn−1)− 1.

It is worth mentioning other kinds of distance measures. One is the relative distance, defined as

∆(s) = max
x,y

|P s(y, x)− π(x)|
π(x)

.

There is also the variational distance, also called the total variation. This is defined as

∆TV(s) = max
A⊆V

max
y
|
∑
x∈A

P s(y, x)−
∑
x∈A

π(x)|

=
1
2

max
y

∑
x∈V
|P s(y, x)− π(x)|.

One application of random walks is in the area of sampling for approximation. Consider approx-
imating the volume of a complex combinatorial object. If we put the object in a box and sample
points uniformly at random inside the box, the fraction of points inside the object of interest gives
us an estimate of its volume as a fraction of the rectangle’s volume. With care, we can use a random
walk to do the sampling, but we need to know how long to walk. This is exactly what the igenvalues
tell us.
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