Intiriodarcing Spectral Graphate Theory

D. Jacob Wildstrom

We will be studying the spectra of simple graphs with no isolated points; that is, nondirected graphs without multiply-occurring edges or loops (i.e. edges with the same start and end vertex), and with at least one edge incident to each vertex.

The combinatorial Laplacian is given by

$$
L(u, v)=\left\{\begin{aligned}
d_{u} & \text { if } u=v \\
-1 & \text { if } u \sim v \\
0 & \text { if } u \nsim v, u \neq v
\end{aligned}\right.
$$

while the normalized Laplacian is

$$
\mathcal{L}(u, v)=\left\{\begin{aligned}
& 1 \text { if } u=v \\
& \frac{-1}{\sqrt{d_{u} d_{v}}} \text { if } u \sim v \\
& 0 \text { if } u \nsim v, u \neq v
\end{aligned}\right.
$$

Note that $\mathcal{L}=D^{-\frac{1}{2}} L D^{-\frac{1}{2}}$.
Another relevant sort of matrix to graph properties is the probability matrix for a random walk, which is essentially a normalized form of the adjacency matrix:

$$
P(u, v)=\left\{\begin{array}{r}
\frac{1}{d_{u}} \text { if } u \sim v \\
0 \text { if } u \nsim v
\end{array}\right.
$$

Note that $P=D^{-1} A$, and, unlike A, is nonsymmetric.
The utility of P can be easily seen by considering the probabilities involved in a random walk: if we start, for instance, on the j th vertex, then after n steps our location probabilities are given by the vector $\left(\begin{array}{lllllllll}0 & 0 & \cdots & 0 & 1 & 0 & \cdots & 0 & 0\end{array}\right) P^{n}$, with the one in the j th position of the first vector; in general, for an initial configuration f^{*} of points, we're interested in $f^{*} P, f^{*} P P, f^{*} P^{3}$, and so forth.

Clearly a relevant problem to this is how to calculate P^{k} efficiently; since P isn't even symmetric, diagonalization will be tricky. Our first simplification will be as such:

$$
P^{k}=\left(D^{-1} A\right)^{k}=D^{-\frac{1}{2}}\left(D^{-\frac{1}{2}} A D^{-\frac{1}{2}}\right)^{k} D^{\frac{1}{2}}
$$

And we observe that the term $D^{-\frac{1}{2}} A D^{-\frac{1}{2}}$ (which we shall call \mathcal{A}) is symmetric, and is in fact simply $I-\mathcal{L}$, suggesting that the spectra of \mathcal{A} and \mathcal{L} are linked.

Furthermore, since \mathcal{A} is symmetric, there is a unitary matrix U such that

$$
\mathcal{A}=U\left(\begin{array}{lll}
\lambda_{1} & & \\
& & \\
& \ddots & \\
& & \lambda_{n}
\end{array}\right) U^{-1}
$$

which is easy to raise to any power. The diagonal matrix herein consists of eigenvalues, so if we use eigenvectors as our basis for initial configurations, the eigenvalues of \mathcal{A} (and the related vectors for \mathcal{L}) are clearly important.

Since \mathcal{L} is symmetric, its eigenvalues are real and non-negative. One eigenvalue is trivial: \mathcal{L} has eigenvalue 0 associated with the vector $\varphi_{0}=D^{\frac{1}{2}} 1$.

Finding the next-smallest eigenvalue is a matter of finding the smallest value of $\frac{\langle f, \mathcal{L} f\rangle}{\langle f, f\rangle}$ for f orthogonal to φ_{0}. Note that using the substitution $g=T^{-\frac{1}{2}} f$, we may rewrite the above as $\frac{\left\langle f, D^{-\frac{1}{2}} L D^{-\frac{1}{2}} f\right\rangle}{\langle f, f\rangle}=\frac{\langle g, L g\rangle}{\left\langle T^{\frac{1}{2}} f, T^{\frac{1}{2}} f\right\rangle}=\frac{\sum_{u \sim v}(f(u)-f(v))^{2}}{\sum_{v} f(v)^{2} d_{v}}$, so the first eigenvalue is given by

$$
\lambda_{1}=\inf _{f \perp \varphi_{0}} \frac{\langle f, \mathcal{L} f\rangle}{\langle f, f\rangle}=\inf _{f \perp \mathbf{1}} \frac{\sum_{u \sim v}(f(u)-f(v))^{2}}{\sum_{v} f(v)^{2} d_{v}}=\inf _{f} \sup _{C} \frac{\sum_{u \sim v}(f(u)-f(v))^{2}}{\sum_{v}(f(v)-C)^{2}}
$$

The penultimate formulation in tha above quotient is called the Dirichlet sum, and the last formulation is the Raleigh quotient.

Other eigenvalues can be obtained in a similar manner, but it is valuable, at this point, to ask what particular values of the eigenvalues signify. There are three straightforward results to be demonstrated:

Lemma 1. If \mathcal{L} has eigenvalues $0=\lambda_{0} \leq \lambda_{1} \leq \cdots \leq \lambda_{n-1}$, then it follows that

1. The number of zero eigenvalues is the number of components.
2. $\lambda_{n-1} \leq 2$.
3. $\lambda_{n-1}=2$ iff G is bipartite.

Digression: Cutwidths and Bandwidths of $P \square P$

We briefly study the question of finding $b(P \square P)$ and $c(P \square P)$ on the exam. The concepts of vertex boundary and edge boundary give us very good lower bounds on b and c :

Definition 1. The vertex boundary $\delta(S)$ of a subset S of the vertex set of a graph is $\mid\{v \in$ $S: \exists u \in V(G)-S, v \sim u\} \mid$; that is, the vertex boundary is the number of points of S adjacent to points not in S.

Similarly, the edge boundary $\partial(S)$ of a subset S of the vertex set of a graph is $\mid\{(u, v) \in$ $E(G): u \in S, v \notin S\} \mid$; that is, the number of edges from points of S to points outside S.

The lower bounds follow straightforwardly that

$$
\begin{aligned}
& b(G) \geq \max _{k} \min _{S \subseteq V(G),|S|=k} \delta(S) \\
& c(G) \geq \max _{k} \min _{S \subseteq V(G),|S|=k} \partial(S)
\end{aligned}
$$

since we can show that, if an embedding f assigns $\{1, \ldots, k\}$ to S, then $b(S) \geq \delta(S)$ and $c(S) \geq \partial(S)$.

Using this bound, it is easy to show that $b(P \square P)$ and $c(P \square P)$ are at least n, and embeddings which have bandwidths and cutwidths of n are attainable, so $b(P \square P)=c(P \square P)=n$.

Back to Eigenvalues

We still need to determine precisely what eigenvalues mean, however. If $\lambda_{1}=0$, we know G is not connected, but do particular nonzero λ_{1} indicate anything? Basically, it indicates how bottlenecked the graph is: "wide" graphs tend to have higher λ_{1} than "narrow ones". For instance, K_{n}, which is the widest graph possible, has all the nonzero eigenvalues clustered considerably higher. Similarly, the complete bipartite graph $K_{m, n}$ has all of its eigenvectors but the lowest and highest equal to 1 . The cycle, which is a comparatively narrow graph, has eigenvalues $1-\cos \frac{2 \pi k}{n}$, which for large n has a very low λ_{1}. This seems to indicate an empirical meaning for λ_{1}, which we can explicitly describe.

Lemma 2. If G is connected, then $\lambda_{1} \geq \frac{1}{D(G) \operatorname{vol}(G)}$.
Proof. By the Dirichlet sum,

$$
\lambda_{1}=\inf _{\sum_{x} f(x) d_{x}=0} \frac{\sum_{x \sim y}(f(x)-f(y))^{2}}{\sum_{x} f^{2}(x) d_{x}}
$$

Let ϕ be the function which yields the infimum above. Let us choose v to maximize $M=$ $|\phi(v)|$, and let v^{\prime} be a point such that $\phi(v)$ and $\phi\left(v^{\prime}\right)$ are of opposite signs. By connectedness, there is a path P from v to v^{\prime} of length no greater than $D(G)$. Then

$$
\begin{aligned}
\lambda_{1} & =\frac{\sum_{x \sim y}(\phi(x)-p h i(y))^{2}}{\sum_{x} \phi^{2}(x) d_{x}} \\
& \geq \frac{\sum_{(x, y) \in P}(\phi(x)-p h i(y))^{2}}{M^{2} \sum_{x} d_{x}}
\end{aligned}
$$

Noting that $\sum_{i=1}^{n} a_{i}^{2} \geq \frac{1}{n}\left(\sum_{i=1}^{n} a_{i}\right)^{2}$, it is the case that

$$
\begin{aligned}
\lambda_{1} & \geq \frac{\frac{1}{D(G)}\left(\sum_{(x, y) \in P} \phi(x)-p h i(y)\right)^{2}}{M^{2} \operatorname{vol}(G)} \\
& \geq \frac{\left(\phi(v)-p h i\left(v^{\prime}\right)\right)^{2}}{D(G) M^{2} \operatorname{vol}(G)} \\
& \geq \frac{M^{2}}{D(G) M^{2} \operatorname{vol}(G)} \geq \frac{1}{D(G) \operatorname{vol}(G)}
\end{aligned}
$$

