
MATH 262B Notes D. Jacob WildstromIntroducing Spectral Graph Theory

We will be studying the spectra of simple graphs with no isolated points; that is, nondirected
graphs without multiply-occurring edges or loops (i.e. edges with the same start and end
vertex), and with at least one edge incident to each vertex.

The combinatorial Laplacian is given by

L(u, v) =


du if u = v

−1 if u ∼ v

0 if u 6∼ v, u 6= v

while the normalized Laplacian is

L(u, v) =


1 if u = v

−1√
dudv

if u ∼ v

0 if u 6∼ v, u 6= v

Note that L = D− 1
2 LD− 1

2 .
Another relevant sort of matrix to graph properties is the probability matrix for a random

walk, which is essentially a normalized form of the adjacency matrix:

P (u, v) =


1

du

if u ∼ v

0 if u 6∼ v

Note that P = D−1A, and, unlike A, is nonsymmetric.
The utility of P can be easily seen by considering the probabilities involved in a random

walk: if we start, for instance, on the jth vertex, then after n steps our location probabilities
are given by the vector

(
0 0 · · · 0 1 0 · · · 0 0

)
P n, with the one in the jth position

of the first vector; in general, for an initial configuration f ∗ of points, we’re interested in
f ∗P, f ∗PP, f ∗P 3, and so forth.

Clearly a relevant problem to this is how to calculate P k efficiently; since P isn’t even
symmetric, diagonalization will be tricky. Our first simplification will be as such:

P k = (D−1A)k = D− 1
2 (D− 1

2 AD− 1
2 )kD

1
2

And we observe that the term D− 1
2 AD− 1

2 (which we shall call A) is symmetric, and is in
fact simply I − L, suggesting that the spectra of A and L are linked.

Furthermore, since A is symmetric, there is a unitary matrix U such that

A = U

( λ1

...
λn

)
U−1,

which is easy to raise to any power. The diagonal matrix herein consists of eigenvalues, so
if we use eigenvectors as our basis for initial configurations, the eigenvalues of A (and the
related vectors for L) are clearly important.
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Eigenvalues of L
Since L is symmetric, its eigenvalues are real and non-negative. One eigenvalue is trivial: L
has eigenvalue 0 associated with the vector ϕ0 = D

1
21.

Finding the next-smallest eigenvalue is a matter of finding the smallest value of 〈f,Lf〉
〈f,f〉 for

f orthogonal to ϕ0. Note that using the substitution g = T− 1
2 f , we may rewrite the above

as 〈f,D−
1
2 LD−

1
2 f〉

〈f,f〉 = 〈g,Lg〉
〈T

1
2 f,T

1
2 f〉

=
∑

u∼v(f(u)−f(v))2∑
v f(v)2dv

, so the first eigenvalue is given by

λ1 = inf
f⊥ϕ0

〈f,Lf〉
〈f, f〉

= inf
f⊥1

∑
u∼v(f(u)− f(v))2∑

v f(v)2dv

= inf
f

sup
C

∑
u∼v(f(u)− f(v))2∑

v(f(v)− C)2

The penultimate formulation in tha above quotient is called the Dirichlet sum, and the last
formulation is the Raleigh quotient.

Other eigenvalues can be obtained in a similar manner, but it is valuable, at this point, to
ask what particular values of the eigenvalues signify. There are three straightforward results
to be demonstrated:

Lemma 1. If L has eigenvalues 0 = λ0 ≤ λ1 ≤ · · · ≤ λn−1, then it follows that

1. The number of zero eigenvalues is the number of components.

2. λn−1 ≤ 2.

3. λn−1 = 2 iff G is bipartite.

Digression: Cutwidths and Bandwidths of P�P

We briefly study the question of finding b(P�P ) and c(P�P ) on the exam. The concepts
of vertex boundary and edge boundary give us very good lower bounds on b and c:

Definition 1. The vertex boundary δ(S) of a subset S of the vertex set of a graph is |{v ∈
S : ∃u ∈ V (G) − S, v ∼ u}|; that is, the vertex boundary is the number of points of S
adjacent to points not in S.

Similarly, the edge boundary ∂(S) of a subset S of the vertex set of a graph is |{(u, v) ∈
E(G) : u ∈ S, v /∈ S}|; that is, the number of edges from points of S to points outside S.

The lower bounds follow straightforwardly that

b(G) ≥ max
k

min
S⊆V (G),|S|=k

δ(S)

c(G) ≥ max
k

min
S⊆V (G),|S|=k

∂(S)

since we can show that, if an embedding f assigns {1, . . . , k} to S, then b(S) ≥ δ(S) and
c(S) ≥ ∂(S).

Using this bound, it is easy to show that b(P�P ) and c(P�P ) are at least n, and embed-
dings which have bandwidths and cutwidths of n are attainable, so b(P�P ) = c(P�P ) = n.
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Back to Eigenvalues

We still need to determine precisely what eigenvalues mean, however. If λ1 = 0, we know G
is not connected, but do particular nonzero λ1 indicate anything? Basically, it indicates how
bottlenecked the graph is: “wide” graphs tend to have higher λ1 than “narrow ones”. For
instance, Kn, which is the widest graph possible, has all the nonzero eigenvalues clustered
considerably higher. Similarly, the complete bipartite graph Km,n has all of its eigenvectors
but the lowest and highest equal to 1. The cycle, which is a comparatively narrow graph,
has eigenvalues 1 − cos 2πk

n
, which for large n has a very low λ1. This seems to indicate an

empirical meaning for λ1, which we can explicitly describe.

Lemma 2. If G is connected, then λ1 ≥ 1
D(G) vol(G)

.

Proof. By the Dirichlet sum,

λ1 = inf∑
x f(x)dx=0

∑
x∼y(f(x)− f(y))2∑

x f 2(x)dx

Let φ be the function which yields the infimum above. Let us choose v to maximize M =
|φ(v)|, and let v′ be a point such that φ(v) and φ(v′) are of opposite signs. By connectedness,
there is a path P from v to v′ of length no greater than D(G). Then

λ1 =

∑
x∼y(φ(x)− phi(y))2∑

x φ2(x)dx

≥
∑

(x,y)∈P (φ(x)− phi(y))2

M2
∑

x dx

Noting that
∑n

i=1 a2
i ≥ 1

n
(
∑n

i=1 ai)
2
, it is the case that

λ1 ≥
1

D(G)

(∑
(x,y)∈P φ(x)− phi(y)

)2

M2 vol(G)

≥ (φ(v)− phi(v′))2

D(G)M2 vol(G)

≥ M2

D(G)M2 vol(G)
≥ 1

D(G) vol(G)
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