Math 262A Lecture Notes

Lemma 1: Recall this lemma from the last lecture. Given a forest F on n vertices and a positive real number k with $n \geq k+1$, we can remove a single vertex v from F such that some subforest F^{\prime} of $F \backslash v$ has size $k \leq\left|F^{\prime}\right|<2 k$.

In particular, we can remove one vertex from a tree on n vertices to obtain a subforest F of size $n / 3 \leq$ $F<2 n / 3$. Really we can't do any better than this by removing one vertex, as shown by a tree whose root has three subtrees each of size $(n-1) / 3$.

Lemma 2: Given a forest F on n vertices, a positive integer w and a positive real number K with $|F| \geq k+w$, there exists a set of w vertices $v_{1} \ldots v_{w}$ in F such that some subforest F^{\prime} of $F \backslash\left\{v_{1} \ldots v_{w}\right\}$ has size $\left|\left|F^{\prime}\right|-K\right| \leq K / 3^{w}$.

Proof: If $w=1$ then let $\mathrm{k}=(2 / 3)$ K. By lemma 1, we can remove a single vertex v such that $F \backslash v$ contains a subforest F^{\prime} with $\frac{2}{3} K \leq\left|F^{\prime}\right|<\frac{4}{3} K$, which implies $\| F^{\prime}|-k| \leq K / 3$.

We proceed by induction. Assume we can remove i vertices from any forest F and find a subforest F_{i} with $\left(1-1 / 3^{i}\right) K \leq\left|F_{i}\right|<\left(1+1 / 3^{i}\right)$. There are two cases to consider. We may assume that either

$$
\begin{gathered}
\left(1-1 / 3^{i+1}\right) K \leq\left|F_{i}\right|<\left(1+1 / 3^{i}\right) \quad \text { or } \\
\left(1-1 / 3^{i}\right) K \leq\left|F_{i}\right|<\left(1+1 / 3^{i+1}\right)
\end{gathered}
$$

We only consider the first of these cases for now. Case 1: If $\left(1-1 / 3^{i+1}\right) K \leq\left|F_{i}\right|<\left(1+1 / 3^{i}\right)$, use lemma 1 with $F=F_{i}$ and $k=2 / 3\left(F_{i}-K\right)$. We can remove an additional vertex $v_{i}+1$ to obtain a subforest F_{i}^{\prime} of F_{i} such that $2 / 3\left(\left|F_{i}\right|-K\right) \leq\left|F_{i}^{\prime}\right|<4 / 3\left(\left|F_{i}\right|-K\right)$. We let $F_{i+1}=F_{i}-F_{i}^{\prime}$ and we have $\left(1-1 / 3^{i+1}\right) K \leq\left|F_{i}\right|<\left(1+1 / 3^{i+1}\right)$.

Corollary: You can separate a tree into two equal-sized parts by removing $\lfloor\log (n) / \log (3)\rfloor+1$ vertices.
Universal Graphs: Let \mathcal{F} be a family of graphs. A graph H is a universal graph for \mathcal{F} if it contains every graph in \mathcal{F} as a subgraph. In particular we will consider $\mathcal{F}_{n}=\{T: \mathrm{T}$ a tree on n vxs $\}$. We wish to find a graph H with a minimal number of edges which is universal for \mathcal{F}.

Here is a recursive way to build a universal graph U_{n} for \mathcal{F}_{n}. Let U_{n} consist of a vertex v, a universal graph $U_{\lfloor n / 2\rfloor}$ for $\mathcal{F}_{\lfloor n / 2\rfloor}$, and a universal graph $U_{\lceil 2 n / 3\rceil}$ for $\mathcal{F}_{\lceil 2 n / 3\rceil}$, with an edge going from v to each of the vertices in $U_{\lfloor n / 2\rfloor}$ and $U_{\lceil 2 n / 3\rceil}$. It is clear from lemma 1 that this is a universal graph for \mathcal{F}_{n}.

Excercise: Let $f(n)$ and $g(n)$ be the number of vertices and edges in U_{n}. Solve the recurrence

$$
\begin{gathered}
f(n) \leq 1+f(n / 2)+f(2 n / 3) \\
g(n) \leq f(n / 2)+f(2 n / 3)+g(n / 2)+g(2 n / 3)
\end{gathered}
$$

to get an upper bound for the size of a universal graph for trees on n vertices.
That construction just used Lemma 1. We can do better by using Lemma 2. We can build U_{n} from w vertices $v_{1} \ldots v_{w}$ with all $\binom{w}{2}$ possible edges between them, two universal graphs $U_{\lfloor n / 2\rfloor}$ and $U_{\left\lfloor\frac{n}{2}+\frac{n}{2 * 3}\right\rfloor}$, and with all possible edges connecting $v_{1} \ldots v_{w}$ to the two smaller universal subgraphs. You should figure out which w gives you the best recursion.

Lemma 3: Let $T_{3,2 t}$ be the complete ternary tree with 2 t levels. $\mid V\left(T_{3,2 t} \mid=\left(3^{2 t}-1\right) / 2\right.$. How many vertices should we remove to partition the tree into two equal sized parts? I'll let you think about it.

Hint: You don't have to remove more than $\log (n) / \log (3)-2 \log (n) / \log \log (n)$ vertices.
I wrote a chapter of a book on this stuff, but it never turned into a book.

