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1 Addressing Problem on Digraphs

Let G(V, E) be a digraph with vertex set V = {v1, v2, ..., vn} and edge set E.
We assume that G is strongly connected, meaning there is a directed path be-
tween any pair of vertices (vi, vj). For vi, vj ∈ V , the distance d(vi, vj) = dij

is defined to be the length of a shortest path from vi to vj . Let D = {dij}
be the n× n distance matrix of G.

Notice that in general dij is not symmetric and also that we will not be able
to use trees to help our analysis. This indicates the relative difficulty of the
directed case vs. the undirected case.

Again we consider an address assignment to the vertices f : V → {0, 1, ∗}k.
For any f(vi) = a = (a1, ..., ak) and f(vj) = b = (b1, ..., bk), define the
hamming distance dh(a, b) = |{i : ai = 0, bi = 1}|. An address assignment
is called good if it is distance preserving, i.e. dG(vi, vj) = dh(a, b) for
∀f(vi) = a, f(vj) = b. Our goal is to find a good address assignment with k
minimized. We denote q(G) to be the minimum k for which we have a good
address assignment for G.

Theorem 1.1 For any digraph G, q(G) ≤ n(n− 1).

Proof of Theorem 1.1: Notice that an address assignment f can also be
described by a n×k matrix Af where row i represents the address of vi. To
construct a good address assignment Af with k = n(n − 1), split A into n
blocks of (n− 1) columns each, with each block handling the ith row of the
distance matrix D. Our assumption that G is strongly connected guarantees
that every entry dij in D is a non-negative finite integer.
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For the ith block, we view it as a matrix of dimension n × (n − 1), set the
entries as

ajs =





0 if j = i

1 if j 6= i and j − 1 ≤ s ≤ di,j + j − 2
∗ otherwise

This gives us a good assignment with k = n(n− 1) address length.¤

Theorem 1.2 For directed cycles Cn, we have q(Cn) > µn3/2 for some
constanct µ > 0.

Proof of Theorem 1.2: Exercise.

2 Hypercubes

First we recall the definition of hypercubes from Lecture note week 1:

Definition 2.1 Qn(n-cube) is a graph with V (Qn) = {0, 1}n, i.e. V (Qn) =
{a : a is a binary string of length n}, and a ∼ b if and only if they differ in
exactly one coordinate.

Definition 2.2 Hamming distance between u and v, dQn(u, v), is the num-
ber of coordinates in which u and v differ in Qn.

So far we have been looking at the following two problems:

Question 1: Given graph G, does G have an embedding into a hyper-
cube Qn that is distance-preserving?

Question 2: If affirmative, what is the minimum dimension of the hy-
percube? (ref Karzanov 85)

For question 1, we do know two necessary conditions for the given graph G
to be embeddable into a hypercube.

1. G has to be bipartite.

2. For any edge {u, v} and any vertex w, it should hold that d(w, v) =
d(w, u) + d(u, v) or d(w, u) = d(w, v) + d(u, v).
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3 Graph Embedding

One of the classical problems on graph embedding is when the host graph
H is a path. Namely, given G = (V,E), we consider the embeddings f :
V → {1, 2, ..., n} = [1, n]. There are a few related quantities we would like
to compute for any embedding given G = (V,E):

Definition 3.1 For a particular f , the bandwidth is defined to be the max-
imum stretch

B(f) = max
x∼y

|f(x)− f(y)|
Bandwidth (a.k.a. dilation)for the graph G is defined as

B(G) = min
f

B(f)

In other words, the bandwidth problem is to arrange the vertices of a graph
into a line (of integers) such that the maximum stretch of edges of the graph
is minimized.

Definition 3.2 For a particular f , the cutwidth is defined to be

CW (f) = max
i
|{u, v} ∈ E : f(u) ≤ i < f(v)|

Bandwidth (a.k.a. congestion) for the graph G is defined as

CW (G) = min
f

CW (f)

In other words, the cutwidth problem is to arrange vertices in a line so that
the maximum number of edges crossing the ith place, over all i, is minimized.

Definition 3.3 Linear arrangement for the graph G is defined as

Sum(G) = min
f

∑
x∼y

|f(x)− f(y)|

Compared with bandwidth and cutwidth which concern about the extreme
case, the linear arrangement concerns about the average case.

We may also extend the embedding to the case when the host graph H is
no longer discrete, namely the real line H = R, and we consider f : V →R.
It is of interest to look at Σx∼y(f(x) − f(y))2 in both worlds in order to
get a feel of the bandwidth and cutwidth problems. This quantity, however,
has interesting connection with the combinatorial laplacian of the original
graph G.
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4 Combinatorial Laplacian

There are a number of different views we can take to define the combinato-
rial laplacian of a given graph G. Different choice of them may be helpful
in different contexts.

View 1:
Let An×n be the adjacency matrix of G, Dn×n be the diagonal degree ma-
trix (i.e. degree of each vertex is on the diagonal), then the combinatorial
laplacian of G is defined as L = D −A.

Notice that in L = (lij),

lij =





deg(i) for i = j

−1 for i 6= j and i ∼ j

0 otherwise

Lemma 4.1 ∑
x∼y

(f(x)− f(y))2 = 〈f, Lf〉

Proof of Lemma 4.1: Let us first examine Lf , notice the element corre-
sponding to vertex v

Lf(v) = deg(v)f(v)−
∑
u∼v

f(u) =
∑
u∼v

(f(v)− f(u))

Then we have

〈f, Lf〉 =
∑

v f(v)Lf(v)
=

∑
v f(v)

∑
u∼v(f(v)− f(u))

=
∑

u∼v[f
2(v)− 2f(u)f(v) + f2(u)]

=
∑

u∼v[f(u)− f(v)]2

This proves Lemma 4.1.¤

View 2:
Let Bn×m be the incidence matrix of G, then the combinatorial laplacian of
G is defined as L = BBT .
In B, rows are indexed by V and columns indexed by E. For each edge
e = u, v ∈ E corresponding to a column, the entry where the row that cor-
responds to u is 1, and the entry where the row that corresponds to v is -1.
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For undirected graph G, the 1 and -1 is assigned arbitrarily.

View 3:
Homology theory.

View 4:
Differential geometry.

One important feature of L is that because it’s symmetric, it can be diago-
nalized. We will discuss how we can exploit this nice property in the next
few lectures.
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