
Math 262B Lecture Note 2

Prof. Fan Chung Graham

April 24, 2003

Note: this borrows heavily from Van Lint and Wilson’s A course in Combi-
natorics - pages 79-83

1 An Addressing Problem

Theorem (Winkler ’83) Let G = (V,E). Then q(G) ≤ | V(G) | - 1

Proof
First, pick a vertex, x0, then create a spanning tree T by a breadth-first search,
and then number the vertices by a depth-first search.

Let n := |V (G)| − 1.
For i ≤ n, define

P (i) := {j : xj is on a path from x0 to xi in T}.

i4j := max(P (i)
⋂

P (j))

i’ := max(P(i) \{i})

i ∼ j ⇐⇒ P(i) ⊆ P(j) or P(j) ⊆ P(i)

Denote distances in G by dG, and distances in T by dT .

Def: discrepancy function c(i, j) := dT (xi, xj)− dG(xi, xj)

Lemma 1.
(i) c(i, j) = c(j, i) ≥ 0
(ii) if i ∼ j, then c(i, j) = 0
(iii) if i � j, then c(i, j′) ≤ c(i, j) ≤ c(i, j′) + 2

Proof. (i) is trivial; (ii) follows from the definition of T since

dG(xi, xj) ≥ |dG(xj , x0)− dG(xi, x0)| = dT (xi, xj)

1

(iii) follows from the fact that |dG(xi, xj)− dG(xi, xj′)| ≤ 1 and that
dT (xi, xj) = 1 + dT (xi, xj′)

Now the addressing. For 0 ≤ i ≤ n the vertex xi is given the address
aiε{0, 1, ∗}n, where

ai = (ai(1), ai(2), ..., ai(n))

and

ai(j) :=


1 if j ε P(i)

*

 c(i,j) - c(i,j’) = 2, or
c(i,j) - c(i,j’) = 1, i < j,c(i,j)even, or
c(i,j) - c(i,j’) = 1, i > j,c(i,j)odd

0 otherwise

Lemma 2. d(ai,ak) = dG(xi, xk)

Proof. WLOG, assume that i < k.
If i ∼ k, then dG(xi, xk) = |P (k)\P (i)|. j ∈ P (k)\P (i) iff ak(j) = 1 and

ai(j) 6= 1. For these values of j, we see that c(i, j) = 0, hence ai(j) = 0 and
we’re done.

If i � k, then let n1 ≤ n2 ≤ ... ≤ nl be a nondecreasing sequence of
integers such that |ni+1 − ni| ≤ 2 for all i. If m is an even integer between
n1 and nl that does not occur in the sequence, then there is an i such that
ni = m− 1, ni+1 = m + 1. Now consider the sequence

c(i, k) ≥ c(i, k′) ≥ c(i, k′′) ≥ ... ≥ c(i, i4k) = 0

So, by the definition of ai(j) and the comments above, ai(j) = ∗ and ak(j) = 1
exactly as many times as there are even integers between c(i, i4k) and c(i, k).
Similarly, ak(j) = ∗ and ai(j) = 1 as many times as there are odd integers
between c(i, i4k) and c(i, k). So

d(ai,ak) = |P (k)\P (i)|+ |P (i)\P (k)| − c(i, k)
= dT (xi, xk)− c(i, k)
= dG(xi, xk).

(1)

Thus, we have proven the theorem.

2 Distance and Diameter

There are many notions of distance. Distance answers the question ”how far
are 2 things(points/vertices) apart?”

In a more rigorous setting, we speak of metric instead of distance. A met-
ric, g, is defined to have the following three properties:
(1) g(x,z) ≤ g(x,y) + g(y,z)

2

(2) g(x,x) = 0
(3) g(x,y) = g(y,x)

Examples of metrics:

Graph(undirected) distance:
d(u, v) = the length of the shortest path from u to v.
Directed graphs typically violate property 2 and 3, and thus is not considered
a metric.

For lp spaces,
#1 l1–distance d1(x, y) = Σ|xi − yi|
#2 l2–distance d2(x, y) = [Σ|xi − yi|2]1/2

#3 lp–distance dp(x, y) = [Σ|xi − yi|p]1/p

#4 l∞–distance d∞(x, y) = max|xi − yi|

What does the l stand for? Man may never know.

2.1 Computing graph Diameter

Graph diameter D = maxu,vd(u, v), the length of the ”longest shortest path”.

To compute the diameter of a tree, pick any vertex, and find its furthest point
(computing a BFS will do this). Then pick that furthest point, and find the
furthest point from it.

A more general way to compute the graph diameter is to compute the shortest
path between each pair of vertices, and take the max. This is known as all pairs
shortest path, which could be done using a BFS on each vertex, which takes
O(n3) time. This is little worse than the current best all pairs shortest path
algorithm. Due to the large overlap of data in the BFS trees, this bound is very
unsatisfactory.

3

