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1 Basic Settings

G(V, E) is a graph with vertex set V' and edge set E. A walk is a sequence of
vertices vy, ..., v such that v; ~ vi41, (i.e. (vi,vi11) € E). A path is a walk
with distinct vertices, i.e. v; # v; for i # j. For u,v € V, the distance d(u,v)
is the length of the shortest path from u to v. The diameter of graph G is
D(G) = maxy pevd(u,v). For example, in Figure 1, d(vi,v3) = 2, D(G) = 3.
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Figure 1: an example of graph G

2 Graph Embedding

Definition 2.1 @, (n-cube) is a graph with V(Qn) = {0,1}", i.e. V(Qp) =
{a : a is a binary string of length n}, and a ~ b if and only if they differ in
exactly one coordinate.

Definition 2.2 Hamming distance between u and v, dg, (u,v), is the num-
ber of coordinates in which u and v differ in Q.

Now we want to discuss the embedding f of graph G into the hosting
graph H (f : V(G) — V(H)). There are two types of embeddings:

Type-1 Embedding (edge-preserving):
If u~wvin G, then f(u) ~ f(v) in H.



Remark 2.3 For Type-1 Embedding, G is embedded in H as a subgraph.

Type-2 Embedding (distance-preserving):
dg(U, U) = dH(f(U), f(U))

Remark 2.4 Type-2 Embedding is stronger than Type-1 Embedding as distance-
preserving is necessarily edge-preserving.

Figure 2: G’

For example, we embed graph G’ (see Figure 2) in G in two different
ways. We define f, f' : G’ — G, respectively, such that f(1) = vy, f(2) =
vp, f(3) = va, f(4) = vg and F(1) = vy, f(2) = va, £'(3) = vg, f/(4) =
vs then we can see that f is a Type-1 Embedding while f’ is a Type-2
Embedding.

3 An addressing problem (’71 Graham-Pollak)

For graph G = (V, E), we want to assign ‘addresses’, which are binary strings
of length k, to vertices of G so that the Hamming distance of the addresses
of two vertices is equal to the distance of the two vertices in G. And we call
this assignment of addresses a good assignment. In another word, we want
to find a Type-2 Embedding of G in the n-cube.

Remark 3.1 If these addresses exist, it will be an excellent scheme for rout-
ing. But we know that a lot of graphs(e.g. Ks) are not embeddable in hy-
percubes. Therefore, we need modifications of the problem and settings.

Definition 3.2 Addresses are strings a = (a1, az,...,a;) of 0’s, 1’s and *’s
with distance

d(a,b) = [{i : {ai,bi} = {0,1}}].

Thus, we can define Q) and the Hamming distance in it similarly as in
Definition 2.2.



Under this modification, we can ask the question “Does a good assign-
ment of addresses defined above always exist?”

Theorem 3.3 For any graph G, there is always a good assignment of ad-
dresses to it.

Given Theorem 3.3, let ¢(G) = min{k : there is a good assignment
f:V —1{0,1,%}*}, we want to find ¢(G) for any graph G.

Before proving Theorem 3.3, we look at the graph in Figure 1. We can
assign addresses to the vertices vi,...,vs and write them in matrix form
with the ith row corresponding to the address of v;:

U1 1 1 1 x x
V9 1 0 x 1 =«
U3 * 0 0 0 1
on 00 1 % =«
U5 00 00O

This is apparently a good assignment of addresses to graph G.

We now show the correspondence between addressing of a graph and
quadratic forms. (This is the 3rd way of looking at addressing problem!)
To the first column of the addresses above, we associate the product (z1 +
x9)(x4+x5). Here x; is in the first, respectively second, factor if the address
of v; has a 1, respectively a 0, in the first column. If we do the same thing
for each column and add the terms, we obtain a quadratic form

Z dijrizy = (x1 + x2) (x4 + x5) + 1 (22 + 23 + T4 + 25)
+ (21 + x4) (23 + 25) + x2(23 + T5) + T325.

Here d;; is the distance of the vertices v; and v; in G. Thus, in general,
an addressing of G corresponds to writing the quadratic form ) d;;x;x; as
a sum of k products where k is the length of the addresses. Trivially, we
can see that for any graph G there are at most D(G)n(n — 1)/2 products.
Hence, we’ve proved 3.3.

We can save a factor of n/2 if we write

D(G)
zi(za+ - an)+ Y wi(wg oot
i=2
where z;,, ..., T, are all those vertices for which dy ;, > i. We then repeat
for xo(xg + -+ -+ xn) + -+, and so on up to dy_1,, copies of zp, x,. In this



way, we have at most (n—1)D(G) products in the quadratic form ) d;jz;x;.
Thus, we proved the following theorem:

Theorem 3.4 ¢(G) < (n—1)D(G).

In fact, we can prove that ¢(G) < n—1(’83 Winkler) and show that n—1
is also the lower bound for ¢(G) for some graphs G. We first show this for
trees. To prove this, we need the following theorem:

Theorem 3.5 Let ny, respectively n_, be the number of positive, respec-
tively negative, eigenvalues of the distance matriz M = (d;;) of the graph G.
Then q(G) > max{n4,n_}.

Theorem 3.6 If T is a tree on n vertices, then q¢(T) =n — 1.

Proof of Theorem 3.6: We first show ¢(7) < n — 1 by induction on n.
For n = 2, we have a trivial addressing with length 1, namely v; — 0 and
vy — 1. Now for T" with n vertices, suppose v is a leaf and (v,w) € E(T).
Suppose there is a good assignment f for 7" =T\ {v}, we define

_f (f(w),0) ifuz#ov
g(“)_{ (f(u),1) ifu=n

Then, g is a good assignment for T' for

d(g(u), g(u')) = d((f(u), 0), (f(u'),0)) = d(f(u), f(u) = dr(u,v)

for any u,u € V(T) and obviously

d(g(v), g(w)) = d((f(v), 1), (f(w),0)) = d(f(v), f(w)) + 1 = dr(v, w),

and g is of length n — 2+ 1 = n — 1 by the induction hypothesis.

To show ¢(T) > n — 1, we first calculate the determinant of distance
matrix M = (d;j) of T. We number the vertices v1,...,v, in such a way
that v, is a leaf adjacent to v,—_1. In the distance matrix, we subtract row
n — 1 from row n, and subtract column n — 1 from n. Then all the entries in
the new last row and column are 1 except for the diagonal element which is
equal to -2. Now renumber the vertices v1,...,v,—1 in such a way that the
new vertex v,_1 is a leaf of T'\ {v, } adjacent to v,_3. Repeat the procedure
for the rows and columns with numbers n — 1 and n — 2. After n — 1 steps,
we have the determinant:

0 1 1 1
1 -2 0

1 0 =2 0
1 0 0 -2




Thus we find that the determinant of the distance matrix of a tree on n
vertices is (—1)""1(n —1)2""2, i.e. it depends only on n. From this fact and
Theorem 3.5, we can prove that ¢(G) > n — 1 which is left as an exercise.[J

For complete graph K,,, the distance between any two distinct vertices
is 1. Therefore, we can take the identity matrix of size n — 1, replace the
zeros above the diagonal by *’s and add a row of 0’s:

1 % -+ % x
01 .-+ % =%
00 -+ 01
00 --- 00

Any two rows now have distance 1 and hence ¢(K,) <n — 1.



