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1 Basic Settings

G(V,E) is a graph with vertex set V and edge set E. A walk is a sequence of
vertices v1, . . . , vt such that vi ∼ vi+1, (i.e. (vi, vi+1) ∈ E). A path is a walk
with distinct vertices, i.e. vi 6= vj for i 6= j. For u, v ∈ V , the distance d(u, v)
is the length of the shortest path from u to v. The diameter of graph G is
D(G) = maxu,v∈V d(u, v). For example, in Figure 1, d(v1, v3) = 2, D(G) = 3.

Figure 1: an example of graph G

2 Graph Embedding

Definition 2.1 Qn(n-cube) is a graph with V (Qn) = {0, 1}n, i.e. V (Qn) =
{a : a is a binary string of length n}, and a ∼ b if and only if they differ in
exactly one coordinate.

Definition 2.2 Hamming distance between u and v, dQn(u, v), is the num-
ber of coordinates in which u and v differ in Qn.

Now we want to discuss the embedding f of graph G into the hosting
graph H (f : V (G) → V (H)). There are two types of embeddings:

Type-1 Embedding (edge-preserving):
If u ∼ v in G, then f(u) ∼ f(v) in H.
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Remark 2.3 For Type-1 Embedding, G is embedded in H as a subgraph.

Type-2 Embedding (distance-preserving):
dG(u, v) = dH(f(u), f(v)).

Remark 2.4 Type-2 Embedding is stronger than Type-1 Embedding as distance-
preserving is necessarily edge-preserving.

Figure 2: G′

For example, we embed graph G′ (see Figure 2) in G in two different
ways. We define f, f ′ : G′ → G, respectively, such that f(1) = v1, f(2) =
v2, f(3) = v4, f(4) = v3 and f ′(1) = v1, f

′(2) = v2, f
′(3) = v4, f

′(4) =
v5 then we can see that f is a Type-1 Embedding while f ′ is a Type-2
Embedding.

3 An addressing problem (’71 Graham-Pollak)

For graph G = (V,E), we want to assign ‘addresses’, which are binary strings
of length k, to vertices of G so that the Hamming distance of the addresses
of two vertices is equal to the distance of the two vertices in G. And we call
this assignment of addresses a good assignment. In another word, we want
to find a Type-2 Embedding of G in the n-cube.

Remark 3.1 If these addresses exist, it will be an excellent scheme for rout-
ing. But we know that a lot of graphs(e.g. K3) are not embeddable in hy-
percubes. Therefore, we need modifications of the problem and settings.

Definition 3.2 Addresses are strings a = (a1, a2, . . . , at) of 0’s, 1’s and *’s
with distance

d(a, b) = |{i : {ai, bi} = {0, 1}}|.

Thus, we can define Q∗
n and the Hamming distance in it similarly as in

Definition 2.2.
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Under this modification, we can ask the question “Does a good assign-
ment of addresses defined above always exist?”

Theorem 3.3 For any graph G, there is always a good assignment of ad-
dresses to it.

Given Theorem 3.3, let q(G) = min{k : there is a good assignment
f : V → {0, 1, ∗}k}, we want to find q(G) for any graph G.

Before proving Theorem 3.3, we look at the graph in Figure 1. We can
assign addresses to the vertices v1, . . . , v5 and write them in matrix form
with the ith row corresponding to the address of vi:

v1 1 1 1 ∗ ∗
v2 1 0 ∗ 1 ∗
v3 ∗ 0 0 0 1
v4 0 0 1 ∗ ∗
v5 0 0 0 0 0

This is apparently a good assignment of addresses to graph G.
We now show the correspondence between addressing of a graph and

quadratic forms. (This is the 3rd way of looking at addressing problem!)
To the first column of the addresses above, we associate the product (x1 +
x2)(x4 +x5). Here xi is in the first, respectively second, factor if the address
of vi has a 1, respectively a 0, in the first column. If we do the same thing
for each column and add the terms, we obtain a quadratic form∑

dijxixj = (x1 + x2)(x4 + x5) + x1(x2 + x3 + x4 + x5)

+ (x1 + x4)(x3 + x5) + x2(x3 + x5) + x3x5.

Here dij is the distance of the vertices vi and vj in G. Thus, in general,
an addressing of G corresponds to writing the quadratic form

∑
dijxixj as

a sum of k products where k is the length of the addresses. Trivially, we
can see that for any graph G there are at most D(G)n(n − 1)/2 products.
Hence, we’ve proved 3.3.

We can save a factor of n/2 if we write

x1(x2 + · · ·+ xn) +
D(G)∑
i=2

x1(xi1 + · · ·+ xiji
)

where xi1 , . . . , xiji
are all those vertices for which d1,it ≥ i. We then repeat

for x2(x3 + · · ·+ xn) + · · · , and so on up to dn−1,n copies of xn1xn. In this
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way, we have at most (n−1)D(G) products in the quadratic form
∑

dijxixj .
Thus, we proved the following theorem:

Theorem 3.4 q(G) ≤ (n− 1)D(G).

In fact, we can prove that q(G) ≤ n−1(’83 Winkler) and show that n−1
is also the lower bound for q(G) for some graphs G. We first show this for
trees. To prove this, we need the following theorem:

Theorem 3.5 Let n+, respectively n−, be the number of positive, respec-
tively negative, eigenvalues of the distance matrix M = (dij) of the graph G.
Then q(G) ≥ max{n+, n−}.

Theorem 3.6 If T is a tree on n vertices, then q(T ) = n− 1.

Proof of Theorem 3.6: We first show q(T ) ≤ n − 1 by induction on n.
For n = 2, we have a trivial addressing with length 1, namely v1 → 0 and
v2 → 1. Now for T with n vertices, suppose v is a leaf and (v, w) ∈ E(T ).
Suppose there is a good assignment f for T ′ = T \ {v}, we define

g(u) =
{

(f(u), 0) if u 6= v
(f(u), 1) if u = v

Then, g is a good assignment for T for

d(g(u), g(u′)) = d((f(u), 0), (f(u′), 0)) = d(f(u), f(u′)) = dT (u, u′)

for any u, u′ ∈ V (T ) and obviously

d(g(v), g(w)) = d((f(v), 1), (f(w), 0)) = d(f(v), f(w)) + 1 = dT (v, w),

and g is of length n− 2 + 1 = n− 1 by the induction hypothesis.
To show q(T ) ≥ n − 1, we first calculate the determinant of distance

matrix M = (dij) of T . We number the vertices v1, . . . , vn in such a way
that vn is a leaf adjacent to vn−1. In the distance matrix, we subtract row
n−1 from row n, and subtract column n−1 from n. Then all the entries in
the new last row and column are 1 except for the diagonal element which is
equal to -2. Now renumber the vertices v1, . . . , vn−1 in such a way that the
new vertex vn−1 is a leaf of T \{vn} adjacent to vn−2. Repeat the procedure
for the rows and columns with numbers n− 1 and n− 2. After n− 1 steps,
we have the determinant: ∣∣∣∣∣∣∣∣∣∣∣

0 1 1 · · · 1
1 −2 0 · · · 0
1 0 −2 · · · 0
...

...
...

. . .
...

1 0 0 · · · −2

∣∣∣∣∣∣∣∣∣∣∣
.
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Thus we find that the determinant of the distance matrix of a tree on n
vertices is (−1)n−1(n−1)2n−2, i.e. it depends only on n. From this fact and
Theorem 3.5, we can prove that q(G) ≥ n− 1 which is left as an exercise.�

For complete graph Kn, the distance between any two distinct vertices
is 1. Therefore, we can take the identity matrix of size n − 1, replace the
zeros above the diagonal by *’s and add a row of 0’s:

1 ∗ · · · ∗ ∗
0 1 · · · ∗ ∗
...

...
. . .

...
...

0 0 · · · 0 1
0 0 · · · 0 0

 .

Any two rows now have distance 1 and hence q(Kn) ≤ n− 1.
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