Math 262B Lecture Note 1

Prof. Fan Chung Graham

Compiled by Lei Wu

1 Basic Settings

$G(V, E)$ is a graph with vertex set V and edge set E. A walk is a sequence of vertices v_{1}, \ldots, v_{t} such that $v_{i} \sim v_{i+1}$, (i.e. $\left(v_{i}, v_{i+1}\right) \in E$). A path is a walk with distinct vertices, i.e. $v_{i} \neq v_{j}$ for $i \neq j$. For $u, v \in V$, the distance $d(u, v)$ is the length of the shortest path from u to v. The diameter of graph G is $D(G)=\max _{u, v \in V} d(u, v)$. For example, in Figure 1, $d\left(v_{1}, v_{3}\right)=2, D(G)=3$.

Figure 1: an example of graph G

2 Graph Embedding

Definition 2.1 $Q_{n}\left(n\right.$-cube) is a graph with $V\left(Q_{n}\right)=\{0,1\}^{n}$, i.e. $V\left(Q_{n}\right)=$ $\{a: a$ is a binary string of length $n\}$, and $a \sim b$ if and only if they differ in exactly one coordinate.

Definition 2.2 Hamming distance between u and $v, d_{Q_{n}}(u, v)$, is the number of coordinates in which u and v differ in Q_{n}.

Now we want to discuss the embedding f of graph G into the hosting graph $H(f: V(G) \rightarrow V(H))$. There are two types of embeddings:

Type-1 Embedding (edge-preserving):
If $u \sim v$ in G, then $f(u) \sim f(v)$ in H.

Remark 2.3 For Type-1 Embedding, G is embedded in H as a subgraph.
Type-2 Embedding (distance-preserving):
$d_{G}(u, v)=d_{H}(f(u), f(v))$.
Remark 2.4 Type-2 Embedding is stronger than Type-1 Embedding as distancepreserving is necessarily edge-preserving.

Figure 2: G^{\prime}

For example, we embed graph G^{\prime} (see Figure 2) in G in two different ways. We define $f, f^{\prime}: G^{\prime} \rightarrow G$, respectively, such that $f(1)=v_{1}, f(2)=$ $v_{2}, f(3)=v_{4}, f(4)=v_{3}$ and $f^{\prime}(1)=v_{1}, f^{\prime}(2)=v_{2}, f^{\prime}(3)=v_{4}, f^{\prime}(4)=$ v_{5} then we can see that f is a Type- 1 Embedding while f^{\prime} is a Type-2 Embedding.

3 An addressing problem ('71 Graham-Pollak)

For graph $G=(V, E)$, we want to assign 'addresses', which are binary strings of length k, to vertices of G so that the Hamming distance of the addresses of two vertices is equal to the distance of the two vertices in G. And we call this assignment of addresses a good assignment. In another word, we want to find a Type-2 Embedding of G in the n-cube.

Remark 3.1 If these addresses exist, it will be an excellent scheme for routing. But we know that a lot of graphs(e.g. K_{3}) are not embeddable in hypercubes. Therefore, we need modifications of the problem and settings.

Definition 3.2 Addresses are strings $a=\left(a_{1}, a_{2}, \ldots, a_{t}\right)$ of 0 's, 1 's and *'s with distance

$$
d(a, b)=\left|\left\{i:\left\{a_{i}, b_{i}\right\}=\{0,1\}\right\}\right| .
$$

Thus, we can define Q_{n}^{*} and the Hamming distance in it similarly as in Definition 2.2.

Under this modification, we can ask the question "Does a good assignment of addresses defined above always exist?"

Theorem 3.3 For any graph G, there is always a good assignment of addresses to it.

Given Theorem 3.3, let $q(G)=\min \{k$: there is a good assignment $\left.f: V \rightarrow\{0,1, *\}^{k}\right\}$, we want to find $q(G)$ for any graph G.

Before proving Theorem 3.3, we look at the graph in Figure 1. We can assign addresses to the vertices v_{1}, \ldots, v_{5} and write them in matrix form with the i th row corresponding to the address of v_{i} :

v_{1}	1	1	1	$*$	$*$
v_{2}	1	0	$*$	1	$*$
v_{3}	$*$	0	0	0	1
v_{4}	0	0	1	$*$	$*$
v_{5}	0	0	0	0	0

This is apparently a good assignment of addresses to graph G.
We now show the correspondence between addressing of a graph and quadratic forms. (This is the 3rd way of looking at addressing problem!) To the first column of the addresses above, we associate the product ($x_{1}+$ $\left.x_{2}\right)\left(x_{4}+x_{5}\right)$. Here x_{i} is in the first, respectively second, factor if the address of v_{i} has a 1 , respectively a 0 , in the first column. If we do the same thing for each column and add the terms, we obtain a quadratic form

$$
\begin{aligned}
\sum d_{i j} x_{i} x_{j}= & \left(x_{1}+x_{2}\right)\left(x_{4}+x_{5}\right)+x_{1}\left(x_{2}+x_{3}+x_{4}+x_{5}\right) \\
& +\left(x_{1}+x_{4}\right)\left(x_{3}+x_{5}\right)+x_{2}\left(x_{3}+x_{5}\right)+x_{3} x_{5}
\end{aligned}
$$

Here $d_{i j}$ is the distance of the vertices v_{i} and v_{j} in G. Thus, in general, an addressing of G corresponds to writing the quadratic form $\sum d_{i j} x_{i} x_{j}$ as a sum of k products where k is the length of the addresses. Trivially, we can see that for any graph G there are at most $D(G) n(n-1) / 2$ products. Hence, we've proved 3.3.

We can save a factor of $n / 2$ if we write

$$
x_{1}\left(x_{2}+\cdots+x_{n}\right)+\sum_{i=2}^{D(G)} x_{1}\left(x_{i_{1}}+\cdots+x_{i_{j_{i}}}\right)
$$

where $x_{i_{1}}, \ldots, x_{i_{j_{i}}}$ are all those vertices for which $d_{1, i_{t}} \geq i$. We then repeat for $x_{2}\left(x_{3}+\cdots+x_{n}\right)+\cdots$, and so on up to $d_{n-1, n}$ copies of $x_{n_{1}} x_{n}$. In this
way, we have at most $(n-1) D(G)$ products in the quadratic form $\sum d_{i j} x_{i} x_{j}$. Thus, we proved the following theorem:
Theorem $3.4 q(G) \leq(n-1) D(G)$.
In fact, we can prove that $q(G) \leq n-1$ (' 83 Winkler) and show that $n-1$ is also the lower bound for $q(G)$ for some graphs G. We first show this for trees. To prove this, we need the following theorem:

Theorem 3.5 Let n_{+}, respectively n_{-}, be the number of positive, respectively negative, eigenvalues of the distance matrix $M=\left(d_{i j}\right)$ of the graph G. Then $q(G) \geq \max \left\{n_{+}, n_{-}\right\}$.

Theorem 3.6 If T is a tree on n vertices, then $q(T)=n-1$.
Proof of Theorem 3.6: We first show $q(T) \leq n-1$ by induction on n. For $n=2$, we have a trivial addressing with length 1 , namely $v_{1} \rightarrow 0$ and $v_{2} \rightarrow 1$. Now for T with n vertices, suppose v is a leaf and $(v, w) \in E(T)$. Suppose there is a good assignment f for $T^{\prime}=T \backslash\{v\}$, we define

$$
g(u)= \begin{cases}(f(u), 0) & \text { if } u \neq v \\ (f(u), 1) & \text { if } u=v\end{cases}
$$

Then, g is a good assignment for T for

$$
d\left(g(u), g\left(u^{\prime}\right)\right)=d\left((f(u), 0),\left(f\left(u^{\prime}\right), 0\right)\right)=d\left(f(u), f\left(u^{\prime}\right)\right)=d_{T}\left(u, u^{\prime}\right)
$$

for any $u, u^{\prime} \in V(T)$ and obviously

$$
d(g(v), g(w))=d((f(v), 1),(f(w), 0))=d(f(v), f(w))+1=d_{T}(v, w)
$$

and g is of length $n-2+1=n-1$ by the induction hypothesis.
To show $q(T) \geq n-1$, we first calculate the determinant of distance matrix $M=\left(d_{i j}\right)$ of T. We number the vertices v_{1}, \ldots, v_{n} in such a way that v_{n} is a leaf adjacent to v_{n-1}. In the distance matrix, we subtract row $n-1$ from row n, and subtract column $n-1$ from n. Then all the entries in the new last row and column are 1 except for the diagonal element which is equal to -2 . Now renumber the vertices v_{1}, \ldots, v_{n-1} in such a way that the new vertex v_{n-1} is a leaf of $T \backslash\left\{v_{n}\right\}$ adjacent to v_{n-2}. Repeat the procedure for the rows and columns with numbers $n-1$ and $n-2$. After $n-1$ steps, we have the determinant:

$$
\left|\begin{array}{ccccc}
0 & 1 & 1 & \cdots & 1 \\
1 & -2 & 0 & \cdots & 0 \\
1 & 0 & -2 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & 0 & 0 & \cdots & -2
\end{array}\right|
$$

Thus we find that the determinant of the distance matrix of a tree on n vertices is $(-1)^{n-1}(n-1) 2^{n-2}$, i.e. it depends only on n. From this fact and Theorem 3.5, we can prove that $q(G) \geq n-1$ which is left as an exercise.

For complete graph K_{n}, the distance between any two distinct vertices is 1 . Therefore, we can take the identity matrix of size $n-1$, replace the zeros above the diagonal by ${ }^{*}$'s and add a row of 0 's:

$$
\left(\begin{array}{ccccc}
1 & * & \cdots & * & * \\
0 & 1 & \cdots & * & * \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \cdots & 0 & 1 \\
0 & 0 & \cdots & 0 & 0
\end{array}\right) .
$$

Any two rows now have distance 1 and hence $q\left(K_{n}\right) \leq n-1$.

