Math 262B Lecture Note 1

Prof. Fan Chung Graham

Compiled by Lei Wu

1 Basic Settings

G(V, E) is a graph with vertex set V and edge set E. A walk is a sequence of vertices v_1, \ldots, v_t such that $v_i \sim v_{i+1}$, (i.e. $(v_i, v_{i+1}) \in E$). A path is a walk with distinct vertices, i.e. $v_i \neq v_j$ for $i \neq j$. For $u, v \in V$, the distance d(u, v) is the length of the shortest path from u to v. The diameter of graph G is $D(G) = \max_{u,v \in V} d(u, v)$. For example, in Figure 1, $d(v_1, v_3) = 2$, D(G) = 3.

Figure 1: an example of graph G

2 Graph Embedding

Definition 2.1 $Q_n(n\text{-}cube)$ is a graph with $V(Q_n) = \{0,1\}^n$, i.e. $V(Q_n) = \{a : a \text{ is a binary string of length } n\}$, and $a \sim b$ if and only if they differ in exactly one coordinate.

Definition 2.2 Hamming distance between u and v, $d_{Q_n}(u, v)$, is the number of coordinates in which u and v differ in Q_n .

Now we want to discuss the embedding f of graph G into the hosting graph H ($f: V(G) \rightarrow V(H)$). There are two types of embeddings:

Type-1 Embedding (edge-preserving): If $u \sim v$ in G, then $f(u) \sim f(v)$ in H. **Remark 2.3** For Type-1 Embedding, G is embedded in H as a subgraph.

Type-2 Embedding (distance-preserving): $d_G(u, v) = d_H(f(u), f(v)).$

Remark 2.4 Type-2 Embedding is stronger than Type-1 Embedding as distancepreserving is necessarily edge-preserving.

Figure 2: G'

For example, we embed graph G' (see Figure 2) in G in two different ways. We define $f, f': G' \to G$, respectively, such that $f(1) = v_1, f(2) = v_2, f(3) = v_4, f(4) = v_3$ and $f'(1) = v_1, f'(2) = v_2, f'(3) = v_4, f'(4) = v_5$ then we can see that f is a Type-1 Embedding while f' is a Type-2 Embedding.

3 An addressing problem ('71 Graham-Pollak)

For graph G = (V, E), we want to assign 'addresses', which are binary strings of length k, to vertices of G so that the Hamming distance of the addresses of two vertices is equal to the distance of the two vertices in G. And we call this assignment of addresses a *good assignment*. In another word, we want to find a Type-2 Embedding of G in the n-cube.

Remark 3.1 If these addresses exist, it will be an excellent scheme for routing. But we know that a lot of graphs (e.g. K_3) are not embeddable in hypercubes. Therefore, we need modifications of the problem and settings.

Definition 3.2 Addresses are strings $a = (a_1, a_2, ..., a_t)$ of 0's, 1's and *'s with distance

$$d(a,b) = |\{i : \{a_i, b_i\} = \{0,1\}\}|$$

Thus, we can define Q_n^* and the Hamming distance in it similarly as in Definition 2.2.

Under this modification, we can ask the question "Does a good assignment of addresses defined above always exist?"

Theorem 3.3 For any graph G, there is always a good assignment of addresses to it.

Given Theorem 3.3, let $q(G) = \min\{k : \text{there is a good assignment} f : V \to \{0, 1, *\}^k\}$, we want to find q(G) for any graph G.

Before proving Theorem 3.3, we look at the graph in Figure 1. We can assign addresses to the vertices v_1, \ldots, v_5 and write them in matrix form with the *i*th row corresponding to the address of v_i :

v_1	1	1	1	*	*
v_2	1	0	*	1	*
v_3	*	0	0	0	1
v_4	0	0	1	*	*
v_5	0	0	0	0	0

This is apparently a good assignment of addresses to graph G.

We now show the correspondence between addressing of a graph and quadratic forms. (This is the 3rd way of looking at addressing problem!) To the first column of the addresses above, we associate the product $(x_1 + x_2)(x_4 + x_5)$. Here x_i is in the first, respectively second, factor if the address of v_i has a 1, respectively a 0, in the first column. If we do the same thing for each column and add the terms, we obtain a quadratic form

$$\sum d_{ij}x_ix_j = (x_1 + x_2)(x_4 + x_5) + x_1(x_2 + x_3 + x_4 + x_5) + (x_1 + x_4)(x_3 + x_5) + x_2(x_3 + x_5) + x_3x_5.$$

Here d_{ij} is the distance of the vertices v_i and v_j in G. Thus, in general, an addressing of G corresponds to writing the quadratic form $\sum d_{ij}x_ix_j$ as a sum of k products where k is the length of the addresses. Trivially, we can see that for any graph G there are at most D(G)n(n-1)/2 products. Hence, we've proved 3.3.

We can save a factor of n/2 if we write

$$x_1(x_2 + \dots + x_n) + \sum_{i=2}^{D(G)} x_1(x_{i_1} + \dots + x_{i_{j_i}})$$

where $x_{i_1}, \ldots, x_{i_{j_i}}$ are all those vertices for which $d_{1,i_t} \ge i$. We then repeat for $x_2(x_3 + \cdots + x_n) + \cdots$, and so on up to $d_{n-1,n}$ copies of $x_{n_1}x_n$. In this way, we have at most (n-1)D(G) products in the quadratic form $\sum d_{ij}x_ix_j$. Thus, we proved the following theorem:

Theorem 3.4 $q(G) \le (n-1)D(G)$.

In fact, we can prove that $q(G) \leq n-1$ ('83 Winkler) and show that n-1 is also the lower bound for q(G) for some graphs G. We first show this for trees. To prove this, we need the following theorem:

Theorem 3.5 Let n_+ , respectively n_- , be the number of positive, respectively negative, eigenvalues of the distance matrix $M = (d_{ij})$ of the graph G. Then $q(G) \ge \max\{n_+, n_-\}$.

Theorem 3.6 If T is a tree on n vertices, then q(T) = n - 1.

Proof of Theorem 3.6: We first show $q(T) \leq n-1$ by induction on n. For n = 2, we have a trivial addressing with length 1, namely $v_1 \to 0$ and $v_2 \to 1$. Now for T with n vertices, suppose v is a leaf and $(v, w) \in E(T)$. Suppose there is a good assignment f for $T' = T \setminus \{v\}$, we define

$$g(u) = \begin{cases} (f(u), 0) & \text{if } u \neq v \\ (f(u), 1) & \text{if } u = v \end{cases}$$

Then, g is a good assignment for T for

$$d(g(u), g(u')) = d((f(u), 0), (f(u'), 0)) = d(f(u), f(u')) = d_T(u, u')$$

for any $u, u' \in V(T)$ and obviously

$$d(g(v), g(w)) = d((f(v), 1), (f(w), 0)) = d(f(v), f(w)) + 1 = d_T(v, w),$$

and g is of length n - 2 + 1 = n - 1 by the induction hypothesis.

To show $q(T) \geq n-1$, we first calculate the determinant of distance matrix $M = (d_{ij})$ of T. We number the vertices v_1, \ldots, v_n in such a way that v_n is a leaf adjacent to v_{n-1} . In the distance matrix, we subtract row n-1 from row n, and subtract column n-1 from n. Then all the entries in the new last row and column are 1 except for the diagonal element which is equal to -2. Now renumber the vertices v_1, \ldots, v_{n-1} in such a way that the new vertex v_{n-1} is a leaf of $T \setminus \{v_n\}$ adjacent to v_{n-2} . Repeat the procedure for the rows and columns with numbers n-1 and n-2. After n-1 steps, we have the determinant:

$$\begin{vmatrix} 0 & 1 & 1 & \cdots & 1 \\ 1 & -2 & 0 & \cdots & 0 \\ 1 & 0 & -2 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & 0 & 0 & \cdots & -2 \end{vmatrix}$$

Thus we find that the determinant of the distance matrix of a tree on n vertices is $(-1)^{n-1}(n-1)2^{n-2}$, i.e. it depends only on n. From this fact and Theorem 3.5, we can prove that $q(G) \ge n-1$ which is left as an exercise.

For complete graph K_n , the distance between any two distinct vertices is 1. Therefore, we can take the identity matrix of size n - 1, replace the zeros above the diagonal by *'s and add a row of 0's:

$$\begin{pmatrix} 1 & * & \cdots & * & * \\ 0 & 1 & \cdots & * & * \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & 0 & 1 \\ 0 & 0 & \cdots & 0 & 0 \end{pmatrix}.$$

Any two rows now have distance 1 and hence $q(K_n) \leq n - 1$.