CSE202 Greedy algorithms II

An induced subgraph of the collaboration graph (with Euler number at most 2).

G is a tree on n vertices.

G is connected with no cycle.

G is connected with $n-1$ edges.

G is formed by adding a leaf to a tree of $n-1$ vertices.

There is a unique path between any two vertices.
A binary tree

An example of a complete binary tree

A k-level complete binary tree has ?? vertices.
A binary heap is a useful data structure if you have a collection of objects to which you are adding more objects and need to remove the object with the lowest value.

Insert? Delete?

inserting an item into a binary heap

(a)
\[\begin{array}{c} 3 \\ 4 \\ 7 \\ 5 \\ 2 \end{array} \]

(b)
\[\begin{array}{c} 3 \\ 4 \\ 7 \\ 5 \\ 6 \end{array} \]

(c)
\[\begin{array}{c} 2 \\ 4 \\ 7 \\ 5 \\ 6 \end{array} \]
4.5 Minimum Spanning Tree
Minimum Spanning Tree

Minimum spanning tree. Given a connected graph \(G = (V, E) \) with real-valued edge weights \(c_e \), an MST is a subset of the edges \(T \subseteq E \) such that \(T \) is a spanning tree whose sum of edge weights is minimized.

\[
\begin{align*}
G &= (V, E) \\
T, \quad \Sigma_{e \in T} c_e &= 50
\end{align*}
\]

Cayley's Theorem. There are \(n^{n-2} \) spanning trees of \(K_n \).

Applications

MST is fundamental problem with diverse applications.

- Network design.
 - telephone, electrical, hydraulic, TV cable, computer, road

- Approximation algorithms for NP-hard problems.
 - traveling salesman problem, Steiner tree

- Indirect applications.
 - max bottleneck paths
 - LDPC codes for error correction
 - image registration with Renyi entropy
 - learning salient features for real-time face verification
 - reducing data storage in sequencing amino acids in a protein
 - model locality of particle interactions in turbulent fluid flows
 - autoconfig protocol for Ethernet bridging to avoid cycles in a network

- Cluster analysis.
Greedy Algorithms

Kruskal’s algorithm. Start with $T = \emptyset$. Consider edges in ascending order of cost. Insert edge e in T unless doing so would create a cycle.

Reverse-Delete algorithm. Start with $T = E$. Consider edges in descending order of cost. Delete edge e from T unless doing so would disconnect T.

Prim’s algorithm. Start with some root node s and greedily grow a tree T from s outward. At each step, add the cheapest edge e to T that has exactly one endpoint in T.

Remark. All three algorithms produce an MST.

Greedy Algorithms

Simplifying assumption. All edge costs c_e are distinct.

Cut property. Let S be any subset of nodes, and let e be the min cost edge with exactly one endpoint in S. Then the MST contains e.

Cycle property. Let C be any cycle, and let f be the max cost edge belonging to C. Then the MST does not contain f.

e is in the MST

f is not in the MST
Cycles and Cuts

Cycle. Set of edges the form a-b, b-c, c-d, ..., y-z, z-a.

![Cycle diagram]

Cycle C = 1-2, 2-3, 3-4, 4-5, 5-6, 6-1

Cutset. A cut is a subset of nodes S. The corresponding cutset D is the subset of edges with exactly one endpoint in S.

![Cut diagram]

Cut S = {4, 5, 8}
Cutset D = 5-6, 5-7, 3-4, 3-5, 7-8

Cycle-Cut Intersection

Claim. A cycle and a cutset intersect in an even number of edges.

![Intersection diagram]

Cycle C = 1-2, 2-3, 3-4, 4-5, 5-6, 6-1
Cutset D = 3-4, 3-5, 5-6, 5-7, 7-8
Intersection = 3-4, 5-6

Pf. (by picture)
Greedy Algorithms

Simplifying assumption. All edge costs c_e are distinct.

Cut property. Let S be any subset of nodes, and let e be the min cost edge with exactly one endpoint in S. Then the MST T^* contains e.

Pf. (exchange argument)
- Suppose e does not belong to T^*, and let's see what happens.
- Adding e to T^* creates a cycle C in T^*.
- Edge e is both in the cycle C and in the cutset D corresponding to S
 \Rightarrow there exists another edge, say f, that is in both C and D.
- $T' = T^* \cup \{ e \} - \{ f \}$ is also a spanning tree.
- Since $c_e < c_f$, $cost(T') < cost(T^*)$.
- This is a contradiction. *

Greedy Algorithms

Simplifying assumption. All edge costs c_e are distinct.

Cycle property. Let C be any cycle in G, and let f be the max cost edge belonging to C. Then the MST T^* does not contain f.

Pf. (exchange argument)
- Suppose f belongs to T^*, and let's see what happens.
- Deleting f from T^* creates a cut S in T^*.
- Edge f is both in the cycle C and in the cutset D corresponding to S
 \Rightarrow there exists another edge, say e, that is in both C and D.
- $T' = T^* \cup \{ e \} - \{ f \}$ is also a spanning tree.
- Since $c_e < c_f$, $cost(T') < cost(T^*)$.
- This is a contradiction. *
Prim's Algorithm: Proof of Correctness

Prim's algorithm. [Jarník 1930, Dijkstra 1957, Prim 1959]
- Initialize $S = \text{any node}$.
- Apply cut property to S.
- Add min cost edge in cutset corresponding to S to T, and add one new explored node u to S.

Implementation: Prim's Algorithm

Implementation. Use a priority queue ala Dijkstra.
- Maintain set of explored nodes S.
- For each unexplored node v, maintain attachment cost $a[v] = \text{cost of cheapest edge } v \text{ to a node in } S$.
- $O(n^2)$ with an array; $O(m \log n)$ with a binary heap.

```python
Prim(G, c) {
    foreach (v ∈ V) a[v] ← ∞
    Initialize an empty priority queue $Q$
    foreach (v ∈ V) insert $v$ onto $Q$
    Initialize set of explored nodes $S$ ← $\emptyset$

    while (Q is not empty) {
        u ← delete min element from $Q$
        $S$ ← $S$ ∪ {u}
        foreach (edge e = (u, v) incident to u)
            if ((v ∈ S) and ($c_\text{u} < a[v]$))
                decrease priority $a[v]$ to $c_\text{u}$
    }
}
```
Implementing Prim’s algorithm
Prim’s algorithm finds a minimum spanning tree.

Using a priority queue

Maintaining minimum

Prim’s algorithm
Prim’s algorithm finds a minimum spanning tree.

Input: G, c

Initially, $S = \{s\} = \{$vertices in the current tree$\}$

For $V-S \neq \emptyset$, select $u \notin S$ but adjacent to some vertex in S.

Compute

$$f(u) = \min_{e=(w,u), w \in S} c(e)$$

Pick v so that $f(v) = \min_{u \in S} \{f(u)\}$

Set $S \leftarrow S \cup \{v\}$ and add edge $\{w,v\}$.

Endfor
Implementing Prim's algorithm
Prim's algorithm finds a minimum spanning tree.

Input: G, c

Initially, $S = \{s\} = \{\text{vertices in the current tree}\}$ heap

For $S' = V - S \neq \emptyset$, select $u \notin S$ but adjacent to some vertex in S.

Compute $f(u) = \min_{e = (w, u) \in E} c(e)$

Pick v so that $f(v) = \min_{u \in S} \{f(u)\}$ by extractmin

Set $S \leftarrow S \cup \{v\}$ and add edge $\{w, v\}$.

Update S' for neighbors u of v

Endfor

$f(u) \leftarrow \min\{c(\{u, v\}), \text{old } f(u)\}$

Implementing Prim's algorithm
Prim's algorithm finds a minimum spanning tree.

Running time: at most n extractmin
and at most m changekey

Total: $O(m \log n)$.
Kruskal’s Algorithm: Proof of Correctness

Kruskal’s algorithm. [Kruskal, 1956]

- Consider edges in ascending order of weight.
- Case 1: If adding e to T creates a cycle, discard e according to cycle property.
- Case 2: Otherwise, insert e = (u, v) into T according to cut property where S = set of nodes in u’s connected component.

![Case 1](image1)

![Case 2](image2)

Implementation: Kruskal’s Algorithm

Implementation. Use the union-find data structure.
- Build set T of edges in the MST.
- Maintain set for each connected component.
- $O(m \log n)$ for sorting and $O(m \alpha(m, n))$ for union-find.

$m \leq n^3 \Rightarrow \log m = O(\log n)$ \\
essentially a constant

```java
Kruskal(G, c) {
    Sort edges weights so that $c_1 \leq c_2 \leq \ldots \leq c_m$.
    $T \leftarrow \emptyset$

    foreach $(u \in V)$ make a set containing singleton $u$

    for $i = 1$ to $m$
        $(u, v) = e_i$
        if $(u$ and $v$ are in different sets) {
            $T \leftarrow T \cup \{e_i\}$
            merge the sets containing $u$ and $v$
        }
    return $T$
}
```
Union-Find Implementation

Find-Set \(x \) - follow pointers from \(x \) up to root

Union \(x, y \) - make \(x \) a child of \(y \) and return \(y \)

Path Compression

Find-Set \(c \)

Intro to Data Structures and Algorithms ©
The function $\lg^* n$

$\lg^* n$ = the number of times we have to take the \log_2 of n repeatedly to reach 1

- $\lg^* 2 = 1$
- $\lg^* 3 = \lg^* 4 = \lg^* 2^2 = 2$
- $\lg^* 16 = \lg^* 2^{2^2} = 3$
- $\lg^* 65536 = \lg^* 2^{2^{2^2}} = 4$

$\Rightarrow \lg^* n \leq 5$ for all practical values of n

Theorem (Tarjan): If $S = \text{a sequence of } O(n) \text{ Unions and Find-Sets}$

The worst-case time for S with

- Weighted Unions, and
- Path Compressions

is $O(n \lg^* n)$

\Rightarrow The average time is $O(\lg^* n)$ per operation
Ackerman's function

Define the function $A_i(x)$ inductively by

\[
A_0(x) = x + 1 \\
A_{i+1}(x) = A_i(A_i(\ldots A_i(x))) \text{, where } A_i \text{ is applied } x + 1 \text{ times.}
\]

\[
A_1(x) = 2x + 1 \\
A_2(x) = A_1(A_1(\ldots A_1(x))) > 2^{x+1} \\
A_3(x) = A_2(A_2(\ldots A_2(x))) > 2^{2^{x+1}}
\]

The **Inverse Ackerman function is**

\[
\alpha(n) = \min\{k : A_k(1) > n\}
\]

Theorem (Tarjan): Let

S = sequence of $\Omega(n)$ Unions and Find-Sets

The worst-case time for S with

- Weighted Unions, and
- Path Compressions

is $O(n\alpha(n))$

\Rightarrow The average time is $O(\alpha(n))$ steps per operation
Implementation: Kruskal’s Algorithm

Implementation. Use the union-find data structure.
- Build set T of edges in the MST.
- Maintain set for each connected component.
- $O(m \log n)$ for sorting and $O(m \alpha(m, n))$ for union-find.

\[m \leq n^2 \Rightarrow \log m \approx O(\log n) \text{ essentially a constant} \]

\begin{verbatim}
Kruskal(G, c) {
 Sort edges weights so that $c_1 \leq c_2 \leq \ldots \leq c_m$.
 $T \leftarrow \emptyset$
 for each $(u \in V)$ make a set containing singleton u
 for $i = 1$ to m
 are u and v in different connected components?
 $(u, v) = e_i$
 if $(u$ and v are in different sets) {
 $T \leftarrow T \cup \{e_i\}$
 merge the sets containing u and v
 }
 return T
}
\end{verbatim}

Lexicographic Tiebreaking

To remove the assumption that all edge costs are distinct: perturb all edge costs by tiny amounts to break any ties.

Impact. Kruskal and Prim only interact with costs via pairwise comparisons. If perturbations are sufficiently small, MST with perturbed costs is MST with original costs. e.g., if all edge costs are integers, perturbing cost of edge e, by i / n^2

Implementation. Can handle arbitrarily small perturbations implicitly by breaking ties lexicographically, according to index.

\begin{verbatim}
boolean less(i, j) {
 if (cost(e_i) < cost(e_j)) return true
 else if (cost(e_i) > cost(e_j)) return false
 else if (i < j) return true
 else return false
}
\end{verbatim}
4.7 Clustering

Clustering. Given a set U of n objects labeled p_1, \ldots, p_n, classify into coherent groups.

Distance function. Numeric value specifying "closeness" of two objects.

Fundamental problem. Divide into clusters so that points in different clusters are far apart.
- Routing in mobile ad hoc networks.
- Identify patterns in gene expression.
- Document categorization for web search.
- Similarity searching in medical image databases
- Skycat: cluster 10^9 sky objects into stars, quasars, galaxies.
Clustering of Maximum Spacing

k-clustering. Divide objects into k non-empty groups.

Distance function. Assume it satisfies several natural properties.
- \(d(p_i, p_j) = 0 \) iff \(p_i = p_j \) (identity of indiscernibles)
- \(d(p_i, p_j) \geq 0 \) (nonnegativity)
- \(d(p_i, p_j) = d(p_j, p_i) \) (symmetry)

Spacing. Min distance between any pair of points in different clusters.

Clustering of maximum spacing. Given an integer k, find a k-clustering of maximum spacing.

Greedy Clustering Algorithm

Single-link k-clustering algorithm.
- Form a graph on the vertex set U, corresponding to n clusters.
- Find the closest pair of objects such that each object is in a different cluster, and add an edge between them.
- Repeat n-k times until there are exactly k clusters.

Key observation. This procedure is precisely Kruskal’s algorithm (except we stop when there are k connected components).

Remark. Equivalent to finding an MST and deleting the k-1 most expensive edges.
Greedy Clustering Algorithm: Analysis

Theorem. Let C^* denote the clustering C^*_1, \ldots, C^*_k formed by deleting the $k-1$ most expensive edges of a MST. C^* is a k-clustering of max spacing.

Pf. Let C denote some other clustering C_1, \ldots, C_k.
- The spacing of C^* is the length d^* of the $(k-1)^{st}$ most expensive edge.
- Let p_i, p_j be in the same cluster in C^*, say C^*_{r}, but different clusters in C, say C_s and C_t.
- Some edge (p, q) on p_i-p_j path in C^*, spans two different clusters in C.
- All edges on p_i-p_j path have length $\leq d^*$ since Kruskal chose them.
- Spacing of C is $\leq d^*$ since p and q are in different clusters. $

Extra Slides
MST Algorithms: Theory

Deterministic comparison based algorithms.
- $O(m \log n)$
 [Jarník, Prim, Dijkstra, Kruskal, Boruvka]
- $O(m \log \log n)$
 [Cheriton-Tarjan 1976, Yao 1975]
- $O(m \beta(m, n))$
 [Fredman-Tarjan 1987]
- $O(m \log \beta(m, n))$
 [Gabow-Galil-Spencer-Tarjan 1986]
- $O(m^\alpha(m, n))$
 [Chazelle 2000]

Holy grail: $O(m)$.

Notable.
- $O(m)$ randomized
 [Karger-Klein-Tarjan 1995]
- $O(m)$ verification
 [Dixon-Rauch-Tarjan 1992]

Euclidean.
- 2-d: $O(n \log n)$.
- k-d: $O(k n^2)$.

compute MST of edges in Delaunay
dense Prim

Dendrogram

Dendrogram. Scientific visualization of hypothetical sequence of evolutionary events.
- Leaves = genes.
- Internal nodes = hypothetical ancestors.

Dendrogram of Cancers in Human

Tumors in similar tissues cluster together.

Reference: Botstein & Brown group

- gene expressed
- gene not expressed