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ABSTRACT: In this paper we present a method for analyzing a general class of random
Ž .walks on the n-cube and certain subgraphs of it . These walks all have the property that the

transition probabilities depend only on the level of the point at which the walk is. For these
walks, we derive sharp bounds on their mixing rates, i.e., the number of steps required to

Ž .guarantee that the resulting distribution is close to the uniform stationary distribution.
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1. INTRODUCTION

One popular object on which to study random walks is the so-called n-cube,
Ž .denoted by Q see the next section for definitions . In this paper we present an

method for analyzing a general class of random walks on the n-cube. These walks
Ž . Žhave the property that the transition probabilities depend only on the level or

.weight of the point the walk happens to be at, which is why we refer to them as
stratified walks. All our walks will be reversible, and will have uniform stationary
distributions. Our main goal will be to bound the rate at which the evolving
distribution converges to its stationary distribution as a function of the number of
steps taken by the walk. In particular, we will illustrate the method with several
specific examples, giving for the first time sharp bounds on the mixing times of
these walks.

� 4 ŽFor example, one special case is the following walk on Q _ 0 suggested byn
w x. Ž . � 4 Ž .Aldous 2 : From xs x , . . . , x gQ _ 0 , choose a random pair i, j of distinct1 n n

X Ž X X . X Ž . Xindices and move to x s x , . . . , x , where x 'x qx mod 2 , and x sx , k/ i.1 n i i j k k
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Ž . Ž .We show that O n log n steps suffice for this walk to approach its uniform
stationary distribution.

2. PRELIMINARIES

�Ž .By the n-cube Q , we mean the graph with vertex set Vs x , . . . , x : x s0 or 1,n 1 n i
41F iFn and edge set E consisting of all pairs of vertices x, ygV which differ in

exactly one coordinate. We indicate edges by writing xygE, or x;y. The weight
Ž .w x of a vertex x is just the number of coordinates which are equal to 1.

Ž .We will let ps p , p , . . . , p with 0-p F1, 0F iFny1, denote the0 1 ny1 i
transition probability ¨ector which will determine our process. It defines a walk W,
which we call a p-walk on Q , as follows:n

Ž . Ž .If the walk is currently at xs x , . . . , x with w x sk, then, for the next step,1 n
Ž .select a random coordinate i each with probability 1rn , and then move to

p if x s0,k iXx s x , . . . , x , 1yx , x , . . . , x with probabilityŽ .1 iy1 i iq1 n ½ p if x s1,ky1 i

and otherwise, do nothing. It is easy to see that this p-walk W is reversible, and if
Ž .not all the p s1 which we will henceforth assume , the walk is aperiodic with ak

uniform stationary distribution. The standard random walk on Q in which youn
Ž .either move to a random neighbor or stay put, all with equal probability 1r nq1 ,

corresponds to the choice

n n n
ps , , . . . , .ž /nq1 nq1 ny1

For x, ygV, let us write x;y if x s1«y s1.i i
It will be useful to write down the transition matrix Q corresponding to the

n n Ž .p-walk W. Thus, Q is a 2 =2 matrix indexed by the xgV with Q x, y denoting
the probability of going from y to x in one step, and given by

1¡
p if w x sky1, w y sk , x;y ,Ž . Ž .ky1n

1
p if w x skq1, w y sk , y;x ,Ž . Ž .~ kQ x , y sŽ . n

k nykŽ .
1y p y p if xsy , w x sk ,Ž .ky1 kn n¢
0 otherwise.

3. AN OVERVIEW

Our plan for analyzing the p-walk W will consist of the following steps:

Ž . 2 n
i We decompose E into various invariant subspaces under the action of Q.

This will result in the formation of smaller matrices P , P , . . . , whose0 1
Ž .eigenvalues are just the eigenvalues of Q with appropriate multiplicities .
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Furthermore, the eigenvectors of Q are all formed from the eigenvectors of
the P by simple linear transformations.i

Ž .ii The largest eigenvalue of Q is r s1, which will also be an eigenvalue of0
P . We then derive good estimates for the second largest eigenvalue r of0 1
P , by relating P to a random walk on a certain weighted path G .0 0 n

Ž . Žiii We next upper bound all the other eigenvalues of the P , iG1 most ofi
.which are substantially smaller than r .1

Ž .iv We use hitting time arguments to show that the ‘‘central’’ points of G aren
always hit fairly soon with high probability.

Ž . Žv We then bound the mixing time using either total variation or relative
.pointwise distance for approaching the stationary distribution on G ,n

assuming that we have started from a central point.
Ž .vi We finally lift the results back up to our original walk on Q to obtain then

desired mixing time estimates for W.

Of course, to get precise answers, we must make some specific assumptions
about p. We will do this for several particular examples, when p grows linearly ink
k, and when p grows like k a, a)1. Interpolation results can then be applied tok
treat the more general cases. We remark that our techniques also apply to the
simpler case that p is constant. However, such walks have already been wellk

Ž w x.studied in the literature e.g., see 9, 6 so we will not discuss them here.

4. DECOMPOSING Q

nLet us denote by V the set of vectors xgV of weight k, 0FkFn. We willž /k k
Ž . w x � 4identify a k-element subset sk-set of n [ 1, 2, . . . , n with a weight k vector x

in the usual way, namely

w xxl ig n : x s1� 4i

Ž w x.so that we can also think of V as the set of k-sets of n . It will be convenient tok
regard Q as being formed from blocks, induced by the V in the natural way:k

V ??? V ??? V0 j n

V0
. .. .. .

V w x??? Q i , j ???Qs .i
.. .. ..

Vn

nnw xHere, Q i, j is an by submatrix whose structure we now describe.ž / ž /ji

Define M , 0F i, jFn, to be the comparability matrix of the sets V and V .i, j i j

That is, M is indexed by V and V , and for xgV , ygV ,i, j i j i j

1 if x;y or y;x ,
M x , y sŽ .i , j ½ 0 otherwise.
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Then it is easily seen that

pk¡ M if isk , jskq1,k , kq1n
pk

M if iskq1, jsk ,kq1, k~ nw xQ i , j s
k nykŽ .

1y p y p M if is jsk ,ky1 k k , kž /n n¢
0 otherwise.

We abbreviate:

q k , kq1 sq kq1, k sp rn ,Ž . Ž . k

k nykŽ .
q k , k s1y p y p .Ž . ky1 kn n

n n U ŽSince M is just an by identity matrix, and M sM with )ž / ž /k , k kq1, k k , kq1k k
.denoting transpose , then we see that Q is symmetric.

Our next goal will be to separate the eigenvectors and eigenvalues of Q. To
Ž .Ubegin, suppose Xs X , X , . . . , X satisfies the eigenvalue equation0 1 n

QXsr X , 1Ž .
nwhere X is a block of X of length , and has the formž /k k

X sc M y 2Ž .k k k , n k

Ž .for some real numbers y and constants c which will be determined shortly .k k
Define

c M0 n , 0

c M 01 n , 1
. .M [ .n

.0 . .� 0
c Mn n , n

Ž .U U Ž .and Ys y , y , . . . , y . Thus, XsM Y. It follows by 1 that0 1 n n

M QMU YsrM MU Y . 3Ž .n n n n

U Ž .Let us now choose the c so that M M sI an appropriate identity matrix .k n n
Hence,

c2 M M sI ,k nk k n

which implies
y1r2

nc s , 0FkFn.k ž /k
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Therefore, setting

P [M QMU ,0 n n

Ž .we have by 3

P YsrY0

so that the nq1 eigenvalues of P are also eigenvalues of Q. In fact, if Y is an0
eigenvector of P with eigenvalue r, then XsMU Y is an eigenvector of Q with0 n
eigenvalue r. Direct computation shows that:

k nykŽ .
P k , k s1yp ? yp sq k , k ,Ž . Ž .0 ky1 kn n 4Ž .

pk'P k , kq1 sP kq1, k s kq1 nyk , 0FkFn ,Ž . Ž . Ž . Ž .0 0 n

and all other entries are 0.
Now suppose that X X is an eigenvector of Q which does not arise from those of

P in this way. Then clearly X X gker M . For the next step, assume X X gker M0 n n
Ž .satisfies 1 , and has the form

UX X X XX s 0, X , X , . . . , X , 0 , 5Ž . Ž .1 2 ny1

X X nwhere X is a block of X of length and has the formž /k k

X X scX M yX , 1FkFny1,k k k , ny1 k

X Ž Ž . w x. Žfor some y vectors indexed by ny1 -sets of n and constants c which will bek k
.determined shortly . Define

0¡ ¦
Xc M 01 ny1, 1

. . .M [ .ny1 . .
Xc Mny1 ny1, ny1¢ §

0 0

and
UX X XY s 0, y , . . . , y , 0 .Ž .1 ny1

Ž .As before, 1 implies

M QMU Y X srM MU Y X . 6Ž .ny1 ny1 ny1 ny1

Now it is easily checked that

ny2 ny2M M s M q M M , 1FkFny1.ny1, k k , ny1 ny1, ny1 ny1, n n , ny1ž / ž /ky1 k
7Ž .
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Hence,

2 2 ny2 ny2X X X X X X Xc M M y s c y qc M c M yŽ . Ž . Ž .k ny1, k k , ny1 k k k k ny1, n k n , ny1 kž / ž /ky1 k

2 ny2X Xs c yŽ .k kž /ky1

since

ny1X X X Xc M y sc M M yk n , ny1 k k n , k k , ny1 kž /k

sM X X s0n , k k

by the assumption that X X gker M . We now choosen

y1r2
ny2Xc s ,k ž /ky1

Ž .which then gives by 6

M QMU Y X srY X . 8Ž .ny1 ny1

Consider the matrix

UP [M QM ,1 ny1 ny1

which we can regard as a block matrix by deleting the first and last rows and
Ž .columns which are all zero . Then

X XP k , k sc M q k , k c M sq k , k I ,Ž . Ž . Ž .1 k ny1, k k k , ny1

n n Ž .where I is an = identity matrix. By 7 ,ž / ž /ny 1 n y 1

pkX X 'c M q k , kq1 M c M s k nyky1 IqT ,Ž . Ž .k ny1, k k , kq1 kq1 kq1, ny1 n

Ž . Ž .where T¨ s0 for ¨ gker M . Now define the ny1 = ny1 matrix P byn, ny1 1
choosing

P k , k sq k , k ,Ž . Ž .1

pk'P k , kq1 sP kq1, k s k nyky1 ,Ž . Ž . Ž .1 1 n

for 1FkFny1.
X Ž .UIn addition, if Z s z , z , . . . , z satisfies1 2 ny1

P ZX srZX 9Ž .1

and ¨ gker M , thenn, ny1

X X sM ¨zk k , ny1 k
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X Ž X X .Udefines an eigenvector X s 0, X , . . . , X , 0 of Q in ker M with eigenvalue r.1 ny1 n
Since

n ndim ker M s y sny1,Ž .n , ny1 ž / ž /1 0

Ž .then for each eigenvalue r in 9 , we can produce ny1 independent eigenvectors
X X for Q with eigenvalue r.

We will carry out the preceding argument repeatedly to describe all the
eigenvectors and eigenvalues of Q. In general, we assume that, for a fixed j,

Ž .Xgker M satisfies 1 , and has the formny jq1

U
Xs 0, . . . , 0, X , . . . , X , 0, . . . , 0 ,Ž .j nyj

nwhere X is a block of X of length and has the formž /k k

X sc M y , jFkFny j,k k k , nyj k

Ž Ž . w x. Žfor some y vectors indexed by ny j -sets of n and constants c which will bek k
.determined shortly .

Note that ker M ;ker M for lGny jq1. Defineny jq1 l

¡ ¦0
. . 0.

0
c Mj nyj , j

. . .
M [ c Mny j k nyj , k

. . .
0 c Mny j nyj , nyj

0
. . .¢ §

0

and
U

Ys 0, . . . , 0, y , . . . , y , 0, . . . , 0 .Ž .j nyj

Ž .By 1 we have

M QMU YsrM MU Y .ny j nyj nyj nyj

It can be checked that

ny2 j YM M s M q c M M 10Ž .Ýny j , k k , nyj nyj , nyj l nyj , l l , nyjž /ny jyk
l)nyj



CHUNG AND GRAHAM206

for ny jFkF j and for appropriate constants cY. Therefore, we havel

ny2 j2 2 Yc M M y s c y q c M c M yŽ . Ž . Ž .Ýk nyj , k k , nyj k k k l nyj , l k l , nyj kž /ny jyk
l)nyj

ny2 j2s c yŽ .k kž /ny jyk

since

ny jY Yc M y sc M M yl l , nyj k l l , k k , nyj kž /k

sM X s0l , k k

for Xgker M ;ker M . We now specifyny jq1 l

y1r2
ny2 j

c s .k ž /ny jyk

Then

M QMU YsrY .ny j nyj

Let

UP [M QM ,j nyj nyj

which we can regard as a block matrix by deleting the first and last j rows and
Ž . Ž .columns which are all zero . The k, k -block of P , for jFkFny j, is given byj

P k , k sc M q k , k M c M sq k , k I ,Ž . Ž . Ž .j k nyj , k k , k k k , nyj

n nwhere I is an = identity matrix.ž / ž /ny j n y j

Ž . Ž . Ž .To compute the k, kq1 and kq1, k blocks of P , using 10 , we havej

pk'c M q k , kq1 M c M s ny jyk ky jq1 IqT ,Ž . Ž . Ž .k nyj , k k , kq1 kq1 kq1, nyj n

Ž . Ž .where T¨ s0 for ¨ gker M . Now, define the ny2 jq1 = ny2 jq1ny jq1, nyj
matrix P by choosingj

P k , k sq k , k ,Ž . Ž .j

pk'P k , kq1 sP kq1, k s ky jq1 ny jyk .Ž . Ž . Ž . Ž .j j n

for jFkFny j.
Ž .UHence, if Zs z , . . . , z satisfiesj nyj

P ZsrZ 11Ž .j
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and ¨ gker M , thenny jq1, nyj

X sM ¨zk k , nyj k

Ž .defines an eigenvector Xs 0, . . . , 0, X , . . . , X , 0, . . . , 0 of Q in ker M withj nyj nyjq1
eigenvalue r. Since

n n
dim ker M s y ,Ž .ny jq1, nyj ž / ž /ny j ny jq1

n nŽ .then for each eigenvalue r in 11 we can produce y independentž / ž /ny j n y j q 1

eigenvectors X for Q with eigenvalue r.
? @Executing this process for 1F jF nr2 , and noting that P has ny2 jq1j

independent eigenvectors, then the total number of eigenvectors of Q generated
Ž .this way counting the nq1 from P is just0

? @nr2
n n nnq1q ny2 jq1 y s2 ,Ž .Ý ž / ž /ž /ny j ny jq1

js1

and so we have found a complete set.

5. THE ALDOUS CUBE

We will now examine in some detail a particular example of a r-walk W whichA
will illustrate more specifically the approach we have described. This walk W , inA

Ž . Ž .which x is replaced by x qx mod 2 for a randomly chosen pair i, j of distincti i j
Ž .indices see the description at the end of Section 1 , corresponds to the choice
Ž .p skr ny1 , 0FkFny1. Note that this is actually a walk on the puncturedk
y � 4cube Q sQ _ 0 . Thus, in this case we haven n

q k , k s1ykrn,Ž .
12k Ž .'P k , kq1 sP kq1, k s ky jq1 nyky j ,Ž . Ž . Ž . Ž .j j n ny1Ž .

? @for jFkFny j, and 0F jF nr2 .
As usual, the largest eigenvalue of P is 1. We will show that any other0

eigenvalue rX of P satisfies0

1
Xr F1y . 13Ž .

3n

ŽFurthermore, all other eigenvalues of Q the name for the transition matrix Q inA
. Ž .this case are significantly smaller than this. To prove 13 , we first define

PX [IyP ,0 0
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where I is an n=n identity matrix. Thus,

PX k , k s1yP k , k ,Ž . Ž .0 0

PX k , kq1 sPX kq1, k syP k , kq1 ,Ž . Ž . Ž .0 0 0

and all other entries are zero.

X Ž .Claim. P is the normalized Laplacian matrix of a weighted path G on a set0 n
nw x � 4 Ž .n s 1, 2, . . . , n of n ¨ertices. The degree d of ¨ertex k is n ny1 . The edgež /k k

n� 4 Ž . Žweight w on the edge k, kq1 is k nyk . Thus, the loop weight at k isž /k k

nŽ .Ž . .ny1 nyk .ž /k

This claim follows by direct verification from the definition of the Laplacian for Gn
Ž w x .see 3, 5 for background material on Laplacians on graphs .

� 4In fact, G is just obtained from Q _ 0 by collapsing all vertices of weight k inn n
� 4Q _ 0 into the single vertex k of G , for 1FkFn.n n

w xThus, for any g : n ªR,

1 g x g yŽ . Ž .
XP g x s y wŽ . Ý0 x yž /dd d' ' ' yyx x

y;x

1
s f x y f y w , 14Ž . Ž . Ž .Ž .Ý x yd' yx

y;x

where

w xf x [g x r d , xg n ,Ž . Ž . ' x

n w xd sn ny1 , xg n ,Ž .x ž /x

and
w is the edge weight on the edge xy.x y

Ž < < .Of course, for the path G , w s0 unless xyy s1. If we denote the eigenval-n x y
ues of PX by0

0sl -l Fl F ??? Fl ,0 1 2 n

then our first goal is to lower-bound l . We will do this by constructing a ‘‘nearby’’1
ˆ ˆ ˆ ˆŽ .weighted path G for which we can control l sl P and its correspondingn 1 1 0

eigenfunction exactly, and then applying a comparison theorem for relating l to1
l̂ .1

ˆ ˆw xThe weighted path G will have the same vertex set n as G . The degrees in Gn n n
are given by

¡ 2 2n n y1 r ny3 for ks1,Ž . Ž .~d̂ s 15Ž .nk n nq1 for 2FkFn.Ž .¢ ž /k
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ˆŽ . � 4We are assuming n)3. The edge weights w for the edges k, kq1 of G areˆk n
given by

nw s kq2 nyk , 1FkFny1. 16Ž . Ž . Ž .ˆk ž /k

ˆ w xDefine f : n ªR by

1 2
f̂ k [ y , 1FkFn , 17Ž . Ž .

kq1 nq1
and set

ˆg k [ f k d .Ž . Ž .'ˆ k

ˆWe claim that l s1rn is the smallest positive eigenvalue of the corresponding1
ˆ ˆLaplacian matrix P for G , and that g is its corresponding eigenvector. To seeˆ0 n

ˆŽ .this, we first must check which is straightforward that f satisfies the following
Ž Ž ..condition analogous to 14 :

1 1ˆ ˆ ˆP g x s f x y f y w s g xŽ . Ž . Ž . Ž .ˆ ˆ ˆŽ .Ý0 x y nd' yx
y;x

w xfor all xg n . This can be rewritten as

1 ˆ ˆ ˆ ˆ ˆ ˆd f k s f k y f kq1 w q f k y f ky1 w 18Ž . Ž . Ž . Ž . Ž . Ž .ˆ ˆŽ . Ž .k k ky1n

w xfor all kg n , where we take w sw s0.ˆ ˆ0 n
ˆ ˆ Ž .We note that the eigenvalue l s0 of P has the eigenvector g k s d ,'ˆ0 0 0 k

w x Ž .kg n . It is easily checked that g is orthogonal to g . We also note from 17 thatˆ 0̂
ˆ Ž .f is monotone which will soon be needed .

ˆNext, we argue that any eigenvalue l of P with an eigenfunction g for which0
ˆŽ . Ž .f k sg k r d is not monotone must satisfy l)l . To do this, we use the' k 1

ˆ Ž w x.following characterization of l cf. 3 :1

ny1
2h k yh kq1 wŽ . Ž .Ž . ˆÝ k

ks1
l̂ s inf sup . 19Ž .n1

h 2c ˆh k yc dŽ .Ž .Ý k
ks1

ˆSo, let us assume that l is an eigenvalue of P with an associated eigenvector g0

ˆŽ . Ž . 'for which f k sg k r d is not monotone.k

ˆClaim. l)l .1

Proof. Define
k

Xf k s f j y f jy1 , kG2. 20Ž . Ž . Ž . Ž .Ý
js2
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Choose c so that0

n
X ˆf k yc d s0. 21Ž . Ž .Ž .Ý 0 k

ks1

XŽ . XŽ . Ž XAlso, choose i so that f i Fc - f i q1 . If no such i exists, then f and f0 0 0 0 0
.must be constant, which is a contradiction. Without loss of generality, we can

Ž . Ž .assume that f i F f i q1 . Now, define0 0

cX s f X i y f i . 22Ž . Ž . Ž .0 0

Fact.
X Xf k yc G f k yc qc for 1FkFn. 23Ž . Ž . Ž .0 0

( ) Ž . Ž .Proof of 23 . For ks i , 23 holds with equality by 22 . Also0

X Xf i q1 yc s f i q f i q1 y f i ycŽ . Ž . Ž . Ž .0 0 0 0 0 0

s f i yc qcX q f i q1 y f iŽ . Ž . Ž .0 0 0 0

s f i q1 yc qcX ,Ž .0 0

Ž .which implies 23 for ks i q1.0
Now, in general for k) i q1,0

X Xf k yc s f k y f ky1 q f ky1 ycŽ . Ž . Ž . Ž .0 0

Xs f k y f ky1 q ??? q f i q2 y f i q1 q f i q1 ycŽ . Ž . Ž . Ž . Ž .0 0 0 0

XG f k y f i q1 q f i q1 yc qcŽ . Ž . Ž .0 0 0

XG f k yc qc ,Ž . 0

Ž .as required by 23 . Similarly, for k- i ,0

X Xf k yc s f kq1 y f k y f kq1 ycŽ . Ž . Ž . Ž .0 0

Xs f i yc y f i y1 y f i y ??? y f k y f kq1Ž . Ž . Ž . Ž . Ž .0 0 0 0

XG f i y f k y f i ycŽ . Ž . Ž .0 0 0

XG f i yc qc q f k y f iŽ . Ž . Ž .0 0 0

Xs f k yc qc .Ž . 0

Ž .This proves 23 .
Note that since by assumption f is not monotone, then strict equality must hold
Ž . Xin 23 for some k. Setting c sc yc , we obtain1 0

2 2X ˆ ˆf k yc d G f k yc d . 24Ž . Ž . Ž .Ž . Ž .Ý Ý0 k 1 k
k k

Ž .It follows from the preceding argument that equality holds in 24 if and only if

f X k s f k yc qc for all k .Ž . Ž . 1 0
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Ž .Now, by 19 we have

ny1
2f k y f kq1 wŽ . Ž .Ž . ˆÝ k

ks1
ls sup n

2c ˆf k yc dŽ .Ž .Ý k
ks1

ny1
2f k y f kq1 wŽ . Ž .Ž . ˆÝ k

ks1G n
2 ˆf k yc dŽ .Ž .Ý 1 k

ks1

ny1
2X Xf k y f kq1 wŽ . Ž .Ž . ˆÝ k

ks1G n
2X ˆf k yc dŽ .Ž .Ý 0 k

ks1

by 24 since k is not monotoneŽ .
ny1

2h k yh kq1 wŽ . Ž .Ž . ˆÝ k
ks1G inf sup n

Xh 2Xc ˆh k yc dŽ .Ž .Ý k
ks1

ˆsl .1

This proves the Claim. B

ˆNext, we claim that P cannot have two different eigenvectors g and g , both0 1 2
Ž .orthogonal to g and to each other, so that the corresponding functions f k s0 1

ˆ ˆŽ . Ž . Ž .' 'g k r d and f k sg k r d are both monotone.1 k 2 2 k
To see this, we will expand our n-vectors back to N-tuples by the mapping

n n n s1ž /ž / ž / n1 k! # " ! # " !#"
fªFs f 1 , . . . , f 1 , . . . , f k , . . . , f k , . . . , f n ,Ž . Ž . Ž . Ž . Ž .ž /

Ž n .where Ns2 y1 . So, assume to the contrary that F and F are both monotone1 2
Ž .w.l.o.g. increasing and

N

² : ² : ² :F , 1 s F k s0s F , 1 s F , F , 25Ž . Ž .Ý1 1 2 1 2
ks1

where F k0, F k0, and 1 is the all 1’s vector.1 2
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Ž w x. w x � 4It is well known see 8 that the permutation p on N s 1, 2, . . . , N which
N Ž . Ž Ž .. w x Ž .maximizes Ý F i F p i is the choice ps identity on N . Hence, by 25 weis1 1 2

have

N

w xF i F s i F0 for every permutation s on N . 26Ž . Ž . Ž .Ž .Ý 1 2
is1

Therefore,
N N N

0s F i F j s F i F jŽ . Ž . Ž . Ž .Ý Ý Ý1 2 1 2
is1 js1 i , js1

N N

s F iq j F iqs jŽ . Ž .Ž .Ý Ý 1 2
is1 js1

Ž .where addition inside F is taken modulo N which impliesk

N

w xF i F s i s0 for every permutation s on N . 27Ž . Ž . Ž .Ž .Ý 1 2
is1

In particular, this implies

Ny1

F 1 F 1 qF N F N q F i F iŽ . Ž . Ž . Ž . Ž . Ž .Ý1 2 1 2 1 2
is2

Ny1

sF 1 F N qF N F 1 q F i F i ,Ž . Ž . Ž . Ž . Ž . Ž .Ý1 2 1 2 1 2
is2

i.e.,

F 1 F 1 qF N F N sF 1 F N qF N F 1Ž . Ž . Ž . Ž . Ž . Ž . Ž . Ž .1 2 1 2 1 2 1 2

or

F N yF 1 F N yF 1 s0.Ž . Ž . Ž . Ž .Ž . Ž .1 1 2 2

However, this implies either F or F is constant, which is impossible, and our1 2
claim is proved.

As a result of the preceding remarks, we can finally conclude that the smallest
ˆ ˆnonzero eigenvalue l of P satisfies1 0

l̂ s1rn. 28Ž .1

Our next job will be to establish the following:

X w xComparison Lemma. Suppose P and P are two weighted paths on n with degrees
d and dX , and edge weights w and wX, respectï ely. Assume that for all i we ha¨ei i i i

d Ga dX , wX Gb w . 29Ž .i i i i

Then

lX Gabl , 30Ž .1 1
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where l and lX are the smallest positï e eigen¨alues of the associated Laplacians on P1 1
and PX, respectï ely.

Ž w xWe give a short proof for completeness. The reader can consult 3 for more
. X Xgeneral versions. Let f denote so-called ‘‘harmonic’’ eigenvector of P associated

X X X X X XŽ Ž . Ž . .with l i.e., g k s f k d is an eigenvector of P with eigenvalue l .'1 k 1
Ž Ž ..Considering the Rayleigh quotient see 19 , we have

2X X Xf i y f iq1 wŽ . Ž .Ž .Ý i
iXl G1 2X Xf i yc dŽ .Ž .Ý 0 i

i

2X Xab f i y f iq1 wŽ . Ž .Ž .Ý i
iG 2Xf i yc dŽ .Ž .Ý 0 i

i

Gabl ,1

Ž XŽ . . Ž .where c is chosen so that Ý f i yc d s0 thus minimizing the denominator .0 i 0 i
Ž .This proves 30 .

ˆ X XŽ .Finally, we apply 30 with P and P taking the roles of P and P , respectively.0 0
Ž . Ž .From 15 and 16 we find

d̂ nq1 w w 1i i 1G , G s for all i .
d ny1 w w 3ˆ ˆi i 1

Therefore,

1 nq1 nq1 1ˆl G l s ) . 31Ž .1 1ž /3 ny1 3n ny1 3nŽ .

This implies

nq1
r F1y ,1 3n ny1Ž .

Ž .which is slightly stronger than 13 .
Our next goal will be to bound all the other eigenvalues of the other P , kG1.k

We will do this by using the fact that any eigenvalue of a nonnegative matrix is
bounded above in absolute value by the maximum row sum of the matrix. It follows

Ž .from the general expressions for P i, j at the end of Section 4 that the ith rowk
Ž .sum s k, i of P isk

1 's k , i s ny1 ny i q i iykq1 nyky iŽ . Ž . Ž . Ž . Ž .½n ny1Ž .

'q iy1 iyk nyky iq1 32Ž . Ž . Ž . Ž .5
for kF iFnyk.



CHUNG AND GRAHAM214

Claim.

k
s k , i F1y . 33Ž . Ž .

2n

Proof. Note that

' 'i iykq1 nyky i s i iykq1 i nyky iŽ . Ž . Ž . Ž .
2 22 iykq1 nyk

F(ž / ž /2 2

1
s 2 iykq1 nyk .Ž . Ž .

4

Therefore,

1 1
s k , i F ny1 ny i q 2 iykq1 nykŽ . Ž . Ž . Ž . Ž .½n ny1 4Ž .

1
q 2 iyky1 nykŽ . Ž . 54

1 k
s ny1 ny i q nyk iyŽ . Ž . Ž .½ 5ž /n ny1 2Ž .

1 k
F ny ,ž /n 2

Ž .which proves 33 . B

As a consequence, any eigenvalue r Žk . of P , kG1, satisfiesk

k
Žk .r F1y . 34Ž .

2n

Our next job will be to bound the expected time for the walk on G to hit then
? @vertex nr2 , given that we start at vertex 1. In general, let E T denote thei iq1

expected number of steps it takes to reach vertex iq1, given that we start at vertex
Ž w x.i. Then it is not hard to show e.g., see Aldous 1

i1
E T s d , 35Ž .Ýi iq1 jwi js1

which in turn implies

E T sE T qE T q ??? qE T , 36Ž .1 n r2 1 2 2 3 n r2y1 n r2

? @where nr2 will denote nr2 when n is odd.



STRATIFIED RANDOM WALKS ON THE n-CUBE 215

Claim.
E T -3n log n for nG2. 37Ž .1 n r2

Proof.
nr2y1 i d j

E T s Ý Ý1 n r2 wiis1 js1

n
n ny1Ž .nr2y1 i ž /j

s Ý Ý nis1 js1 i ny iŽ . ž /i

iy jnr2y1 i1 i
Fn ny1Ž . Ý Ý ž /i ny i ny iŽ .is1 js1

n
iy jž / ij

since F for jF iž /ny inž /i

nr2y1 1 1
Fn ny1Ž . Ý ii ny iŽ .is1 1y

ny i
nr2y1 1

sn ny1Ž . Ý i ny2 iŽ .is1

nr2y1 1 1
s2 ny1 qŽ . Ý ž /2 i ny2 iis1

-3n log n. B

A similar argument shows that the expected time to hit the vertex nr2 starting
from the other end of G , namely, from the vertex n, can be bounded by the samen

Ž .quantity in fact, a somewhat smaller quantity; we omit the proof . It therefore
w xfollows that, for any ig n ,

E T -3n log n. 38Ž .i n r2

A key step now will be to bound the mixing time of our p-walk assuming that we
Žare allowed to start from some vertex y gV i.e., the binary n-tuple y has0 n r2 0

.weight nr2 . By symmetry, all vertices in V have the same behavior. Thus, wen r2
need to bound

s2D s, y [ Q y , x yp xŽ . Ž . Ž .ÝT V 0 A 0
xgV

1r22sQ y , x y1rNŽ .Ž .A 0XFD s, y [ , 39Ž . Ž .Ý0 ž /1rNxgV
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Ž . nwhere D denotes the total variation distance but starting at y , Ns2 y1 andT V 0
Ž . Ž .p x s1rN is the uniform stationary distribution on V.
Let d : VªR denote the characteristic function of y , i.e.,y 00

1 if xsy ,0d x sŽ .y ½0 0 otherwise.

Then we can write

d s f y f , 40Ž . Ž .Ýy i 0 i0
i

where the f denote orthonormal eigenfunctions for Q and f corresponds toi A 0
the eigenvalue 0. Let I denote the operator which projects a function defined on0
V to the eigenspace generated by f , i.e., if fsÝ a f then I fsa f . Then0 i i i 0 0 0

22 Us sQ y , x y1rN s d Q yI dŽ . Ž .Ž . Ž .Ý ÝA 0 y A 0 x0
x x

s d Qs yI d Ud Qs yI d UŽ . Ž .Ý y A 0 x x A 0 y0 0
x

sd Q2 s yI d UŽ .y A 0 y0 0

s r 2 sf 2 y , 41Ž . Ž .Ý i i 0
i/0

where 1sr )r G ??? Gr are the eigenvalues of Q . Note that0 1 Ny1 A

f 2 y s1 for all i . 42Ž . Ž .Ý i
ygV

Therefore,

2X 2 2 s 2 sD s, y F f y r sN r . 43Ž . Ž . Ž .Ž .Ý Ý Ý Ýi i i
ygV i/0 ygV i/0nr2

Since

n 22X X
D s, y s D s, y ,Ž . Ž .Ž . Ž .Ý 0ž /nr2

ygVnr2

then we obtain

N2X 2 s 2 s'D s, y F r F2 n r . 44Ž . Ž .Ž . Ý Ý0 i in
i/0 i/0ž /nr2

Ž .Finally, we need to bound the right-hand side of 44 .
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Claim. If s)4n log nqcn, then

1r22 1 1
X

D s, y F q . 45Ž . Ž .(0 c 2 cr3ž /n e y1 e

Ž . Ž . Ž . Ž .Proof. By 34 , 44 , 31 , and the remarks following 11 , we have

2 s ? @nr212X 'D s, y F2 n n 1y q ny2kq1Ž . Ž .Ž . Ý0 ž /½ 3n ks1

=

2 skn ny 1yž / ž /ž / ž / 5k ky1 2n

? @nr22 s sk'F2 n exp log ny q exp log ny2kq1 qk log nyŽ .Ýž / ž /½ 53n nks1

? @nr21
y5r3 y2 cr3 yck'F2 n n e q eÝ2ž /n ks1

2 y1y2 cr3 cF e q e y1 ,Ž .Ž .
n

Ž .which proves 45 . B

We now have all the ingredients necessary for our final estimates. If S denotesi
the numbers of steps taken starting at vertex i in G until vertex nr2 is firstn

Ž .reached, then by 38

w xE S [m -3n log n.i i

Hence,

w xPr S G2m F1r2i i

and, more generally, for any positive integer t,

w x w x ytPr S G2 tm FPr S G6 tn log n F2 . 46Ž .i i

Thus, for the total variation distance D defined byT V

D s [ sup D s, y ,Ž . Ž .T V T V
ygV

Ž . Ž .then, by 45 and 46 we have

1r21 1 1 1
D s F q q if sG 6 tq4qc n log n. 47Ž . Ž . Ž .T V ct 2 cr3ž /' n y12 nn

Ž .This implies the simpler but weaker result:

D s F22yar9 if sGan log n. 48Ž . Ž .T V
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Ž .It may in fact be true that D s ª0 for sGc n log n with a fixed constant c ,T V 0 0
w xas nª`. This would follow if we knew that for some fixed c , Pr S Gc n log n ª01 1 1

Ž Ž ..as nª` see 46 .
Ž .We point out that for the standard p-walk on Q having p snr nq1 for alln k

1Ž w x.k, the mixing time is known see 6 to be of the form n log nqcn. Hence, it is4
Ž . Ž .impressive to us that the walk W also has a mixing time of order O n log n ,A

given that in this case it is much harder to leave points of low weight.
Žw x.We also note that earlier preliminary results 7, 4 established a bound of order

Ž 2 .O n log n on the mixing time of W .A
We close this section with some remarks on another common metric on

Ž . sprobability distributions. This is the relatï e pointwise distance D s of P to its
stationary distribution p , given by

sP y , x yp xŽ . Ž .
D s [ max .Ž .

p xx , ygV Ž .

It turns out that for the walk W on the Aldous cube, at least sscn2 steps areA
Ž .required to force D s ª0. To see this, let x gV be a vertex of weight 1. Of0 1

course,

sQ x , x yp xŽ . Ž .A 0 0 0
D s G .Ž .

p xŽ .0

Ž .Since p s1r ny1 for W , then, for any distribution f ,1 A

ny2
fQ x G f x ,Ž . Ž .A 0 ž /ny1

and this implies

sny2
sd Q x G .Ž .x A ž /ny1

Thus,

sny2
nD s G 2 y1 y1 .Ž . Ž . ž /ny1

2 Ž .This implies in particular that for sFn log 2yn, D s is bounded away from 0.
On the other hand, the following argument shows that n2 is the correct order of

Žgrowth. This will follow from the following fact which applies to the standard
.random walk P on any regualr weighted graph G .

Fact. The mixing time under relatï e pointwise distance can be at most a factor of
Ž . Ž < <.O log N times the mixing time under total ¨ariation distance where Ns G .
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Ž w x.Proof. Standard arguments e.g., see 3 show that

¨ol G
ys l ysl1 1D s FD s Fe sNe FeŽ . Ž .T V min dx

x

1 N
if sG log , 49Ž .

l e1

where ¨ol G[Ý d .x x
On the other hand,

2D s s max max P y , x yp xŽ . Ž . Ž .ÝT V
y A:V xgA

sG sup max fP x yp xŽ . Ž .Ž .Ý
A:Vf xgA

over all initial probability distributions f. Let us choose fTy1r2 scf , where T is1
the diagonal matrix of degrees d , f is an eigenfunction corresponding to thex 1

y1 < 1r2Ž . <eigenvalue l , and c sÝ f T x . Then1 x 1

y1 sD s Gc fP x yp xŽ . Ž . Ž .ÝT V
x

sy1 1r2Gc 1yl f T xŽ . Ž .Ý 1 1
x

sy1 1r2sc 1yl f T xŽ . Ž .Ý1 1
x

ss 1yl .Ž .1

Ž . X XThis shows that D s is bounded away from 0 for any ssc rl , c a fixedT V 1
Ž .constant. This, together with 48 , completes the proof. B

Ž .Applying 49 to the Aldous cube walk, where l G1r3n, we get1

D s Feyc r3 if sG3n2 log 2qcn ,Ž .

which shows that cX n2 is the correct order of growth for the mixing time under
relative pointwise distance. It would be interesting to know what the correct

2 Ž w x.coefficient of n is, and whether this walk exhibits a cut-off phenomenon cf. 6 .

6. SLOWER WALKS

We now describe what happens when our p-walk has p growing like k a for somek
a)1. Specifically, we will assume that

akq1
p s , 0FkFn 50Ž .k ž /nq1
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where a)1 is arbitrary but fixed. Note that in contrast to the Aldous cube
situation, p )0, so all 2 n points participate in the walk. Since the argument0
follows the preceding procedure rather closely, we will only hint at the proofs,
pointing out differences along the way. The bottom line is given by the following
result.

Ž .Theorem. For each a)1, there is a constant c a depending on a , so that for the
Ž .p-walk on Q gï en by 50 , we ha¨en

D s ª0 as nª` 51Ž . Ž .T V

Ž . apro¨ided sGc a n log n.

Ž . ŽNote that this result is slightly stronger than the corresponding result 47 for what
.is essentially as1. The basic reason for this difference arises from the fact that

Ý` kya converges for a)1 but diverges for as1.ks1

Ž . Ž .Proof discussion. The proof of 51 proceeds just like that of 47 . The correspond-
ing transition matrix Q is decomposed into matrices P , P , . . . , P . As before,0 1 n r2

XP sIyP is the Laplacian on a weighted path G , this time of the vertex set0 0 n
� 40, 1, . . . , n . The degrees and edge weights are now given by

nd sn ny1 ,Ž .k ž /k

nw s nyk ny1 p .Ž . Ž .k k ž /k

As before, the eigenvalues of Q are just the eigenvalues of P , P , . . . , P , with0 1 n r2
those of P having multiplicityk

n ny .ž / ž /k ky1

We upper bound the eigenvalues of P using a comparison theorem for a ‘‘nearby’’0
ˆqweighted path G , which hasn

¡ 2n nq1Ž .
for ks0,

ny1~d̂ sk
nn nq1 for 1FkFnŽ .¢ ž /k

and

nw s kq2 nyk for 0FkFn.Ž . Ž .ˆk ž /k
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Ž .The difference arises because of the additional vertex 0 in G . It can be checkedn
that with

1 2
f̂ k s y ,Ž .

kq1 nq1

Xˆ ˆŽ . Ž .'the function g k s f k d , 0FkFn, is an eigenvector of P sIyP for theˆ k 0 0
Xˆ Ž .eigenvector l s1rn which is the smallest positive eigenvalue of P . The Com-1 0

parison Lemma then implies

1
l G1 2n

XŽ .where l denotes the smallest positive eigenvalue of P . With some effort, it can1 0
be shown that the maximum row sum r of P , kG1, satisfiesk k

nky1 k
r F1yk ž /n nq1

Ž .thus upper-bounding any eigenvalue of P . This is now enough to be able tok
conclude that for ygV ,n r2

1
X a aD y , s F if s)2n log nqcn , n)n aŽ . Ž .0ce y1

w Ž .xcorresponding to 45 . The final calculation is that of estimating E T and0 n r2
ŽE T , the expected times of hitting nr2 starting from either end of G then n r2 n

.larger of which upper bounds E T for any i . This yieldsi n r2

E T Fc a na , nGn a , 0F iFn.Ž . Ž .i n r2 0 0

Ž .These results together then combine to give 51 . B

We remark in closing that it is not hard to derive interpolation results for our
walks. The thrust of such results imply that if 0-p FpY FpX -1 for all k, thenk k k
the pY-walk will mix at least as rapidly as the slower of the p-walk and the pX-walk
on Q . This implies, for example, that if krnFp -1, kG0, then the mixing timen k

Ž .of the p-walk on Q is still O n log n .n
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