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ABSTRACT: In this paper we present a method for analyzing a general class of random
walks on the n-cube (and certain subgraphs of it). These walks all have the property that the
transition probabilities depend only on the level of the point at which the walk is. For these
walks, we derive sharp bounds on their mixing rates, i.e., the number of steps required to
guarantee that the resulting distribution is close to the (uniform) stationary distribution.
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1. INTRODUCTION

One popular object on which to study random walks is the so-called n-cube,
denoted by Q, (see the next section for definitions). In this paper we present a
method for analyzing a general class of random walks on the n-cube. These walks
have the property that the transition probabilities depend (only) on the level (or
weight) of the point the walk happens to be at, which is why we refer to them as
stratified walks. All our walks will be reversible, and will have uniform stationary
distributions. Our main goal will be to bound the rate at which the evolving
distribution converges to its stationary distribution as a function of the number of
steps taken by the walk. In particular, we will illustrate the method with several
specific examples, giving for the first time sharp bounds on the mixing times of
these walks.

For example, one special case is the following walk on Q,\{0} (suggested by
Aldous [2]): From x = (x,,..., x,) € Q,\{0}, choose a random pair (i, j) of distinct
indices and move to x' = (x},..., x},), where x; =x; +x; (mod2), and x} =x,, k #1i.
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We show that O(nlogn) steps suffice for this walk to approach its (uniform)
stationary distribution.

2. PRELIMINARIES

By the n-cube Q,, we mean the graph with vertex set V'={(x,...,x,):x;=0or 1,
1 <i <n} and edge set E consisting of all pairs of vertices x, y € V' which differ in
exactly one coordinate. We indicate edges by writing xy € E, or x ~y. The weight
w(x) of a vertex x is just the number of coordinates which are equal to 1.

We will let p=C(py,py,--->p,—1) With 0<p, <1, 0<i<n—1, denote the
transition probability vector which will determine our process. It defines a walk W,
which we call a p-walk on Q,, as follows:

If the walk is currently at x = (xy,..., x,,) with w(x) = k, then, for the next step,
select a random coordinate i (each with probability 1/n), and then move to

, . .. Pk if X = 07
X=X, X=X, X e Xy,) with probability {Pk1 it ox=1,
and otherwise, do nothing. It is easy to see that this p-walk W is reversible, and if
not all the p, =1 (which we will henceforth assume), the walk is aperiodic with a
uniform stationary distribution. The standard random walk on @, in which you
either move to a random neighbor or stay put, all with equal probability 1/(n + 1),
corresponds to the choice

n n n
pP= n+1’n+1’m’n—1)'
For x,yeV,letus write xCy if x,=1=y,=1.

It will be useful to write down the transition matrix Q corresponding to the
p-walk W. Thus, Q is a 2" X 2" matrix indexed by the x € IV with Q(x, y) denoting
the probability of going from y to x in one step, and given by

%pk_l ifw(x)=k—1, w(y)=k,xCy,
1 .
0(x,y) = ;pk ifw(x)=k+1, w(y)=k,ycCx,
k (n—k) ]
1‘;1’1{71_ » Pk if x=y, w(x)=k,
0 otherwise.

3. AN OVERVIEW
Our plan for analyzing the p-walk W will consist of the following steps:
(i) We decompose E?" into various invariant subspaces under the action of Q.

This will result in the formation of smaller matrices P, P,..., whose
eigenvalues are just the eigenvalues of Q (with appropriate multiplicities).



STRATIFIED RANDOM WALKS ON THE n-CUBE 201

Furthermore, the eigenvectors of Q are all formed from the eigenvectors of
the P, by simple linear transformations.

(ii) The largest eigenvalue of Q is p, = 1, which will also be an eigenvalue of
P,. We then derive good estimates for the second largest eigenvalue p, of
P,, by relating P, to a random walk on a certain weighted path G,.

(iii) We next upper bound all the other eigenvalues of the P, i > 1 (most of
which are substantially smaller than p,).

(iv) We use hitting time arguments to show that the “central” points of G, are
always hit fairly soon with high probability.

(v) We then bound the mixing time (using either total variation or relative
pointwise distance) for approaching the stationary distribution on G,,
assuming that we have started from a central point.

(vi) We finally lift the results back up to our original walk on Q, to obtain the
desired mixing time estimates for W.

Of course, to get precise answers, we must make some specific assumptions
about p. We will do this for several particular examples, when p, grows linearly in
k, and when p, grows like k¢, a > 1. Interpolation results can then be applied to
treat the more general cases. We remark that our techniques also apply to the
simpler case that p, is constant. However, such walks have already been well
studied in the literature (e.g., see [9, 6]) so we will not discuss them here.

4. DECOMPOSING Q

Let us denote by V, the set of (2) vectors x € V' of weight k, 0 <k <n. We will

identify a k-element subset (= k-set) of [n] :={1,2,...,n} with a weight k vector x
in the usual way, namely

xe{ie[n]:x, =1}

(so that we can also think of V, as the set of k-sets of [n]). It will be convenient to
regard Q as being formed from blocks, induced by the V), in the natural way:

v, [ i
o=V - oli,j]
V,

Here, O[i, j]is an (7) by (’j’) submatrix whose structure we now describe.
Define M, ;, 0 <i,j <n, to be the comparability matrix of the sets V; and V.

That is, M, ; is indexed by V; and V), and for x €V, y €V,

1 if xCyorycx
M. . = ’
i (%:7) {O otherwise.
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Then it is easily seen that

&Mkk+1 ifi=k, j=k+1,
n ,
DPi .
L. _Mk 1,k 1fi=k+1, ]=k,
Oli,jl={ n ™"
k (n—k) .
l——=ppy— D | My & ifi=j=k,
n n
0 otherwise.

We abbreviate:

q(k,k+1)=q(k+1,k) =p;/n,

(n—k)

k
Cl(k’k)=1_;Pk—1_ » Py -

Since M, ; is just an (Z) by (Z) identity matrix, and M, , =M;", ., (with =

denoting transpose), then we see that Q is symmetric.
Our next goal will be to separate the eigenvectors and eigenvalues of Q. To
begin, suppose X = (X, X;,..., X,)* satisfies the eigenvalue equation

0X =pX, (1)
where X, is a block of X of length (Z), and has the form
Xy =c M,y (2)

for some real numbers y, and constants ¢, (which will be determined shortly).
Define

COMn,O

CnMn,n
and Y= (y,,y,,--.,¥,)". Thus, X = M*Y. It follows by (1) that
M,OM*Y = pM, M*Y. (3)

Let us now choose the ¢, so that M, M =1 (an appropriate identity matrix).
Hence,

CI%MnkMkn =I7

which implies

-1/2
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Therefore, setting
PO = Mn QM;ti< s
we have by (3)
P)Y=pY
so that the n + 1 eigenvalues of P, are also eigenvalues of Q. In fact, if Y is an

eigenvector of P, with eigenvalue p, then X =MY is an eigenvector of Q with
eigenvalue p. Direct computation shows that:

(n—k)

k
Py(k,k) =1 _Pk—1'; — P

Py(k,k+1) =Py(k+ 1,k) = /(k+ D(n—k) 2, 0<k<n,
n

and all other entries are 0.

Now suppose that X’ is an eigenvector of Q which does not arise from those of
P, in this way. Then clearly X' € ker M,,. For the next step, assume X' € ker M,
satisfies (1), and has the form

=Q(k’k)’
(4)

X'=(0,X],X},....X,_,0)", (5)
where X is a block of X' of length (Z) and has the form
X, =c M, Y, l<k<n-1,

for some yj;, (vectors indexed by (n — 1)-sets of [1]) and constants ¢, (which will be
determined shortly). Define

0
aM, 1, 0
Mnfl =
C;z—an—],n—l
0 0
and
Y =(0,y),...,¥,_1,0)".
As before, (1) implies
M, \OM; \Y'=pM, M7 \Y'. (6)

Now it is easily checked that

M,

n,n—1»

l1<k<n-—1.

(7)

n n k n—1,n

-2
M—l,kMk,n—lz(Z_l)

M, .+ (”_Z)M
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Hence,
-2 n—2
(Ck) w1 My 1V = (Ck) 1 Vit ¢k k M, (M, —1Yi)

=2\,
<ck)( 2w
since
’ l’l—l M ' '
Ck k won—1 Yk =My My 1 Vi
n,kX/’c=0

by the assumption that X' € ker M,,. We now choose

) n—2 -1/2
“\k-1) -

which then gives by (6)

M,_,OM;_,Y'=pY". (8)
Consider the matrix
P, =M, ,OM;_,

which we can regard as a block matrix by deleting the first and last rows and
columns (which are all zero). Then

P(k k) =ciM,_ 1k‘1(k k)ckMkn 1 =q(k, k)1,

where [ is an (nf 1) X (nfl) identity matrix. By (7),
, , Pk
Can—l,kQ(kak + 1)Mk,k+1ck+1Mk+1,n—1 = n k(n—k—-1)I+T,

where Tv =0 for v €ker M, , ,. Now define the (n — 1) X (n — 1) matrix P, by
choosing

Pi(k, k) =q(k, k),
P(k,k+1)=P,(k+1,k) = —‘/m,
forl<k<n-—1
In addition, if Z' =(zy, z,,...,z,_,)* satisfies
P,Z' =pZ (9)
and v € ker M

n,n—1°

then

(A
Xk—Mk,n_lvzk
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defines an eigenvector X' = (0, X7,..., X, _,,00* of Q in ker M, with eigenvalue p.
Since

dim(ker M, , ) = (’I) - (g) =n—1,

then for each eigenvalue p in (9), we can produce n — 1 independent eigenvectors
X' for Q with eigenvalue p.

We will carry out the preceding argument repeatedly to describe all the
eigenvectors and eigenvalues of Q. In general, we assume that, for a fixed j,
X €kerM,_;, satisfies (1), and has the form

X=(0,...,0,X,,....X,_,,0,...,0)",

s Ap—jsls:
where X, is a block of X of length (Z) and has the form
Xk=ckMk,n—jyk’ jSkSI’l—j,
for some y, (vectors indexed by (n —j)-sets of [n]) and constants ¢, (which will be

determined shortly).
Note that ker M, _;., Cker M, for [ >n —j + 1. Define

0
0
0
CjM"*J/
Mn—j = Can—j,k
0 CoiMyj n-j
0
0
and
Y=(0,...,0,y;,..,¥,;,0,...,0)".
By (1) we have
M, OM;_ ;Y =pM, ;M7 Y.
It can be checked that
n—2j )
Mnfj,kMk,n7j= I’l_j_k Mnfj,n7j+l>z ‘cl nfj,lMl,nfj (10)
n—j
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for n —j <k <j and for appropriate constants c;. Therefore, we have

2 n—2] "
(Ck) wej kM Vi = (cx) (n—j—k Yi T Z Can—j,l(cle,n—jyk)

I>n—j

2j
_(k) (n ]—k)yk

since
" n_j "
Cl( k )Mz,ankzcle,kMk,ank
=M, ; X, =0

for X eker M, _;, Cker M,. We now specify
[ n=2j 12

M,_,OM}_Y = pY.

Then

Let
=M, _jQM*_

which we can regard as a block matrix by deleting the first and last j rows and
columns (which are all zero). The (k, k)-block of 13]-, for j <k <n —j, is given by

P(k k)y=cM,_ ]kq(k k)Mk kCik My - =q(k, k)1,

n—j n—j

where [ is an ( " ) X( ) identity matrix.
To compute the (k,k + 1) and (k + 1, k) blocks of }_)j, using (10), we have

D : ;
Can—j,kQ(kak+ 1)Mk,k+lck+1Mk+1,n—j = 7\/(” —j—k)k—j+1) I+T,

where Tv =0 for v eker M

w—j+1.n—j- Now, define the (n —2j+ DX (n—2j+1)
matrix P; by choosing

Pi(k, k) =q(k, k),

P(kk+1) =P (k+1,k) =/(k—j + )(n—j —k) %.

for j<k<n-—j.
Hence, if Z = (zj,..., z, _j)* satisfies

PZ=pZ (11)
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and v € ker M then

n—j+1,n—j»
X =M, ,_vz,

defines an eigenvector X = (0,...,0, X},..., X,,_;,0,...,0) of Q in ker M, _; ., with

eigenvalue p. Since

b

: n n
dim(ker M, ;. , ;)= (n —j) - (n it

n
n—j+1

then for each eigenvalue p in (11) we can produce (n’f/.) —( ) independent

eigenvectors X for Q with eigenvalue p.

Executing this process for 1<j<|n/2|, and noting that P, has n—2j+1

independent eigenvectors, then the total number of eigenvectors of Q generated
this way (counting the n + 1 from P,) is just

ln/2] n n

n+1+ j;l (n—2j+1) (n—j) _(n—j+1)

=2n

and so we have found a complete set.

5. THE ALDOUS CUBE

We will now examine in some detail a particular example of a p-walk W, which
will illustrate more specifically the approach we have described. This walk W,, in
which x; is replaced by x; + x; (mod 2) for a randomly chosen pair (i, j) of distinct
indices (see the description at the end of Section 1), corresponds to the choice
pie=k/(n—1),0<k <n—1. Note that this is actually a walk on the punctured
cube O, =0, \{0}. Thus, in this case we have

q(k,k)=1-k/n,

(12)

P(k,k+1)=P(k+1,k) =L_1)\/(k—j+1)(n—k—j),

n(n

forj<k<n—j,and 0<j<|n/2]
As usual, the largest eigenvalue of P, is 1. We will show that any other
eigenvalue p’' of P, satisfies
1 ! 13
/ < - —,
prel-— (13)

Furthermore, all other eigenvalues of Q, (the name for the transition matrix Q in
this case) are significantly smaller than this. To prove (13), we first define

Py=I1-P,,
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where [ is an n X n identity matrix. Thus,
Py(k,k)=1—Py(k,k),
Py(k,k+1)=Py(k+1,k)=—Py(k,k+1),

and all other entries are zero.

Claim. P| is the (normalized) Laplacian matrix of a weighted path G, on a set
[n]1=A{1,2,...,n} of n vertices. The degree d, of vertex k is n(n — 1)(2). The edge

weight w, on the edge {k,k+ 1} is k(n —k)(:). (Thus, the loop weight at k is
(n=D(n k(1))

This claim follows by direct verification from the definition of the Laplacian for G,
(see [3, 5] for background material on Laplacians on graphs).

In fact, G, is just obtained from Q,\{0} by collapsing all vertices of weight k in
0, \{0} into the single vertex k of G,, for 1 <k <n.

Thus, for any g:[n] — R,

(g(X) g(y) )w

1
POg(x)=‘/ZZ \/Z_‘/Z

1
= — xX) — Wy, 14
\/Zy%x(f( ) f(y)) Xy ( )
where
f(x)=g(x)/yd,, xe[n],
dx=n(n—1)(2), x€[n],
and

Wy, is the edge weight on the edge xy.

(Of course, for the path G,, w,, =0 unless |x —y|= 1.) If we denote the eigenval-
ues of P by

0= <A <A< -+ <A,

then our first goal is to lower-bound A;. We will do this by constructing a “nearby”
weighted path G, for which we can control A, = A,(P,) and its corresponding
eigenfunction exactly, and then applying a comparison theorem for relating A, to
A
The weighted path G, will have the same vertex set [n] as G,. The degrees in G,
are given by

n*(n*—=1)/(n-23) for k=1,

d,= 15
, n(n+1)(2) for 2<k<n. (15)
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(We are assuming 7 > 3.) The edge weights W, for the edges {k,k + 1} of G, are
given by

=(k+2)(n—k)(Z), l<k<n-1 (16)
Define f:[n] = R by

. -~ 1 2

fk) =5 ———.  1sk=n, (17)

and set
g(k) =f(k)\/d .

We claim that )Atl =1/n is the smallest positive eigenvalue of the corresponding
Laplacian matrix PO for G and that g is its corresponding eigenvector. To see
this, we first must check (whlch is straightforward) that f satisfies the following
condition (analogous to (14)):

X

N 1 N . 1
Pg(x)=—= 2 (f(x) =f(»))W,, = —8(x)
\/d_ y on
y~x
for all x €[n]. This can be rewritten as

1, . . . . .
—dif(k) = (f(k) =f(k+ D))+ (F(K) = f(k = 1))y (18)

for all k € [n], where we take W, =w, = 0.

We note that the eigenvalue A, =0 of P, has the eigenvector g,(k)= \F ,
k €[n]. It is easily checked that ¢ is orthogonal to §,. We also note from (17) that
f is monotone (which will soon be needed).

Next, we argue that any eigenvalue A of Po with an eigenfunction g for which
flk)=g(k)/ \/_k is not monotone must satisfy A > A,. To do this, we use the
following characterization of /\] (cf. [3]):

T (h(k) ik + 1)),
A, = inf sup =1 - . (19)
"o Lk —o)d,

So, let us assume that A is an eigenvalue of ﬁo with an associated eigenvector g
for which f(k)=g(k)/ \/dAk is not monotone.

Claim. A> A,

Proof.  Define

k
F = LG ~fG-Dl k=2, (20)
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Choose ¢, so that
L (f'(k) —co)d = 0. (21)
k=1

Also, choose i, so that f'(i;) <c, <f'(i; + 1. (If no such i, exists, then f’ and f
must be constant, which is a contradiction.) Without loss of generality, we can
assume that f(i,) <f(i, + 1). Now, define

¢ =f"(iy) —f(iy)- (22)
Fact.
|f'(k) —co| =|f(k) —cy+c| for 1<k<n. (23)
Proof of (23).  For k =i, (23) holds with equality by (22). Also
flig+1) —co=f"(iy) +|f(iy +1) = f(iy) | = ¢
=f(ip) —co+ +f(ip+1) —f(iy)
=f(ig+1) —¢cy+,

which implies (23) for k =i, + 1.
Now, in general for k>i, + 1,

| f'(k) —co| =[lf(k) =f(k=1)|+f(k=1) = ¢,
=[[f(k) =f(k=1)[+ - +[f(ig +2) = f(ig+ D[+ (ig+ 1) — ¢,
= |[f(k) = f(ig+ D) +f(iy+ 1) —co+¢|
2| f(k) —co+c'l,
as required by (23). Similarly, for k <i,
|f'(k) —col =] £/ (k+1) = | f(k) = f(k+ 1) = ¢,
=|f'(ig) —co=|f(iog=1) =f(ig)| = = = f(k) = f(k+ 1)]]|
>[f'(iy) = [f(k) = f(is)] = col
> f(ig) = o+ +f(k) = f(iy)]
=|f(k) —cy+|.

This proves (23).
Note that since by assumption f is not monotone, then strict equality must hold
in (23) for some k. Setting ¢, = ¢, — ¢/, we obtain

%(f’(k) —c))'d, = %‘,(f(k) —c,)d,. (24)

It follows from the preceding argument that equality holds in (24) if and only if
fi(k)y=f(k)—c, +¢ forall k.
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Now, by (19) we have

Y (F(k) —f(k+ 1),

k=1

A = sup 7 N
¢ Y (f(k) —c)’dy
k=1

n—1
L (J(R) = [k + 1)y

%

T (1) -e)'d,

n—1
I (k) = (k+ 1)y

> 7
Y. (f'(k) _Co)zdk
k=1
by (24) since k is not monotone
n—1
L (h(k) =h(k+ 1),
> inf sup £=1

LR (o eV,

Il
>

This proves the Claim. ]

Next, we claim that 130 cannot have two different eigenvectors g, and g,, both
orthogonal to g, and to each other, so that the corresponding functions f,(k)=

g(k)/ \/Z and f,(k) =g,(k)/ \/E are both monotone.
To see this, we will expand our n-vectors back to N-tuples by the mapping

() () (z)=1

fﬁF=(ﬂnp“Juy“”ﬂkyumﬂmV”,?GT}

(where N =2"—1). So, assume to the contrary that F, and F, are both monotone
(w.lo.g. increasing) and

N
(F,1)= Y F,(k)=0=(F,, 1) =(F,,F,), (25)
k=1

where F, #0, F, #0, and 1 is the all 1’s vector.
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It is well known (see [8] that the permutation 7 on [N]={1,2,..., N} which
maximizes LY | F,(i)F,(mr(i)) is the choice = identity on [ N]. Hence, by (25) we
have

N
E F\(i)F,(o(i)) <0  for every permutation o on [N]. (26)

Therefore,
N

N N
0= '§F1(i) ;le(J') = Z F1(i)F2(j)

ij=1

M=
M=z

F(i+))F(i+o()))

Il
—_

i=1j=1

(where addition inside F, is taken modulo N) which implies
N
Y F(i)F,(o(i))=0  for every permutation o on [ N]. (27)
i=1

In particular, this implies

N-1
Fi(1)F,(1) + Fi(N)F,(N) + ZzF( )F>(0)
N-1
=F(1)F,(N) +F,(N)F,(1) + ;2 Fi(i)Fy(i),

ie.,
Fy(1)F,(1) + Fi(N)Fy(N) =F,(1) F,(N) + F\(N)Fy(1)
or
(Fi(N) = F\(1))(F(N) = Fy(1)) =0.

However, this implies either F, or F, is constant, which is impossible, and our
claim is proved.

As a result of the preceding remarks, we can finally conclude that the smallest
nonzero eigenvalue )\1 of PO satisfies

A =1/n. (28)
Our next job will be to establish the following:

Comparison Lemma. Suppose P and P’ are two weighted paths on [n] with degrees
d; and d;, and edge weights w; and w;, respectively. Assume that for all i we have

d; > ad), w; > Bw;. (29)
Then
N = afA, (30)
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where A, and X, are the smallest positive eigenvalues of the associated Laplacians on P
and P’, respectively.

We give a short proof for completeness. (The reader can consult [3] for more
general versions.) Let f' denote so-called “harmonic” eigenvector of P’ associated
with A, (e., g'(k)= f’(k)@ is an eigenvector of P’ with eigenvalue A)).
Considering the Rayleigh quotient (see (19)), we have

(D) =f' i+ 1)) w,
() ~¢)d;

aBY(f'(i) =f'(i+1)w,
Z(f,(l) - Co)zdi

> affA,

where ¢ is chosen so that X, (f'(i) — ¢,)d; = 0 (thus minimizing the denominator).
This proves (30). .

Finally, we apply (30) with P, and P taking the roles of P and P’, respectively.
From (15) and (16) we find

cfi n+1 w, w; 1
— > , —>— == for all .
d, n-1 w,  w, 3
Therefore,
1(n+1 2 n+1 1 31
>~ = > —.
=3 n—1)1 3n(n—1) " 3n (31)
This implies
| n+1
< _——_———
pr= 3n(n—1)"°

which is slightly stronger than (13).

Our next goal will be to bound all the other eigenvalues of the other P, k > 1.
We will do this by using the fact that any eigenvalue of a nonnegative matrix is
bounded above in absolute value by the maximum row sum of the matrix. It follows
from the general expressions for P, (i, j) at the end of Section 4 that the ith row
sum o (k,i) of P, is

1
o (k,i) =m{(n—l)(n—i) +if(i—k+1)(n—k—i)

+(i-D(i—k)(n—k—i+1)}  (32)

for k<i<n—k.
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Claim.

o(k,i)sl—%. (33)

Proof. Note that

i(i—k+1)(n—k—i) =i(i—k+1)i(n—k—i)
S\/(Zi—§+1)2(n;k)2

=%(2i—k+1)(n—k).

Therefore,
. 1 . 1 .
o(k,i)< m{(rz -1)(n—1i)+ Z(Zl —k+1)(n—k)
1
+ Z(Zi—k— 1)(n —k)}
1 ) -k
= —n(n 1 {(n— (n—i)+(n —k)(l— 5)}
1 k

< ;(I’L - E),

which proves (33). [ |

As a consequence, any eigenvalue p®) of P, k > 1, satisfies

(k) k
PP l<1—o—. (34)

Our next job will be to bound the expected time for the walk on G, to hit the
vertex |n /2], given that we start at vertex 1. In general, let E;T,,, denote the
expected number of steps it takes to reach vertex i + 1, given that we start at vertex
i. Then it is not hard to show (e.g., see Aldous [1])

1 i
El i+1 7 ; g (35)
which in turn implies
ET, ,,=ET,+ET5+ - +E, », T, ,, (36)

where n /2 will denote |n /2] when n is odd.
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Claim.
E\T, ,<3nlogn  for n>2. (37)

Proof.

i
ElTn/2= ' Z _]

<n(n—1)n/22_1 ! Xl:( : )ij

1 i(n—i) /o

i\
s( ) for j<i

since
n n—i
%)
n/2-1 1 1
< 1
n(n=1) _Z l(n—z) l
n—i
n/2-1

=n(n—1) Z

l(n—21)

n—2i

n/2—1 1 1
=2(n—1) Y ( .)
i=1
<3nlogn. ]

A similar argument shows that the expected time to hit the vertex n/2 starting
from the other end of G,, namely, from the vertex n, can be bounded by the same
quantity (in fact, a somewhat smaller quantity; we omit the proof). It therefore
follows that, for any i € [n],

ET, ,<3nlogn. (38)
A key step now will be to bound the mixing time of our p-walk assuming that we
are allowed to start from some vertex y, €V, ,, (i.e., the binary n-tuple y, has

weight n,/2). By symmetry, all vertices in V,, , have the same behavior. Thus, we
need to bound

207y(s,y9) = b |Qi1(YO>x) - 77'(3‘)|

xeV

(Q%(yy,x) —1/N)’
1/N ’

<A(s,y0)=| X

xeV

(39)



216 CHUNG AND GRAHAM

where A, denotes the total variation distance (but starting at y,), N=2" —1 and
7(x) =1/N is the uniform (stationary) distribution on V.
Let 8, :V — R denote the characteristic function of y,, i.e.,

1 if x=y,,
o,(x)=
o ¥) otherwise.
Then we can write

= Z¢i()’0)¢ia (40)

where the ¢; denote orthonormal eigenfunctions for O, and ¢, corresponds to
the eigenvalue 0. Let [, denote the operator which projects a function defined on
V to the eigenspace generated by ¢, i.e., if f=X,a;¢; then I,f=a,¢,. Then

Y (Q5(yosx) = 1/NY = X(8,(05 — 1) 87 )
=28,(0%—1))858.(Q5 — 1) 8

= 6}’0( A IO) 6;:»

= X 07 (o) (41)

i#0

where 1=p, > p, > -+ > py_, are the eigenvalues of Q. Note that

Y di(y) =1 for all i. (42)
yev
Therefore,
Y (X)X Y dX(y)pP =NY p?. (43)
YEVas2 i#0 yeV 20
Since

(36 =[5 J @G

YeV,»

then we obtain

i#0 i#0

, N
(A(s,39)) =< m Y pP<2Vn Y pl. (44)
n/2

Finally, we need to bound the right-hand side of (44).
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Claim. Ifs>4nlogn + cn, then

2 1 1 \V?
A’(s,yo)ﬁ\/;(ec_lme) : (45)

Proof. By (34), (44), (31), and the remarks following (11), we have

ln/2]

5 1 2s
(A(s,¥0)) s2\/;{n(l—§) + kgl(n—2k+1)

()l 5) )

2s
< Zﬁ{exp(log n— -
3n

ln/2] sk
+ ) exp(log(n—2k+1)+klogn——)}
k=1 n

1 ln/2l
<2Vn r1*5/3e*2C/3+—2 Z ek
n- o=

2
< — —26/3+ 5_1*1’
(e
which proves (45). [

We now have all the ingredients necessary for our final estimates. If S; denotes
the numbers of steps taken starting at vertex i in G, until vertex n/2 is first
reached, then by (38)

E[S;] = w; <3nlogn.
Hence,
Pr(S;>2p]<1/2

and, more generally, for any positive integer ¢,

Pr[S;>2tp] <Pr[S;>6tnlogn] <27". (46)
Thus, for the total variation distance A, defined by

Ary(s) = sup Apy(s,y),
yevVv

then, by (45) and (46) we have
1 1 1
_ + PR
‘/; ( n—1 n20/3

This implies the simpler (but weaker) result:

1 1/2
ATV(S)SE"' ) if s>(6t+4+c)nlogn. (47)

Apy(s) <227 if s>anlogn. (48)
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It may in fact be true that A, (s) = 0 for s > ¢ n log n with a fixed constant ¢,
as n — . This would follow if we knew that for some fixed ¢,, Pr[S, = c¢;nlogn] =0
as n — o (see (46)).

We point out that for the standard p-walk on Q, having p, =n/(n + 1) for all
k, the mixing time is known (see [6]) to be of the form 47 log n + cn. Hence, it is
impressive (to us) that the walk W, also has a mixing time of order O(n log n),
given that in this case it is much harder to leave points of low weight.

We also note that earlier preliminary results ([7, 4]) established a bound of order
O(n? log n) on the mixing time of W,.

We close this section with some remarks on another common metric on
probability distributions. This is the relative pointwise distance A(s) of P° to its
stationary distribution 7, given by

P(y,x)—m(x
Aoy Jf;‘z"yl (yﬂzx) (0]

It turns out that for the walk W, on the Aldous cube, at least s =cn® steps are
required to force A(s) — 0. To see this, let x, €V, be a vertex of weight 1. Of
course,

|Qf4(x0,x0) - 71'(xo)l ‘

m(xg)

A(s) >

Since p, =1/(n— 1) for W,, then, for any distribution f,

n—2

n—1

10.(x0) = (2= 1o,

and this implies

‘ n—2\"
SXQA(X)Z(n—l) .

Thus,

A(s) >

(2" - 1)(%)5— 1‘.

This implies in particular that for s <n*log2 — n, A(s) is bounded away from 0.

On the other hand, the following argument shows that n? is the correct order of
growth. This will follow from the following fact (which applies to the standard
random walk P on any regualr weighted graph G).

Fact. The mixing time under relative pointwise distance can be at most a factor of
O(log N) times the mixing time under total variation distance (where N = |G]).
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Proof. Standard arguments (e.g., see [3]) show that

A A _,, LolG No-sh
< <e M = sh<
TV(S) == (S) se min dx e S €
if 11 N 49
>_ E—
if s> x og . (49)

where volG =Y d,.
On the other hand,

X P*(y,x) —m(x)

x€A

L (/P (x) = 7(2)|

xX€A

A §) = max max
rv(s) ax max

%

Sup max
f AcCV

over all initial probability distributions f. Let us choose fT~'/?>=c¢,, where T is
the diagonal matrix of degrees d,, ¢, is an eigenfunction corresponding to the
eigenvalue A, and ¢! =X |¢,T"/?(x)|. Then

App(s) =c ' T fP*(x) — m(x)]
>c ' |- a) ¢, TV (%)
= (1= ] T2 ()|

=(1-x)".

This shows that A, (s) is bounded away from 0 for any s=c'/A, ¢’ a fixed
constant. This, together with (48), completes the proof. ]

Applying (49) to the Aldous cube walk, where A, > 1/3n, we get
A(s)<e /3 if s=3n*log2+cn,

which shows that ¢’n? is the correct order of growth for the mixing time under
relative pointwise distance. It would be interesting to know what the correct
coefficient of n? is, and whether this walk exhibits a cut-off phenomenon (cf. [6]).

6. SLOWER WALKS

We now describe what happens when our p-walk has p, growing like £* for some
a > 1. Specifically, we will assume that

, O<k<n (50)
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where a>1 is arbitrary but fixed. Note that in contrast to the Aldous cube
situation, p,> 0, so all 2" points participate in the walk. Since the argument
follows the preceding procedure rather closely, we will only hint at the proofs,
pointing out differences along the way. The bottom line is given by the following
result.

Theorem. For each a > 1, there is a constant c(a) depending on «, so that for the
p-walk on Q, given by (50), we have

Arp(s)—0 as n-— o (51)

provided s > c(a)n® log n.

Note that this result is slightly stronger than the corresponding result (47) for (what

is essentially) a = 1. The basic reason for this difference arises from the fact that
w1 k¢ converges for @ > 1 but diverges for a = 1.

Proof discussion. The proof of (51) proceeds just like that of (47). The correspond-

ing transition matrix Q is decomposed into matrices Py, Py,..., P, ,. As before,

P, =1-P, is the Laplacian on a weighted path G,, this time of the vertex set
{0,1,...,n}. The degrees and edge weights are now given by

dk=n(n—1)(Z),
we= (n=)(n = e 1)

As before, the eigenvalues of Q are just the eigenvalues of P,, P,,..., P, /2> With
those of P, having multiplicity

ny ([ n

k k—1)

We upper bound the eigenvalues of P, using a comparison theorem for a “nearby”
weighted path G, which has

n*(n+1)
d n—1

n(n+1)(Z) for 1<k<n
and

Wk=(k+2)(n—k)(Z) for O0<k<n.
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(The difference arises because of the additional vertex 0 in G,.) It can be checked
that with

N 1
K= — —

U k+1 n+1°

the function g(k)= f(k)\/ +» 0 <k <n, is an eigenvector of Pj=1I—P, for the

eigenvector )\1 = 1/n (which is the smallest positive eigenvalue of P}). The Com-

parison Lemma then implies

(where A, denotes the smallest positive eigenvalue of P}). With some effort, it can
be shown that the maximum row sum r, of P, k > 1, satisfies

k—1 k \"
re<1-— ( )
n n+1

(thus upper-bounding any eigenvalue of P,). This is now enough to be able to
conclude that for y eV, ,,

1

A(y,s) < — 1 if s>2n%logn+cn®, n>ny(a)
o —

[corresponding to (45)]. The final calculation is that of estimating E,7, ,, and

E,T, ,,, the expected times of hitting n/2 starting from either end of G, (the

larger of which upper bounds E;T, ,, for any i). This yields
ET, , <cy(a)n®, n>ny(a), 0<i<n.

These results together then combine to give (51). [

We remark in closing that it is not hard to derive interpolation results for our
walks. The thrust of such results imply that if 0 <p, <p; <p; <1 for all k, then
the p”-walk will mix at least as rapidly as the slower of the p-walk and the p’-walk
on Q,. This implies, for example, that if k/n <p, <1, k > 0, then the mixing time
of the p-walk on Q, is still O(nlog n).
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