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1. Introduction

2. Ramsey'’s
Theorem

Roots of Ramsey theory

Among the problems appearing on the William Lowell Putnam Competition
in 1953 was the following combinatorial question: “Six points are in gen-
eral position in space. The fifteen line segments joining them in pairs are
drawn, and then painted, some segments red, some blue. Prove that some
triangle has all its sides the same color.” This problem stimulated the pa-
per “Combinatorial relations and chromatic graphs” by Andy Gleason and
Robert Greenwood {13], written later that year, which generalized the Put-
nam result in several directions. This paper is now recognized as a classic
in the development of Ramsey theory, a branch of combinatorics which
basically deals with partition-invariant structure. The essence of Ramsey
theory is succinctly captured in the description of T. Motzkin: “Complete
disorder is impossible.” In this note we will describe various aspects of
this subject, with special focus on its origins.

Ramsey theory derives its name from the following result proved in 1928
by Frank Ramsey.

Theorem (Ramsey [26]). For all choices of positive integers k, |, r, there
exists a least integer R = R(k, I; r) so that for any partition of the k-element
subsets of [R] ={1,2,...,R} = C; U ---U C,, there is an l-element set X < [R]
so that for some i, all the k-element subsets of X belong to C;.

Ramsey had just graduated in 1925 as the top mathematics student at
Cambridge University, and before his untimely death at the age of 26 in
1930, had made seminal contributions to economics, probability, decision
theory and cognitive psychology [24].

The Putnam problem on 6 points is equivalent to the assertion that
R(2,3:2) = 6, since the coloring assigning red to the pairs {1, 2}, {2,3},
{3, 4}, {4, 5}, {5, 1}, and blue to the pairs {1, 3}, {2, 4}, {3, 5}, {4, 1}, {5, 2} clearly
has no monochromatic triangle.

For the case of k = 2, pairs from [R] are usually identified with the
edges of the complete graph on the set [R]. It is also traditional to call a
partition into r sets C; U ---UC, an r-coloring, with C; denoting the i*" color
class, and sets contained in a single C; monochromatic.

In the paper [13] of Gleason and Greenwood, the values R(2, 4; 2) =18
and R(2,3;3) = 17 are established. It is interesting to note that in spite
of extensive efforts over the past 37 years since [13] appeared, no other
nontrivial values of R(k, I: ) have been determined. The upper bounds for
R(2, 4; 2) and R(2, 3; 3) are relatively straightforward. The lower bounds are
both beautiful algebraic constructions. To show R(2,4;2) > 17, the pairs
{i, j} from GF(17) are colored red if i — j is a square in GF(17), and blue
otherwise. To show R(2,3;3) > 16, the pairs {i,j} of GF(16) are colored
according to the cubic character of i — j in GF(16). This led the authors to
suggest that in general, the extremal colorings for determining the values
of R(k, I: r) would depend on deep algebraic properties. However, this has
yet to be confirmed since no other values are currently known!
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3. The Erdos-
Szekeres Theorem

3.1. van der
Waerden’s Theorem

In [13], Gleason and Greenwood also gave the estimates
41 < R(2,3;4) < 66.
The best bounds for this currently known are:
50 < R(2,3;4) < 65.

The lower bound is due to Fan Chung [3} in 1973 (who used ideas from
cyclotomy); the upper bound was proved by Jon Folkman [8] in the late
1960’s but was only published in 1974, five years after Folkman'’s tragic
death.

It was the tradition among many of the young mathematicians in Budapest
in the early 1930’s to meet in parks and coffee houses to discuss all sorts
of matters mathematical. It was during one of these gatherings which in-
cluded Paul Erdés and George Szekeres that a curious discovery of one of
the members of the circle, Esther Klein, emerged: Given any five points in
the plane, some four form a convex quadrilateral. They soon made the gen-
eral conjecture: For any n there exists N so that given N points in the plane,
some n form a convex set. In a personal account of the social and math-
ematical climate of these times, Szekeres [4, preface] gives the following
description:

I have no clear recollection how the generalization actu-
ally came about; in the paper we attributed it to Esther,
but she assures me that Paul had much more to do with it.
We soon realized that a simple-minded argument would
not do and there was a feeling of excitement that a new
type of geometric problem emerged from our circle which
we were only too eager to solve. For me, the fact that it
came from Epszi (Paul's nickname for Esther, short for
“epsilon”) added a strong incentive to be the first with a
solution and after a few weeks | was able to confront Paul
with a triumphant ‘E.P., open your wise mind’. What I had
really found was Ramsey’s Theorem, from which [the the-
orem] easily followed. Of course, at that time none of us
knew about Ramsey.

At that time Erdos found an alternate proof based on whatis now called
the monotone subsequence theorem: any sequence of n®> + 1 distinct inte-
gers must contain a monotone subsequence of length n + 1. This approach
gives a much smaller upper bound for the least value f(n) of N which as-
sures the existence of a convex n-gon. Both proofs were included in the
1935 paper [6] of Erdos and Szekeres, which is largely responsible for the
popularity of Ramsey theory in recent years. A long-standing conjecture is
that f(n) = 2"2+1, but this is only known to be true forn < 5.

Erdos sometimes calls this result the Happy End Theorem since George
Szekeres and Esther Klein were subsequently married, and moved to Aus-
tralia where they have lived and worked for the past 40 years.

At about the same time that Ramsey published his classic paper [26], B.L.
van der Waerden had come across the following combinatorial question,
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which seems to have originated with L. Schur in the early 1920’s (although
it also has been attributed to a Dutch mathematician Baudet):

Is it true that in any 2-coloring of the positive integers,
there always exist monochromatic k-term arithmetic pro-
gressions for every k?

van der Waerden [37] describes what happened after he mentioned the
conjecture to Emil Artin and Otto Schreier at lunch one day:

After lunch we went into Artin’s office in the Mathematics
Department of the University of Hamburg, and tried to
find a proof. We drew some diagrams on the blackboard.
We had what the Germans call Einfdlle: sudden ideas that
flash into one's mind. Several times such new ideas gave
the discussion a new turn, and one of the ideas finally led
to the solution.

What van der Waerden actually proved in his 1927 paper [36] was this:

For any k and r there is a least W(k, r) such that if
[W(k,r)] = C, U --- U C, then some C; contains a k-term
arithmetic progression.

Until very recently, all known proofs of van der Waerden's Theorem em-
ployed a double induction argument, resulting in upper bounds on Wik, r)
which grew like the Ackermann function, and, in particular, were not prim-
itive recursive. However, in 1988 Shelah [30] found a different proof which
in particular yielded the following bound for W(k) := W(k, 2):

22

52

k layers

~

Thus,

W) < 2° 2}65536 2's.

The only known values of W(k) are
W(2)=3, W(3)=9, w(4) = 35, W(5)=178.

The best available lower bounds for W(k) are on the order of 2%. The author
has had the following offer out for some years:

Conjecture 3.1 ($1000). Forallk,
i
W(k) < 22 )f >

No doubt, the truth is much closer to 2 than the above.
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3.2. Szemerédi’s
Theorem

3.3. Ergodic theory

Soon after the appearance of van der Waerden's paper in 1927, Erdés and
Turanraised the question as to which C; must contain the desired arithmetic
progressions. In particular, they proposed the following conjecture.

ForX o N ={1,2,3,..}, define d(X), the upper density of X, by

— o —IXn{1,2,...,N}|
d(x) 1= fim ==

Conjecture 3.2 (Erdos and Turan [7]). If d(X) > O then X contains k-
term arithmetic progressions for all k. (Note that this would clearly imply
van der Waerden’s theorem.)

The first significant advance was made by K.F. Roth in 1954 [27] who
established the conjecture for k = 3. This was followed in 1969 by a proof
for k = 4 by Szemerédi [33], and finally, in 1975, a proof by him for gen-
eral k. Szemerédi's proof [34] was a marvel of combinatorial ingenuity and
introduced his well known regularity lemma, which has had wide applica-
tion in combinatorics in recent years. (This result also was the first $1000
problem of Erdos to be solved.)

Within the past 15 years, a quite different approach has been developed
by Furstenberg, Katznelson, Ornstein, Weiss, and others, using methods
from ergodic theory and topological dynamics. The setting is basically the
following. A dynamical system (X, T) consists of a compact metric space
X together with a continuous map T : X — X. A point « € X is said to be
recurrent if there exist n; < n; < ---such that

T(x) = & as k — 0.

The fundamental recurrence theorem of G.D. Birkhoff from 1912 as-
serts that any (compact) dynamical system has recurrent points. This was
generalized by Furstenberg and Weiss in 1978, who proved:

Theorem (Multiple Birkhoff Recurrence Theorem; see [9]). IfXisa
compact metric spaceand T; : X — X, 1 < j < m, are commuting continuous

maps then there exists @ € X and n; < n, < ---such that TI"‘(tx) - o,
o) — &,..., T () — ot as k — oo, '

They show that by taking X to be the set of all r-colorings C of N with
the metric p given by

plC,C) =

x|~

where n is the least integer where the colorings C and €' differ, and the T;
are various “shift” operators of the type (TC)(i) = C(i + 1), van der Waerden’s
theorem follows as an immediate corollary.

Ina similar vein, the Poincaré recurrence theorem asserts thatif (X, B, u)
is a measure space and T is a measure-preserving transformation on X then
for any A € Bwith pu(A) > 0 there exists n > 1 with

HANT"A)>0.

This was generalized by Furstenberg in 1977 as follows:

Theorem (Multiple Poincaré Recurrence Theorem [9]). If (X, B, u)
is a measure space and Ty, T,..., T,, are commuting measure-preserving
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3.4. The Hales-
Jewett Theorem

transformations on X then for any A € B with u(4) > 0, there exists n > 1
with
HANT"A N T A) N - -n T, A) > 0.

Furstenberg then shows [9, 10, 12] that Szemereédi’s theorem follows as an
immediate corollary. As we will see in the next section, this approach has
yielded significant results which so far have been unobtainable by any other
methods, and provides an unexpected but most satisfying link between
combinatorics and ergodic theory.

The combinatorial core of van der Waerden’s theorem is really a statement
concerning certain “line-like” structures in Cartesian products of finite sets,
as was first made clear in the work of Hales and Jewettin 1963. In particular,

with A = {a,, 45, ..., a;}, define a (combinatorial) line L in AN = {(x;,..., xy) :
X; € A} to be a set of t points p(k) = (p,(k), p2(k),..., pn(k)), 1 <k < t, where
for some nonempty set of indices/ ¢ {1, 2,..., N},

pi(k} = a, foriel,

and
pilk)=b; € A fori ¢ 1.

Thus, L is just the set of points satisfying the set of equations x;, = x;, =
cee= X, I ={iy,iy...,i;},and x; = b; € A, j € I. Then we have the following:

Theorem (Hales-Jewett (1963) [21]). For any A and r, there exists
N = N(A, r) so thatif AN = Cyu-- - UC, then some C, contains aline.

To see that this implies van der Waerden’s theorem, simply take A =
{1,2,...,t} and let N = N(A, t). For any r-coloring of [tN] = {1,2,...,tN} =
C; U ---U C,, we can define an induced r-coloring of AN = C{ U ---u C},
by setting:

(x1,X2,...,XN) € C;mxl +Xx+ -+ xy € (.

By Hales-Jewett, there is a monochromatic linein this coloring which clearly
corresponds to a monochromatic t-term arithmetic progression in the orig-
inal coloring of [tN].

We remark that a higher-dimensional version of the Hales-Jewett the-
orem was found in 1971 by the author and Bruce Rothschild [17]. This
extremely general result has stimulated a new wave of Ramsey-like theo-
rems in the past few years, including a proof with K. Leeb [15] of Rota’s
conjectured analogue of Ramsey’s theorem for finite-dimensional vector
spaces over finite fields.

It should be noted that while van der Waerden's theorem and the Hales-
Jewett theorem are partition theorems, Szemerédi’s theorem is of a differ-
ent nature, being a stronger density theorem. It is natural to ask if there
is density version of the Hales-Jewett theorem. That this does indeed exist

has only very recently been established by Furstenberg and Katznelson,
who proved:

Theorem (Furstenberg and Katznelson [11]). For all A and € > 0, if

N = N(4, ¢) is sufficiently large then any X £ AN with |X| > €|A|"Y contains
a line.

43



3.5. Schur,
Rado and Hilbert

One of the earliest theorems of Ramsey type was proved by 1. Schurin 1916
in connection with his work on modular versions of Fermat’s Last Theorem.
In particular he showed [29] that in any partition of N = Cy U ---uU C, the
equation x + y = z can always be solved within a single C; (i.e., x + y = z
has a monochromatic solution). This result follows easily from Ramsey's
theorem — given an r-coloring of N, form the induced r-coloring of the
pairs {i, j}, i > j, by the map i — j «~ {i, j}. A monochromatic triangle i > j > k
then produces the desired monochromatic numbers i—j, j—k and i—k since
(i-p+y-k=i-k.

This approach was greatly expanded by Schur's student, the late
Richard Rado, whose dissertation in 1933 contained many beautiful
results of this type. A particularly nice one is the following. Call a linear
equation

E(xi,..., X)) =Y aix; = 0,
i

with a; nonzero integers, partition regular if E(x;,...,x,) always has
monochromatic solutions whenever N is colored with finitely many colors.

Theorem (Rado [25]). E(x;,...,x,) is partition regular if and only if
E(ey, ..., €n) = 0 for some choice of ¢, = 0 or 1, notall 0.

Itis not hard to show that there is a density version of this result:

Theorem (Graham [14]). E(x,,...,x,) has a nontrivial solution in any
set of positive upper density ifand onlyif E(1,1,...,1) = 0.

Thus, x; + x; = 2x; is density regular (Roth’s theorem for 3-term arith-
metic progressions), while x; + x; = x3 is not (since it has no solution in the
set of odd integers, for example), although it is partition regular. On the
other hand, x; +x, = 3x; is not even partition regular.

Rado [25] also characterizes partition regular systems of linear equa-
tions. This implies the following generalization of Schur’s result, which was
also proved independently (and later) by Folkman [8] and Sanders [28].

Theorem (Finite Sums Theorem). Foranynandr, ifN=C,u.--U(,
then there exist xy,...,x, such that all nonempty subset sums x;, + ---x;
have the same color. '

Remarkably, a similar (though weaker) result of this type had already
been proved by Hilbert in 1892, in connection with his celebrated irre-
ducibility theorem (which asserts that if P(X,Y) € Z[X,Y] is an irreducible
polynomial then P(q, Y) € Z[Y]is irreducible for some a € Z).

Theorem (Hilbert’'s Cube Lemma [22]). Foranyrnandr, if N=C, u
---U C, then there exist a and xy,..., X, such thatall sums a + x;, + ---+x;
(i.e., all subset sums of the x; translated by a) have the same color.

In this sense, Hilbert could properly be identified as having proved the
first result in Ramsey theory. We remark that in 1974, Hindman proved a
striking generalization of the Finite Sums Theorem.

Theorem (Hindman [23]). IfN = C; U ---U C, then there exists an
infinite set X c N such that all nonempty finite subset sums from X have
the same color.

This important result has formed the foundation for much recent work
in combinatorial set theory [2].
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3.6. Ramsey
numbers again

Final note

4. Bibliography
(1]

(2]

Since it appears hopeless at present to obtain any further exact values of the
Ramsey function R(k, I; r) beyond those found by Gleason and Greenwood,
researchers have looked at alternatives. One approach is to study the so-
called asymmetric Ramsey number r(k, I), defined to be the least integer r
such that any red-blue coloring of the edges of the complete graph K, or r
vertices contains either a red K; or a blue K;. The known values {(and some
bounds) are shown in Table 3.1.

3 4 5 6 7 8 9 10
3 6 9 14 18 23 28 36 40-43
k 4 18 25-27 34-43
5 43-52

Table 3.1r(k, 1)

While the coloring showing r(3,9) > 35 has cyclic symmetry, those for
r(3, 6), r(3, 7) and r(3, 8) are rather unsymmetrical [20].
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n/2 4"
cn2¥e <rin) < e
for certain constants c¢;,c; > 0. Since this time, the only improvements
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Spencer [31] (who was a student of Andy Gleason) while the best upper
bound available is due to Thomason [35]. Erdés offers $250 for showing
that
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Space limitations do not permit us to discuss any more of the many
exciting directions currently being pursued by researchers in the field.
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