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1. Introduction

With any connected graph G = (V, E) one can associate a metric
dg: V X V — N (the set of non-negative integers) by defining dg (v, w),
for v, w € V, to be the minimum number of edges in any path between v
and w. This is the most common definition of distance in a graph and has
been investigated by many researchers over the years.

In this chapter we combine the basic concepts of distance and subgraph.
More precisely, we say that G’ is an isometric (or distance-preserving)
subgraph of G if, for all vertices v and w, dg (v, w) = dg(v, w). Note
that this is a natural strengthening of the concept of induced subgraph,
since G’ is an induced subgraph of G if, for all vertices v and w in V,
dg (v, w) = 1if and only if dg(v, w) = 1.

We shall see that the requirements for a subgraph to be isometric are
rather restrictive, and, consequently, a number of surprisingly strong
conclusions can be deduced in this case.

2. A General Formulation

Suppose that (M, d) is a metric space—that is, M is a set and d is a
mapping from M X M into R (the set of real numbers) satisfying, for all
x,y,z€ M:
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(i) d(x, y) = d(y, x) = 0, with equality if and only if x = y;
(i) d(x, y) + d(y, z) = d(x, z) (the triangle inequality).

A mapping A: V — M is said to be an isometric embedding of G =
(V, E) into M if

d(A(v), A(w)) = dg(v, w),

1
for all v, w € V. We will often abbreviate this by writing A: G — V, or

even G -I—> M if we mean that a suitable A exists.

In Fig. 1(a) we show an example of an isometric embedding of Cy into
the cube Q3, and in Fig. 1(b) we show an embedding of Cy into Q5 in
which Cg is an induced subgraph of Qs but the embedding is not isometric.

3 4

(a) (b)
Fig. 1

Many of the spaces (M, d) we shall be concerned with are product
spaces—that is, spaces formed as Cartesian products of smaller spaces
with a much simpler distance structure. Specifically, if (My, d;) (1 < k = r)
are metric spaces, then the product space (M~, d*) is defined by

M* =[] M, = {(m,, om)mge M, 1=k=r},
k=1
and ,
da*((my, ..., m), (m}, ..., m)) = kE di(my, my).
=1

For example, if each M, consists of the 2-point space {0, 1} in which
the distance between the two points 0 and 1 is 1, then (M*, d*) is just
(Q:, dy), the r-cube Q, equipped with the Hamming metric for which the
distance between two binary r-triples is equal to the number of coordinate
positions in which they differ.
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3. Extended Binary Labelings

Our first set of results deals with one of the earliest developments of
isometric embeddings of graphs. In this case, we wish to find efficient
embeddings of graphs into B, where B, consists of the set {0, 1, *} with
the distance d. defined by

Lifx=0,y=1lorx=1,y =0,
d*(x,)')={

0, otherwise.

In other words, we wish to label each vertex v with an appropriate r-tuple
A(v) so that the distances between vertices in V are exactly given by the
distances between their corresponding labels. (This problem arose in
connection with early work on routing algorithms for packet switching in
data networks; see [29], [22] and [11].) In Fig. 2(a) we show a graph G
and an appropriate labeling; in Fig. 2(b) we give its distance matrix
D(G) = (dy), where d;; = dg(v;, v;).

V1 @ 00000

Vi V2 V3 V4 Vs Ve

vi0 11 2 2 3

V) 831000 10 1 1 2 2
vl 1 0 2 1 2

vwl2 1 2 o0 2 1

Ve 0101« ol 2 1 2 0 1
Vs vel3 2 2 1 1 0

G D(G)

(a) (b)
Fig. 2
To begin with, it is not clear that such isometric embeddings always
exist. For example, if we are not allowed to use the symbol *, then we are
asking for isometric embeddings of G into {0, 1}" (that is, Q,), and this is

certainly not possible for most graphs (such as non-bipartite graphs).
However, this is taken care of by the following result:

Lemma 3.1. For each connected graph G there exists a least integer r =

r(G) such that G L B..
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Proof. Let R denote the integer >, dg(v;, v;) = >, d;. We claim that
i<j i<j
1 N
G — BE. To see this, for each i and j with i < j, select d; fixed (and
mutually disjoint) coordinate positions D; < {1, 2, ..., R} and define

0, ifv =y, ke Dy,
AW =11, ifv=yv, ke Dy
% otherwise.

I
Since {1, 2, ..., R} = |J Dy, an easy computation shows that A: G — BR,
and we are done. ||

An important question, open for many years, was how large r(G) can
ever be. This was finally settled by the following elegant result of Winkler
[36]:

Theorem 3.2. r(G) = |V(G)| — 1. ||

This inequality improves earlier estimates of Yao [37] and others (see
[11], [22]), and is best possible for many infinite classes of graphs, as we
shall see shortly.

In the other direction, the following lower bound for r(G) was found
by Witsenhausen (see [22]):

Theorem 3.3. r(G) = max {n,(G), n_(G)}, where n, (G) and n_(G)
denote the number of positive and negative eigenvalues of the distance
matrix of G.

Proof. Suppose that A: G L B is given. For 1 = k = r, define subsets
Xeand Yeof I = {1,2, ..., |V(G)|} by X, = {i € I: A(v))x = 0} and
Y, = {i € I: A(v;)y = 1}. From the hypothesis that A is an isometry and
the definition of 4., we have

dy = do(va ) = 3 A A0

for all i and j. We can summarize this information in the following way:

2 dyxix; = > (Z xi)(E xj>’

i<j k=1 \ieX, jeY,
where the x; are indeterminates. Thus, the existence of an isometric
embedding of G into B’ implies the existence of a decomposition of the

associated quadratic form », djxx; into a sum of certain products. We
i<j
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can go one step further and rewrite this equation as

S dpr =43 {(3u+3 x]->2 (S w-3 xj>2},

i<j ieX, jey, ieX, jey,
where we have simply used the algebraic identity

xy =3 ((x +y)? = (x = y)?).
However, this is a decomposition of >, d;ix;x; into a sum and difference

i<j

of squares, to which we can apply Sylvester’s classical law of inertia (see
[25, p. 352]). This implies that the number of positive squares must be at
least n, (G), and the number of negative squares must be at least n_(G).
Since each of the numbers of positive and negative squares in the above
decomposition is at most r, we have r = n,(G), r = n_(G), and the
result follows. ||

Theorems 3.2 and 3.3 can be used to determine r(G) exactly, for
many graphs G. For example, if G is the complete graph K,, then an
easy computation shows that n_(K,) = p — 1, and consequently r(K,) =
p — 1. Similarly, for the odd circuit C,;.;, we have

n_(Cuv1) = 2k = |V(Cyeir)| — 1,
and so r(Csy1) = 2k. In the case that G is a tree, much more can
actually be said. This we do in the next section.

Before closing this section, we point out that the assertion r(K,) =
p—1 has the following equivalent combinatorial interpretation (see

[22]):

Theorem 3.4. It is not possible to decompose the edge-set of K, into
fewer than p — 1 edge-disjoint complete bipartite subgraphs.

Remark. At present, no purely combinatorial proof of this is known.
However, Tverberg [32] has given the following nice algebraic argument:
t

Proof.  Suppose that E(K,,) = U K(As, By) is a decomposition of the
k=1

edge-set of K, into ¢ edge-disjoint Eomplete bipartite subgraphs K(A,, By)
(1 =k =1t). Then

t
E XiX; = 2 (Z xa)( 2 Xb)-
1=i<j=p k=1 ‘aeA, beB,

Consider the following system of t + 1 homogeneous linear equations in
the p variables x;:
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J4
> % =0(1=k=1t),and D x; = 0.
i=1

aeA,
If (y1, ..., yp) is any solution to this system, then we must have
P 2
0=< yi>=2y,+22yy,
i=1 i<j
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that is, y; = 0 for all i. Hence, the number of equations in the system
must be as least as large as the number of variables, giving t + 1 = n. ||

4. Distance Matrices of Trees

Suppose that T, is a tree with p vertices. An unexpected fact concerning
the distance matrix D(T7,), first noted in [22], is given by the following
theorem. The main point of this result is that the value of the determinant
is independent of the structure of T,, and depends only on its order.

Theorem 4.1. det D(7,) = (1)~ '(p — )2@2

Sketch of proof. 'We simply designate an arbitrary fixed vertex of T, as a
root, and sequentially perform row and column operations on D(7,) by
subtracting from the row and column of each vertex v the row and
column of its immediate predecessor v’ (so that v’ is adjacent to v and lies
on the path in T, from v to the root), always processing the vertices
furthest from the root first. When this is done, the resulting matrix M =
(my;) has the form

1, fi=1o0rj=1,but(ij +({,1),
m; =4 -2, ifi=j=1,
0, otherwise,

and the result follows at once. ||

However, one suspects from the form of Theorem 4.1 that much more
is going on here. This has led to a number of extensions which help shed
light on its particularly simple form.

To state the first of these extensions, let cof D(H) denote the sum of
the cofactors of the distance matrix D(H) of a graph H. The following
result is given in [20]:
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Theorem 4.2. If a connected graph G has blocks G,, ..., G,, then
(i) cof D(G) = [] cof D(Gy);
k=1
(ii) det D(G) = >, det D(Gy) [] cof D(G)). ||
k=1 itk

Since any tree T, with p vertices has exactly p — 1 blocks, each of which
is a single edge K, with det D(K;) = —1, cof D(K;) = 2, Theorem 4.1
follows at once.

Note that, when cof D(G) # 0, then part (ii) of Theorem 4.2 can be
written in the suggestive form

det D(G) & det D(G)
cof D(G) B k=1 cof D(Gy)’

. . . . . I
It is not difficult to see that, in fact, there always exist mappings 7, — B2~

1
in which the symbol * is never used. In other words, T, — {0, 1}*~".
The next generalization of Theorem 4.1 is the following:

Theorem 4.3. Let {a;, ay, ..., a,} < {0, 1}’~'. Then
det(dn(a;, a))) = (=1~ '(p — D2¥ *V?,

where V denotes the p-dimensional volume of the parallelepiped spanned by
the vectors a, — ag (1 < k < p). ||

The proof of this relies on the use of special determinants of the form
det (x; - x;), called Gramians (see [18, p. 250]), where X, - x; denotes the
inner product of the vectors x; and x;. The values of these determinants turn
out to represent volumes of parallelepipeds in Euclidean space, and the
factor 27! arises directly from this interpretation.

The final remark we make concerning Theorem 4.1 is the following.
Rather than just looking at the determinant of D(7),), we could investigate
the characteristic polynomial

Az (x) = det(D(T,) — xI) = f} di (T,)x*.
k=0

It turns out (see [21], [16]) that each coefficient d, (T, ) represents a fixed
linear combination (independent of T,) of the number of occurrences of
various subforests in 7T, (multiplied by a factor of 2° “k=2)_ For the case
k = 0, the coefficient

do(T,) = det D(T,)
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depends only on the number of edges in T,,. The coefficients of these linear
combinations themselves satisfy some rather mysterious relations which are
not yet completely understood. However, a fuller description of this
intriguing subject is beyond the scope of the present discussion. We point
out that a curious lemma needed in [21] is the following:

Lemma 4.5.  For a tree T, on p vertices, let p; denote the degree of vertex
viin Ty, and let ay = 1 if {v;, v;} € E(T,), and 0, otherwise. Then the
inverse D™'(T,) = (d}) of D(T,) is given by:

2-p)2 - py " { %aij, ifi #j,

d; = L
g 2(p — 1) —spi, iti=j. ||

5. Cartesian Products of Graphs

In this section we consider isometric embeddings of graphs into metric
spaces formed from the Cartesian product of graphs. To begin with,
suppose that G = (V, E) is a given connected graph. Define a relation 6
on E as follows:

ife={v,w})eEande = {v',w} € E, then e 6 ¢’ if and only if
dg(v, v') + dg(w, w') # dg(v, w') + dc(v', w).

This relation was first introduced in an alternative form by Djokovi¢ [15].
It is easily seen to be well defined, reflexive and symmetric. Let 8 denote
the transitive closure of 6, and let E; (1 = i < r) be the equivalence
classes of 6.

For each i (1 =i =r), let G; denote the graph (V, E\E;), and let C;(1),
Ci(2), ..., Ci(m;) denote the connected components of G,;. Form the
graphs G = (V7, E7) (1 =i = r) by letting V; = {Ci(1), ..., Ci(m;)}
and taking {C;(j), C;(j’)} to be an edge of G if and only if some edge in
E; joins a vertex in C;(j) to a vertex in C;(j'). For v € C;(j), denote by
«;: V — V] the natural contraction sending v € C;(j) into V}. Define an

embedding «: G — |] G, called the canonical embedding of G, by

i=1

CY(V) = ((Xl(V), a/2(v), R (Y,(V)).

In Fig. 3 we illustrate these concepts for a particular graph G.

We call r, the number of factors G in the canonical embedding of G,
the isometric dimension of G (for reasons soon to be made clear) and
denote it by dim,;(G).

I .
An isometric embedding G — [] H; is said to be irredundant if |H,| > 1
i=1
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Fig. 3
foralli (1= i=m), and for all h € H;, h occurs as a coordinate value of the

. . I 7
image of some g € G. It is not difficult to see that any 8: G— [ H;can be
i=1
made irredundant by discarding unused vertices and factors.

1 1
Finally, let us call G irreducible if G— [ [ H; always implies that G — H;
i=1
for some i. The following result of [24] summarizes the main properties of
the preceding concepts:

Theorem 5.1. If a: G L f[ G7 is the canonical embedding, then
i=1
(i) « is isometric;
(ii) « is irredundant;
(iii) each factor Gy is irreducible;
(iv) o has the largest possible number dim;(G) of factors among all
irredundant isometric embeddings of G,

(v) the only irredundant isometric embedding of G into a product of
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dim;(G) factors is the canonical embedding;

(vi) each factor H; of an irredundant isometric embedding G ER Hl H;
j=
embeds canonically into a product of Gjs. ||

A key fact on which the proof in [24] of Theorem 5.1 rests is the following:

LemmaS5.2. Forv,w eV, let P be a minimal path connecting v and w, and
let Q be any path connecting v and w. Then for any E; (1 < i < r),

|PNE|=|QnE||
As an immediate corollary of Theorem 5.1 we have the following result:

Corollary 5.3. G is irreducible if and only if G has a single é—equivalence
class. ||

6. Almost All Graphs are Irreducible

In the usual random graph model, a random graph G = (V, E) has
V ={1,2, ..., n} and each pair {i, j} is chosen to be an edge with
(independent) probability 3. With this model, it is not difficult to show
that almost all graphs with n vertices are irreducible as n — . What this
means precisely is that the number of graphs with n vertices which are not
irreducible, divided by the total number of graphs of this order, tends to
zero as n increases. An easy way to see this is to consider the graph G
shown in Fig. 4. The dotted lines indicate that an edge may or may not
be present. In any case, it is immediate to verify that:

de(@, x) + dg(B, y) = 2 < 4 = dg(a, y) + dg(B, x),
and  dg(a', x) + dg(B', y) =2 <4 =ds(a, y) + de(B, x),

sothatif {a, B} =e€E, {a', '} =¢ € E, thene 0 {x, y}, e 0{x, y},
and consequently, e 6 ¢'.

Lemma 6.1. In almost all random graphs H, for any two pairs of vertices
{a, B}, {a', B’} of H there exist vertices x, y of H such that the vertices x
and y are connected to «, B, o', B’ and each other, as shown in Fig. 4.

Proof.  For two fixed (arbitrary) disjoint pairs of vertices {a, B}, {a’, 8’}
of a random graph H with n vertices, we call H bad if no such vertices x
and y exist. Since the edges of H are chosen independently and uniformly,
the probability that a given pair {x, y} fails to induce G is at most 1 — 27°.
Since we can actually form at least |5(n — 4)| = jn — 3 disjoint candidate
pairs {x;, y;}, the probability that all of them fail to induce G is at most
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a- 2“9)%"_3 Finally, since there are at most n* choices for the initial
pairs {a, B}, {a’, B'}, the probability that H is bad for some choice { «, 8},
{a’, B’} is at most n*(1 — 272)*"~3 which certainly tends to 0 as n— . ||

Thus, by Lemma 6.1, in almost all random graphs H any two edges e
and e’ satisfy e 0 ¢'; that is, H is irreducible. In fact, the preceding
argument can be strengthened to show that almost all graphs with n
vertices and cn®~ °® edges are irreducible, for an appropriate 6 > 0.

It is not difficult to check that, if e and e’ are edges belonging to
different blocks of a connected graph G, then we can never have e 0 ¢’
This implies the following:

Lemma 6.2. If G is irreducible, then G is 2-connected. ||

Similar considerations show that if any two edges e and e’ of G can be
connected by a sequence of triangles in G (that is, there exist triples

{al’ a, 03}, {a2’ as, a4}, DO {am—27 Am—1, am}

such that all {a;, a;,,} are edges of G and e c {a;, a, a3}, €' < {a,,_»,
@mn-1, Gm} ), then G is irreducible. Thus, any triangulated planar graph is
irreducible. An analogous result holds for bipartite graphs in which any
two edges are connected by a sequence of C;s.

Irreducible graphs possess many other strong properties which we will
not pursue here.

7. lIsometric Embeddings into Cubes

In this section we apply some of the preceding theory and investigate
graphs G which embed isometrically into Q,, the r-dimensional cube.
Indeed, the early fundamental paper of Djokovi¢ [15] was devoted to an
investigation of such graphs.

Suppose G L Q, for some r. Then certainly G must be bipartite.
Furthermore, suppose {v, w} is an edge of G, and assume (without loss
of generality) that v — (0,0, ..., 0) and w — (1, 0, ..., 0). Then any
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u with dg(u, v) < dg(u, w) must be mapped by the embedding into
0, uy, ..., u,). In fact, it is not difficult to see that, if
dg(u, v) < dg(u, w) and dg (v, v) < dg(v, w),

then all points z on any shortest path between « and v must be mapped
z — (0, z,, ..., z,) by the isometry—that is, z must satisfy d;(z, v) <
dG(Z, W)

The following result of Djokovi¢ [15], which can be obtained as a
corollary of the previous results on embeddings into Cartesian products,
shows that these two necessary conditions are in fact sufficient:

1
Theorem 7.1. G — Q, for some r if and only if
(i) G is bipartite;
(i) for any edge {v, w} of G, the set of vertices of G which are closer to
v than w is closed under taking shortest paths. ||

1 AL .
It turns out that when G — Q,, then 8 = 0, in fact, this can be used as
an alternative characterization, as shown in [24]:

1
Theorem 7.2. G — Q, for some r if and only if
() G is bipartite;
(ii) the relation 0 is transitive. ||

Another characterization of these graphs was found by Roth and
Winkler [30]:

Theorem 7.3. G L Q, for some r if and only if

() G is bipartite;

(i) n,(G) = 1. ||
The proof involves producing a list of forbidden metric subspaces for
graphs not isometrically embeddable in Q,, showing that each of these

spaces has at least two positive eigenvalues, and then applying an eigen-
value interlacing theorem.

As noted by Djokovié in [15], when G L Q, then dim;(G) is equal to
the number of @-equivalence classes. However, there is also an explicit
expression for the value of dim,(G), depending only on the signs of the
eigenvalues of D(G) (see [23]):

1
Theorem 7.4. If G — Q,, then
dim;(G) = n_(G),



6 ISOMETRIC EMBEDDINGS OF GRAPHS 145
the number of negative eigenvalues of the distance matrix D(G) of G.

Proof. First, recall from Theorem 3.3 that r(G) = n_(G). Next, we
claim that

6L o >n@ =1

This can be seen by observing (as was done in [11]) that no *s are used in
the proof of Theorem 3.3, X, U Y, is always a partition of V(G), and
consequently the quadratic form ), d;x;x; is expressible as a sum of one

positive square and some negative squares. This implies that n, (G) =< 1,
and since n. (G) > 0 (the trace of D(G) is zero), we have n, (G) = 1.

We now claim that rank D(G) = n + 1. To see this, observe that, on
the one hand,

rank D(G) = n_(G) + n, (G)=n_(G) + 1 =r(G) + 1 =r+ 1.
On the other hand, since G is connected there must exist vertices v,

1
Vi, ..., v, € V(G) such that, if \: G — Q, is an isometry, then the set
{A(vo), A(v1), ..., A(v,)} is full-dimensional in Q,. Thus the submatrix

dg(vi, vj) = (du(A(vi), A(v)))

is non-singular, and so rank D(G) = r + 1. Consequently, rank D(G) =
r + 1, which proves the claim, and

n_(G) = r = r(G) = dim;(G),

which proves the theorem. ||

1
It follows from these considerations, for example, that if G — Q,, then

det D(G) # 0 if and only if G is a tree.

8. General Metric Spaces

The problem of embedding graphs isometrically into other graphs is a
special case of the more general topic of embedding (finite) metric spaces
isometrically into other metric (or semi-metric) spaces. This subject has
an extensive literature, some of which can be found in [1]-[10], [12]—[14],
[26]—[28] and [34]. Many of these more general results apply directly to
our problems. For example, it follows from these considerations that if

1 .
G — K3, then n,(G) = 1. The reason for this is as follows.
Let us say that an r X r distance matrix D = (dj;) is of negative type if

xn+ ...+x,=0 (xkER)ézdijxiijO-
iJj
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Similarly, we call D hypermetric if
x+ .ot x =1 (xx€Z)=> > djxx; < 0.
L

Although these two conditions are similar, the latter is actually much
stronger (see [28]). Not only does it imply the former, but it also implies
that the space satisfies the triangle inequality (and many stronger related
inequalities), something that a matrix of negative type does not have to.
It is not difficult to show that if D is of negative type, then n (D) = 1.

An even more restrictive condition is the following. The matrix D is
said to be /;-embeddable if D can be realized as the distance matrix of a
set X c R™ for some m, where the distance in R™ is the usual /;,-metric—
that is,

d((xl7 sy xm)’ ()’1, et ym)) = kZI |xk - ykl

It is known (see [28]) that any /;-embeddable space is hypermetric. Of

course, if G -I—> K%, then G is l;-embeddable.

It turns out that the properties of /;-embeddability, hypermetricity and
negative type are preserved under taking products, factors and isometric
subsets. Thus, for example, since K3 is of negative type (actually, the
matrix

0
1

— =
S ==

is of negative type, which is easy to check), then

1
3" is of negative type > G — K%' is of negative type = n,(G) = 1,

as claimed previously.

An interesting observation due to H. J. Landau (personal communi-
cation) is the following. Suppose that X is a metric space with distance
matrix D. Let D® denote the distance matrix corresponding to the
product space X*. As we have just remarked, if X is of negative type then
so is X* and, consequently, n, (D¥) = 1 for any k. It turns out rather
unexpectedly that the converse holds. In fact, it can be shown that if
n,(D@) = 1, then this already implies that X must be of negative type.
More generally, if X and Y are finite metric spaces, each having more
than one point, and if n,. (D(X X Y)) = 1, then X and Y must both be of
negative type.
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9. Concluding Remarks

We show in Fig. 5 a map of some of the metric spaces which have been
mentioned in the preceding sections. We conclude by describing a variety
of results and open problems which deal with various regions of this map.

To begin with, it was suspected at one time (see [34]) that hyper-
metricity might imply /;-embeddability. However, this was shown not to
be the case, both by Assouad [1] and by Avis [9], who proved that the

Hypermetric
® K;—P;

Negative type
& K;—Kj

Semi-metric
® K,

Fig. 5
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graph K7 — P; is hypermetric but not /;-embeddable. In the same spirit, it
is easy to show that the graph Ks — Kj is of negative type but not
hypermetric (see [7]), and that K, s + e is an example of a graph not of
negative type which has n, = 1 (where the added edge e connects the two
vertices in the smaller vertex class of Kj s; see [36]).

We point out that the rather simple graph Kj , is exceptional in several
respects. Since n, (K3,) = 2, K3, is not of negative type, and is therefore
not isometrically embeddable into the n-cube Q,,, or even into R". In fact,
K5, is not even a subgraph of Q,. It also turns out that

r(K3_2) =4 > max(n+ (K3’2), n_(K3_2)) = 3,

showing that equality need not hold in Theorem 3.3. Tt is not known how
r(G) behaves for random graphs, but it is natural to guess that r(G) =
|G| — 1 for almost all large graphs G.

It has been shown by L. Babai and C. Godsil (personal communication)
that almost all large graphs G have

n.(G) = (G + o(1))|G|, and n_(G) = (; + o(1))|G]|,

so that presumably Theorem 3.3 almost never holds.

At present no necessary and sufficient conditions are known for a
graph to be /;-embeddable, hypermetric, of negative type or have one
positive eigenvalue. An old result of Schoenberg [31] shows that a distance
matrix D = (d,;) is of negative type if and only if the corresponding
distance matrix VD = (Vdj) can be realized by a point set in some
Euclidean space. Very recently, Assouad [3] has characterized hyper-
metric spaces in terms of ‘deep holes’ in certain lattices in Euclidean
space.

An interesting problem which has received some attention in the literature
is that of determining the quantity f(n), defined by

I 1
f(n) = min{m: |X| = n and X > R’ for some r > X ->R™},

where the /;-metric is used in R” and R™.

The value of the corresponding function in Euclidean space is clearly
n — 1, since any set of n points can be embedded isometrically in Euclidean
(n — 1)-dimensional space. Life is not so simple for the /;-metric, however.

It has been shown by Witsenhausen (personal communication; also see
[8]) that

fB)=f(4) =2,f05) =3,f(6) =6, f(7) =10, n = 2 = f(n) = (3).

Even the correct order of growth of f(n) is rather mysterious at this
point.
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It would be highly desirable to have analogues of Djokovi¢’s theorem for
.. 1

characterizing those G — H’, for general H. For example, Winkler

(personal communication) has shown that G i) K3 for some r if and only
if 6 is transitive. At present, however, almost nothing is known in this
direction. It would seem fruitful to study the characteristic polynomials of
the associated distance matrices of various spaces, rather than just the
signs of the eigenvalues. This was initiated for trees in [12], [16] and [21].
It seems quite likely that our understanding of this whole general area
would increase substantially if the corresponding results were known for
graphs more general than trees. Good candidates for this would appear

I
to be graphs G — Q,.

Note added in proof. Very recently, Terwilliger and Deza [32] have
characterized certain classes of hypermetric graphs.
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