
SIAM J. COM’UT.
Vol. 3, No. 4, December 1974

WORST-CASE PERFORMANCE BOUNDS FOR SIMPLE
ONE-DIMENSIONAL PACKING ALGORITHMS*

D. S. JOHNSONf, A. DEMERS:t:, J. D. ULLMAN,
M. R. GAREYI[AND R. L. GRAHAMII

Abstract. The following abstract problem models several practical problems in computer science
and operations research: given a list L of real numbers between 0 and 1, place the elements of L into
a minimum number L* of "bins" so that no bin contains numbers whose sum exceeds 1. Motivated
by the likelihood that an excessive amount of computation will be required by any algorithm which
actually determines an optimal placement, we examine the performance of a number of simple algo-
rithms which obtain "good" placements. The first-fit algarithm places each number, in succession, into
the first bin in which it fits. The best-fit algorithm places each number, in succession, into the most nearly
full bin in which it fits. We show that neither the first-fit nor the best-fit algorithm will ever use more
than 17.

a-6. + 2 bins. Furthermore, we outline a proof that, if L is in decreasing order, then neither
algorithm will use more than L* + 4 bins. Examples are given to show that both upper bounds are
essentially the best possible. Similar results are obtained when the list L contains no numbers larger
than < 1.

1. Introduction. Recent results in complexity theory 3], [10] indicate that
many combinatorial optimization problems may be effectively impossible to solve,
in the sense that a prohibitive amount of computation is required to construct
optimal solutions for all but very small cases. In order to solve such problems in
practice, one is forced to use approximate, heuristic algorithms which hopefully
compute "good" solutions in an acceptable amount of computing time. Thus,
instead of seeking the fastest algorithm from the set of exact optimization algo-
rithms, one seeks the best approximation algorithm from the set of "sufficiently
fast" algorithms. Unfortunately it is usually difficult to evaluate and compare the
performance of heuristic algorithms, other than by running them on large problem
sets with known optimal solutions. A more rigorous approach is to mathematically
analyze the performance of such algorithms to determine how closely the construc-
ted solutions approximate optimal solutions. In this paper, we consider a number
of heuristic algorithms for an important one-dimensional packing problem and
determine worst-case performance bounds, relative to the optimal solution for
each.

We base our theoretical performance analyses on worst-case, rather than
average, behavior. The analysis of expected performance for a realistic prob-
ability distribution on the problem domain (which is, in itself, usually difficult to

Received by the editors December 3, 1973, and in revised form April 8, 1974.
]" Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massa-

chusetts 02139. The research reported here was supported in part by Project MAC, an MIT research

program sponsored by the Advanced Research Projects Agency, Department of Defense, under
Office of Naval Research Contract N00014-70-A-3062-0006, and by the National Science Foundation
under Contract GJ00-4327. Now at Bell Laboratories, Murray Hill, New Jersey 07974.

:]: Department of Electrical Engineering, Princeton University, Princeton, New Jersey 08540. This
work was supported by the National Science Foundation under Grant GJ-35570.

Department of Electrical Engineering, Princeton University, Princeton, New Jersey 08540. This
work was supported by the National Science Foundation under Grant GJ-1052.

Bell Laboratories, Murray Hill, New Jersey 07974.

299

300 D. S. JOHNSON, A. DEMERS, J. D. ULLMAN, M. R. GAREY AND R. L. GRAHAM

determine) appears at present to be considerably more difficult. Worst-case results
are easier--though decidedly nontrivial--to obtain and are quite useful, especially
because they enable one to guarantee that a particular algorithm will never exceed
the optimal solution by more than a known, hopefully small, percentage. Intuitively,
one might expect that a "mechanism" which causes a particular algorithm to
have a certain worst-case behavior might also be expected to manifest itself to a
certain extent in the "average" case. Some experiments [4], [8] with randomly
generated data have tended to confirm the hypothesis that, for the algorithms
considered here, worst-case analysis does provide valid comparisons.

The basic problem to be considered can be stated quite simply" given a list
L (al, a2,..., an) of real numbers in (0, 1], place the elements of L into" a
minimum number L* of"bins" so that no bin contains numbers whose sum exceeds
1.

This problem, which is a special case of the one-dimensional "cutting-stock"
problem [7] and the "assembly-line balancing" problem [2], models several
practical problems in computer science. Some examples are"

1. Table formatting. Let the "bins" be computer words of fixed size" k bits.
Suppose there are items of data (e.g., bit string of length 6, character string of
3 bytes, half-word integer) requiring ka,ka2,... ka bits, respectively. It is
desirable to place the data in as few words as possible. The minimum is given by
L*, where L is the list (a, a2,... an).

2. Prepaging. Here, the bins are pages and the numbers in the list L represent
fractions of a page required by program segments which should appear on a single
page, e.g., inner loops, arrays, etc.

3. File allocation. It is desired to place files of varying sizes on as few tracks of
a disc as possible, where files may not be broken between tracks.

Brown 1] gives a number of additional applications in industry and business.
Since the abstract "bin packing" problem is "NP-complete" in the sense of Cook
[3] and Karp [10], we can expect the problem of finding a packing which uses
exactly L* bins to require in general a lengthy combinatorial search for its solution.
Thus we feel justified in considering the performance ofvarious heuristic algorithms
for constructing packings. In particular we shall consider the following four place-
ment algorithms.

ALGORITHM (First-fit). Let the bins be indexed as B, B2, with each
initially filled to level zero. The numbers ax, a2, a will be placed in that order.
To place ai, find the least j such that Bj is filled to level fl __< ai, and place ai
in Bj. Bj is now filled to level fl + ai.

ALGORITHM 2 (Best-fit). Let the bins be indexed as B1, B2,.’., with each
initially filled to level zero. The numbers a, a2, a will be placed in that order.
To place a, find the least j such that Bj is filled to level fl __< a and fl is as large
as possible, and place a in Bj. Bj. is now filled to level/3 + ai.

ALGORITHM 3 (First-fit decreasing). Arrange L (al, a2, ..., a,) into non-
increasing order and apply Algorithm to the derived list.

ALGORITHM 4 (Best-fit decreasing). Arrange L- (al,a2, "’", an) into non-
increasing order and apply Algorithm 2 to the derived list.

First brought to the attention of the last-named author by E. Arthurs (via S. A. Burr).

ONE-DIMENSIONAL PACKING ALGORITHMS 301

We use FF(L), BF(L), FFD(L) and BFD(L) to denote the number of bins
used in applying each of the four algorithms, respectively, to the list L. The per-
formance measure in which we are interested is the ratio of the number of bins
used by a particular algorithm executed on L to the optimum number of bins L*.
Accordingly we use RFF(k) to denote the maximum value achieved by the ratio
FF(L)/L* over all lists with L* k, with RBF(k), RFFD(k) and RBFD(k) being defined
similarly. Our main results, the first two of which appeared in a preliminary
version of this paper [6], can be summarized as follows:

(1) lim RFF(k) -,
(2) lim RBF(k)- -,

k-

(3) lim RFFD(k)- 1,
k-

(4) lim RBFD(k)- .
ko

All these ratios are achieved for small values of k, so that these asymptotic results
actually reflect the performance for essentially all values of k. In addition, similar
results are obtained for certain restricted lists L.

2. First-fit and best-fit. We begin with a simple example which illustrates the
type of list for which these two algorithms behave poorly. For any n divisible by
18 and 0 < 6 < -,, let the list L (a az, ..., a,) be defined by-- 2, <= <__ n/3,

a -} + 6, n/3 < <= 2n/3,

1/2+6, 2n/3 < <_ n.

Clearly L* n/3 since the elements can be packed perfectly by placing one element
from each of the three regions in each bin. However, as the reader can easily verify,
both first fit and best fit will obtain the packing which consists of n/18 bins, each
containing six elements of size 26, n/6 bins, each containing two elements of
size 1/2 + 6, and n/3 bins each containing a single element of size 1/2 + 6. The two
packings are illustrated in Fig. 1. Thus we have

FF(L) BF(L) (n/18) + (n/6)+ (n/3) 5

L* L* n/3 3

By slightly modifying the list L given in the example, we can force even worse
behavior and prove the following theorem.

THEOREM 2.1. For every k >= 1, there exists a list L, with L* k, such that
FF(L)-- BF(L) > 1.7L* 8.

Praaf. As in the previous example, the elements of the list L will .belong to
three regions, with sizes nearly equal to , 1/2 and 1/2, respectively. The number of
elements belonging to each region will be the same, and those of the first region
will precede those of the second region which precede those of the third region
in the list L.

302 D. S. JOHNSON, A. DEMERS, J. D. ULLMAN, M. R. GAREY AND R. L. GRAHAM

LI n/3’

1/3+B

1/2+8

(x n/3)

FF(L) 5n/9:

116-28

1/6-28

1/6-28

I/6-28

I/6-28

I/6-28,

(x n/18)

1/3+8

112+8

(x n/6) (x n/3)

FIG. 1. The 5/3 example

Let N be a positive integer divisible by 17 and let di be chosen so that 0 < 6
<< 18 -N/17. The first region will consist of N/17 blocks often numbers each. Let the
numbers ofthe ith block ofregion be denoted by aoi, ai, ..., a9i. These numbers
are given by the following expressions, where 6 6.18tN/7)-i for <= <= N/17"

aoi 4- 3 a4i - 136i,

all - 3(i, ai-- -F

75a2i a3i 6 a6i-- aTi- asi-- a9i-- 2i.

Let the first 10N/17 numbers in the list L be ao, al, -", a91, ao2, a92,
.., aO(N/7),... a9(N/a.7). We notice that ao + a + + a4 =-56 + 36i, and

asi -t- a6i -k- q- a9i - + ti. Thus, for all i, the first five numbers of block
will fill up bin 2i 1, and the last five numbers of block will fill up bin 2i when
either the first-fit algorithm or the best-fit algorithm is applied to L. To see this
we need only observe that a4, the smallest number in block i, will not fit in any
of the previous bins, since the least filled of these, bin 2i 2, has contents totaling
+ 5_ - + 185. Also, the smallest of as, a6i a9i which is 26, will

not fit in bin 2i 1, which has contents totaling + 35. Thus the N/17 blocks
in region fill up 2N/17 bins.

We now turn to region 2. Here the numbers are all about 1/2, and they are again
divided into N/17 blocks of ten numbers each. Let the ith block of region 2 be
boi, bli ..., b9i. The numbers bo,bl, "", b91, b02, "’’, b92, ,bo(Nil7), "’’,

b9(u/17) follow those of region in the list L. The values of the numbers in block

ONE-DIMENSIONAL PACKING ALGORITHMS 303

are given by"

boi 1/2 -+- 46ii,

bli 1/2 346i,

b2i b3i 1/2 -+-

b4i 1/2 4- 12i,

bsi-- 1/2- 10i,

b6i b7 bsi b9i 1/2 4- i.
The numbers of block fill bins (2N/17)+ 5i- 4 through (2N/17)+ 5i.

These are filled with boi and b li, bzi and b3, etc. To see this, we observe that the
contents of the five bins filled by block sum, respectively, to

}+ 126,, + 12a,, -+ 2ai, +2a,, - +Thus bs 1/2- 10a, cannot fall into either of the first two bins, and b l
34a cannot fall into any of the bins for previous blocks since these are

all filled to at least level } + 2a,_ + 36a. Thus the NIl 7 blocks in region 2
fill up 5N/17 bins.

The third region consists of 10N/17 numbers, each equal to 1/2 + a. These
complete the list L and fill one bin each. The total number of bins filled by either
the first-fit algorithm or the best-fit algorithm applied to list L is thus 2NIl 7 from
region 1, 5NIl 7 from region 2, and 10N/17 from region 3, for a total of N bins.

However, the numbers on the list L can be packed into (10N/17) + bins as
follows. All but two of these bins contain one of the numbers 1/2 + a. The remaining
space in each of these bins is filled with one of the following combinations"

(i) aa + ba for some 2 __< j __< 9 and <_ <_ NIl7,
(ii) aoi + b for some <= <= NIl7,

(iii) a, + bo,+ for some <_ <_ NIl7.
This leaves bo, a{s/ v, and one number 1/2 + a which may be packed easily

into the remaining two bins. We have thus shown that L* _< + 10N/17, so

and, similarly
FF(L)/L* >_ 17N/(ION + 17)> 1.7 2/L*

BF(L)/L* >= 17N/(ION + 17)> 1.7 2/L*.

To obtain values of L* not congruent to (mod 10), we can form the list L’ by
adjoining to L rn elements, each with size 1, where m is a fixed positive integer _< 9.
The preceding arguments then show

FF(L’) FF(L)+ rn

so that

FF(L’) 17N + 17m 17
L’* 10N+ 17+ 17m= 10

and L’* =L* +m

7m+ 17

10((10N/17) + rn + 1)

17 (7m + 17)/10 S
> > 1.7

10 L’* L’*’

since rn _< 9. The same argument applies to BF(L). This proves Theorem 2.1.
We will now show that the examples constructed in the previous proof are

essentially the worst possible, that is, 1.7 is the asymptotic least upper bound of the
ratios RFF(k and RBF(k).

304 D. S. JOHNSON, A. DEMERS, J. D. ULLMAN, M. R. GAREY AND R. L. GRAHAM

THEOREM 2.2. For every list L, FF(L)__< 1.7L* + 2 and BF(L)_< 1.TL* + 2.
Proof. We use only the two following properties of the FF and BF algorithms.
(i) No element is placed in an empty bin unless it will not fit in any nonempty

bin.
(ii) If there is a unique nonempty bin with lowest level, no element will be

placed there unless it will not fit in any lower numbered bin.

7/10

I15

I,

0 I/6 I/3 I/2

FIG. 2. Thefunction W()

Define W: [0, 1] [0, 1] as follows (see Fig. 2)"

w()

-}a for0__< a__< ,
--0 for < g <

-0 + o for < __< 1/2,

for1/2< __< 1.

CLAIM 2.2.1. Let some bin befilled with b l, b:, ..., b Then= W(b) <__
Proof. If b =< 1/2, then W(b)/b <= -}. The extreme ratio is reached only when

b 1/2 and is less otherwise. Thus the lemma is immediate unless one b is greater
than 1/2. We may take this one to be b 1, and must show that if m__ 2 b < 1/2, then
Z W(b,)< oi--2

It should be noted that since the slope of W(b) is the same in the regions [0,
and [1/2, 1/2], any b which is in the latter region can be replaced without loss of
generality by two numbers of 1/2 and b 1/2, respectively. We therefore assume that
bi __< 1/2 for 2 __< _< n. Moreover, if bj and bk are both =<, they can be combined into
one and i W(b) will not decrease; in fact it may increase. Thus we may assume
that at most one of the hi’s, >__ 2, is in the range (0, }], and the rest are in (}, 1/2].

We have consequently reduced the proof to the consideration of four cases"

Case 1. m 2, bE -.

ONE-DIMENSIONAL PACKING ALGORITHMS 305

Case 2. m 3,- < b2 < b3
<_ -}.

Case 3. m 3, b2 <= - < b3 <= 1/2.
Case 4. m 4, b2 <=- < b <_ b4 <=1/2.

Case is immediate since b2 =< 1/2 implies W(b2) _< @o. In Case 2, W(b2) + W(b3)
-(b2 + b3) 1/2 -" 1/2 1/2 0, since b2 + b3 1/2. For Case 3, W(b2) + W(b3)
56-b2 "+ -b3 -0 1/2 + 3- flo ?b. And finally, in Case 4, W(b2)+ W(b3)

9+ W(b4) <=-b2 + b3 + b4)- 1/2 b2 + b3 + b4)--b2 1/2_--<TO i7-o,
since bE + b3 + b4 <_ 1/2.

Let us define the coarseness of a bin to be the largest such that some bin
with smaller index is filled to level . The coarseness of the first bin is 0.

CLAIM 2.2.2. Suppose bins are filled according to either the FF or the BF algo-
rithm, and some bin B has coarseness 0. Then every member orb that was placed there
before B was more than halffull exceeds .

Proof. Until the bin has been filled to a level greater than 1/2, it must be either
empty or the unique nonempty bin of lowest level (by property (i) of the placement
algorithm), so by constraints (i) and (ii), any element placed in the bin must not
fit in any bin with lower index, and hence must exceed .

CLAIM 2.2.3. Let a bin of coarseness < 1/2 be filled with numbers b >= b2

>= >= b,, in the completed FF-packing (BF-packing). If im=l b > 1 cz, then

Z W(bi)> 1.

Proof. If b > 1/2, then the result is immedia.te since W(b) 1. We therefore
assume that b =< 1/2. If m >__ 2, then the second element placed in the bin was
placed before the bin was more than half full, so by Claim 2.2.2, at least two of the
elements exceed a. In particular, we must have b >__ 3 2 >= oz. We consider several
cases depending on the range of a.

Casel. a=<. Then Z,=,b >l-a> Since W(fl)/fl>in the range
0 __< fl __< 1/2, we immediately have m__ W(b,) >= -.- 1.

Case 2. =< a __< 1/2. We consider subcases (a)-(c), depending on the value of
m.

(a) m 1. Since b =< 1/2, we must have a =< 1/2 or a >= 1/2, which contradicts
our assumption that a =< 1/2.

(b) m 2. Ifboth b and b2 are => 1/2, then W(b) + W(b2) >= (-. 1/2 + o)" 2 1.
If both are <1/2, then b + b2 < - < a, which contradicts our hypothesis. If
b _> 1/2 and b2 < 1/2, then, since both must be greater than a, a < b < 1/2 =< b2 =< 1/2.
Hence W(ba) + W(b2)= -95b 0 + -b2 + 0 -(b + b2) + {b. Sincebl + b2

__> 1-a and bl>a, we thus have W(b)+ W(bz)->l-cz)+-35a= +1/2
-{a=> 1, sincea=<1/2.

(c) m => 3. As in the previous case, if two of the b are =>, the result is im-
mediate. If b _>- 1/2 > b2 >= x, then

W(b,) + W(b) + W(b,)
i=3

6>= + + + ,Z3 b,

6
b, + >= + >= 1.

306 D. S. JOHNSON, A. DEMERS, J. D. ULLMAN, M. R. GAREY AND R. L. GRAHAM

If1/2 > b => b2 > o, then

6
W(b) + W(b) + W(b) >= -(bl + b) -} + -i=3

>= -(1)+ -}(2)- 1/2 + -65 -o 1.

Case 3. 1/2<o<1/2. Ifm= 1, wehavebl >= -o>1/2, soW(b 1) 1.
If m >= 2, then b >= b2 > 1/2 and the result is immediate.
CLAIM 2.2.4. If a bin of coarseness o < 1/2 is filled with b >= >_ b,, and

i"= W(bi) fl, where fl > O, then either
(i) m= landbl <1/2, or

(ii) ,im__ b =< -fl.
Proof. If m and b > 1/2, it is impossible that fl > 0. Therefore, if (i) does

not hold, we may assume that m _>_ 2, and hence b >= b2 >= a by reasoning of the
previous claim. Let y’,im= b a 7. Then we may construct a bin filled with
b3, b,..., b,, and two other numbers 31 and 62 selected so that + 2 bl
+ b2 + 7, 6 >_ b 62 >= b2, and so that neither 6x nor 32 exceeds 1/2. By the proof
of Claim 2.2.3 and the fact that both 3 and 32 exceed a, i3 W(bi) + W(6a)
+ W(62) => 1. But since the slope of W in the range [0, 1/2] does not exceed ,9 it
follows that W(31) + W(62) =< W(bx) + W(b2) + -7. Therefore 7 >= -fl, and (ii)
holds.

We are now prepared to complete the proof. Let L (ax, a2,-.., a,) and
W ’__, W(a). By Claim 2.2.1, L* .=> W.

Suppose that in the FF (BF) algorithm bins B’I, B, ..., B, are all the bins
that receive at least one element and for which y’,j W(aj) fli with fli > O,
where j ranges over all elements in bin B’i. We assume that =< < j _< m implies
that B’ had a smaller index than B in the original indexing of all bins. Let ai be
the coarseness of B’. Since B’ contains no element exceeding 1/2, we must have
each ai < 1/2. By Claim 2.2.4 and the definition of coarseness,

(Zi > i-1 -- -fli-1 for < =< m.
Thus

m-1 9

Since fl,, cannot exceed 1, we have = =< 2. Applying Claim 2.2.3, we obtain

FF(L)=< W+2=<(1.7)L* +2 and BF(L)=< W+2=<(1.7)L* +2,

completing the proof.
As a consequence of Theorems 2.1 and 2.2, we have a corollary.
COROLLARY. (i) lim_ R(k)= 1.7,

(ii) lim_ Rn(k)= 1.7.
It is interesting to note that for several values of k, the ratio : can actually

be attained. In particular, there is a list L with L* 10 and FF(L) BF(L) 17.
The two packings, with all quantities in units of 1--, are shown in Fig. 3. The list
L is in nondecreasing order. There is also a list L having L* 20 and FF(L)

BF(L) 34. It may be true, however, that R(k) < 1.7 and Rs(k) < 1.7 for
k>20.

ONE-DIMENSIONAL PACKING ALGORITHMS 307

L"= 10’

34

(x3)

34

51

(xT)

FF(L) =17’

o(x5)

6(x7)

-9

5O

42

16(x3) 48
34

"///////

51
34

IO(x2) 20

(x5) (xO)

FIG. 3. An example with FF(L) 17 and L* 10

If the list L is such that a =< =< 1/2 for all i, the worst-case behavior of the
two placement algorithms is not as extreme. We then have the following result.

THEOREM 2.3. For any positive <= 1/2, let m l- 1. Then we have
(i) for each k >= 1, there exists a list2 L_(O,] with L* =k such that

FF(L) _> [(m + 1)/m]L* (l/m); and
(ii) for any list L

_
(0,], FF(L) _< [(m + 1)/m]L* + 2.

Both (i) and (ii) hold with FF replaced by BF.
Proof. We first describe how one constructs lists L, with no element exceeding, for which

FF(L) BF(L) m +
L* L* m mL*"

Let k be any positive integer. The list L is composed of elements which are all
very close to 1/(m + 1). The elements are of two types, described as follows"

bj 1/(m + 1)- m2J+ 16, j 1,2, ..., k- l;

alj=a2j a,,j= 1/(m+ 1)+m2J6, j= 1,2,...,k,

where 6 > 0 is chosen suitably small. The list L has the a-type elements occurring
in nonincreasing order and the b-type elements occurring in strictly increasing
order interspersed so that each successive pair, bj and bj_ 1, of b-type elements has

Strictly speaking, L is not a set, but a sequence. However, the use of set terminology is convenient
and should cause no confusion. Other instances will follow.

308 D. S. JOHNSON, A. DEMERS, J. D. ULLMAN, M. R. GAREY AND R. L. GRAHAM

precisely rn a-type elements occurring between them. The list L is then completely
specified by the property that bk_ occurs as the second element. We leave it for
the reader to verify that

FF(L)= BF(L)= [k(m + 1)-

It is easy to see that the elements of L can be packed optimally by placing
bj, alj, a2j, amj in a single bin for each j 1,..., k and placing ak,

a2k amk in one additional bin. This gives L* k. We then have

FF(L) BF(L) k(m + 1)- m +
L* L* mk m mL*"

The upper bound is also easily proved. Suppose that the list L contains no
element exceeding 1/m, m an integer.

Consider an FF packing of L. Every bin, except possibly the last bin, contains
at least m elements. Disregarding the last bin, suppose two bins B and B, < j,
each contain elements totaling less than m/(m + 1). Then, since B contains rn
elements, Bmust contain an element with size less than 1/(m + 1). But this element
would have fit in B and thus could not have been placed in B by FF, a contradic-
tion. Thus all but at most two bins must contain elements totaling at least m/(m + 1).
Thus, letting w(L) denote the sum of all elements on L, we have

m
L* >_ w(L)>= (FF(L)- 2),

m+l
so that

FF(L) <= (m + 1)L*/m + 2.

A similar, but slightly more complicated, argument can be used to prove this for
BF.

If we let Rv(k) and Rv(k) be defined analogously to Rw(k) and Rv(k) for
lists L

_
(0,], we have the following immediate corollary"

COROLLARY. limk__,o R-v(k limk_oo Rv(k + L-j .
3. First-fit decreasing and best-fit decreasing. The main results about FED

and BED are the following.
THEOREM 3.1. For each k >__ l, there exists a list L with L* k such that

FED(L) BED(L)> L* 2.
THEOREM 3.2. For all lists L, FED(L) __< 9L* + 4, and BED(L) __< -t-L* + 4.

From these it follows that limk_,oo RFFD(k limk_oo RBFD(k 1.
The proof of Theorem 3.1 consists of a simple construction. Let e satisfy

0<e<T,1 N= Lk/9J,c=_k(mod9) wi.hO=<<9, n= 30N+,andconsider
the list L (a, ..., a,) formed as follows"

.5 +e for =< i=< 6N,

.25 +2e for6N<i=< 12N,

a .25 + for 12N < =< 18N,

.25-2e forl8N<i_< 30N,

1.0 for 30N < =< n.

ONE-DIMENSIONAL PACKING ALGORI’HMS 309

When L is put in decreasing order, the elements of size will head the list, and
BFD and FFD will yield the same packing. Figure 4 shows both this and the opti-
mal packings. We have L* 9N + k, and FFD(L)= BFD(L) 11N +
> -L*- 2.

1/4-2

1/4+

1/2+E

(x k) (x 6N)

114 +2E

L1/4 +2
(x 3N)

OPTIMAL PACKING
L" 9N +

/ /11 x

114 +2;

BFD AND FFD
PACKING

(x 6N)

/4+

1/4+E

114 -2

114 -2

’1/4- 2

1/4- 2e

(x 3N)

FIG. 4. An 11/9 example

BFD(L) FFD(L)
11N+k

The proof of Theorem 3.2 is considerably more complicated than the upper
bound proofs in 2, although some of the same ideas are involved. In this section
we will show that we need only prove the result for the algorithm FFD and a
restricted class of lists. In 4 we will indicate how we go about proving the sim-

plified, though still very difficult, result.
LEMMA 3.3. Suppose L is a list such that FFD(L) > rL* + d, with r, d >= 1.

Then the list L’ obtainedfrom L by deleting all elements not exceeding (r 1)/r also
has FFD(L’) > rL’* + d. The same holds ifFFD is replaced by BFD.

Proof. Let P be the packing of L and P’ the packing of L’, using K and K’ bins,
respectively. If K > K’, then no element in the last bin of P can be larger than
(r 1)/r, and hence all but the last must have levels exceeding l/r, since neither

BF nor FF will start a new bin with an element which would fit in a previous bin.
Thus L* >= a > (1/r)(K 1) and so K < rL* + l, contrary to hypothesis.
Hence K’ >__ K and the lemma is proved.

Thus to prove Theorem 3.2 we need only consider lists L c (, 1]. We would
also like to use a single proof that would simultaneously yield the desired result
for both FFD and BFD. For instance, in 2 we simultaneously proved Theorem
2.2 for both FF and BF by only using properties the two algorithms have in com-
mon. Although this approach has not been successful for the current theorem, we
could still use just one proof for both BFD and FFD if it could be shown that the
result for one were just a simple corollary of the result for the other.

310 D. S. JOHNSON, A. DEMERS, J. D. ULLMAN, M. R. GAREY AND R. L. GRAHAM

For instance, if for all lists L, FFD(L) =< BFD(L), the result for FFD would
follow immediately from that for BFD, or vice versa. Unfortunately, as the exam-
ples in Figs. 5 and 6 show, there are both lists L with FFD(L) < BFD(L) and ones
with BFD(L)< FFD(L). Figure 5 presents packings of lists L with BFD(L)
FFD(L), and Fig. 6 presents L with FFD(L) oBFD(L). However, observe

that the first example contains numbers less than , whereas any list L = (, 1]
contains no such numbers. Thus if these numbers less than are essential for
examples like those in Fig. 5, we will still have BFD(L) __< FFD(L) for all lists L
we need to consider for Theorem 3.2, and so the result for BFD would follow from
that for FFD. This is indeed the case, and we devote the remainder of this section
to the details of the proof.

THEOREM 3.4. Suppose L [, 1]. Then BFD(L) __< FFD(L).
Proof. Let L (a 1,..., a,) be ordered so that a >= ai+ 1,

<_ < n, with
a, __> . We assume we have a copy of the FFD packing of L, denoted by PF, and
are now proceeding to construct the BFD packing, element by element. At each
step we will show that there is a way to extend the current packing to a packing
of all of L using no more than FFD(L) bins.

For each i, 0 =< __< n, let L be the final segment of L consisting of all elements
with index exceeding i. Thus Lo L. Let Po be the empty packing of L Lo ,
with which we begin the generation of the BFD packing, and let fo’Lo - N N
be defined as follows" if aie L is the kth largest element in bin j in PF (with ties
broken according to the ordering of L), thenfo(ai) (j, k).

The ordered pair (j, k) may be thought of as representing the kth position in
bin j. We let kj denote the number of elements in bin j in PF. Then we can define

FFD(L) 9N’

1/6

I/6

213

(x3N)

1/6-e

1/6-

1/3+

I/5+e

(x6N)

BFD(L) ION:

1/6-

I/6-

213

1/6-2E
’///////

1/6

1/3+

I/5+E

’,5//////,

I/6-

1/6-

1/6-

I/6-

I/6-

1/6-E

(xSN) (X6N) (xN)

FIG. 5. An example with L* large and BFD(L)/FFD(L) 10/9

ONE-DIMENSIONAL PACKING ALGORITHMS 311

BFD(L) ION’

1/5-(

I/5-(

515+2(

!/5

2/5

2/5

(xSN) (x5N)

FFD(L) =I1N’

////7// ///////,

I/5-2(
///////, II 5-

1/5 1/5-(
2/5

I15-(

515+2(
2/5

I15-(

(x5N) (x5N) (xN)

FIG. 6. An example with L* large and FFD(L)/BFD(L) 11/10

the empty positions ofPo to be

So {(j, k)’l __< j __< FFD(L), <= k <_ kj},
that is, the positions which arefilled in PF but not in Po. This makesfo a 1-1 map
from Lo, the elements of L remaining to be packed, to So, the positions remaining
to be filled in Po. Thus, in essence, fo shows us how to extend Po to a packing of all
of L, by placing each remaining a in position fo(ai), with none of the elements
going in bins which were not used in PF.

The properties offo, Po, and So which allow this to happen can be summarized
as follows, with 0"

(A) f’L S is 1-1.
(B) S

_
{(j, h)’(j, h)is filled in PF but empty in P}.

(C) For each j => 1, the sum of the elements in bin j in P, plus the sum of the
elements which map to bin j under f, does not exceed 1.

As the generation of the BF packing proceeds, we construct P, Si and f"
L.- S for 1 =< _< n as follows" the packing P is obtained by adding element a
to packing Pi_ 1. The bin it goes in is chosen according to the BFD placement rule.
If that bin is the jth, the position a fills is that (j, k) which was unfilled in P_ and
has minimal k. (It is possible that we may have to take k > kj, if the bin already
contains kj elements.) We then set S S_ {(J, k)}. f/is identical with f_
restricted to Li (that is, with a deleted from its domain), with one possible excep-
tion. If a, with i’ > i, hasf_ l(ai, (j, k), we setf(a,) f/_ l(ai). This insures that
f(a,) Si and that f remains 1-1. In fact, a very elementary induction will establish

CLAIM 3.4.1. (A) and (B) holdfor all i, 0 <= <= n.

312 D. S. JOHNSON, A. DEMERS, J. D. ULLMAN, M. R. GAREY AND R. L. GRAHAM

Thus eachf will provide us with a way to extend P to a packing of the entire
list L with each element of L going in a bin which was used in PF, if only we can
show that (C) also holds. What is more, this will prove the theorem, for we have
the following claim.

CLAIM 3.4.2. lfforalli, O <_ <_ n,(A),(B)and(C)hold, thenBFD(L) <_ FFD(L).
Proof. Suppose BFD(L) > FFD(L). Let am+l be the first element assigned

to bin FFD(L) + under BFD. By (A) and (B),fm(am+ 1) is a position in one of the
first FFD(L) bins of Pro, and by (C), am+ will fit in that bin. Thus am+ could not
have gone in an empty bin (bin FFD(L) + 1) to the right of that bin without violat-
ing the BFD placement rule. Thus bin FFD(L) + can never become nonempty,
and so BFD(L) __< FFD(L).

The proof of Theorem 3.4 is thus reduced to showing that (C) holds for __<
__< n. Rather than prove this directly by induction, we shall use two slightly more
technical induction hypotheses which, together with (A) and (B), imply (C).

(D) If (j, k) S f) Range(fi), then index[f- l(j, k)] >__ index[f l(j, k)].
(E) If ar fills position (j, k), 1 __< k < k i, in Pi, then r >= index[f l(j, k)].
CLAIM 3.4.3. If(A), (B), (D) and (E) holdfor i, then (C) also holdsfor i.

Proof. Let us consider an arbitrary bin j. We wish to show that the sum of the
elements in bin j in Pi, plus the sum of the elements mapping to bin j under fi,
does not exceed 1. If no element of L maps to bin j, the result is immediate. If
any element does, then by (A) and (B), position (j, kj) must be empty in Pi, so that
(E) will apply to all elements in the bin. If we were to place all elements that map
to binj in the positions to which they map, there would still be at most one element
per position, because by (A)f is 1-1, and by (A) and (B) no element is mapped to a
position which is already filled in Pi. By (D) and (E), each element would have index
no smaller, and hence size no larger, than the element which filled its position in
PF. Since the sum of the elements in any bin in PF does not exceed 1, the claim is
proved.

CLAIM 3.4.4. (D) holdsfor all i, 0 <= <_ n.

Proof. (D) holds trivially for 0. If (D) holds for l, the only opportunity
for it to fail for would be an ai,, i’ > i, for which fi(ai,) =/= fi-l(a’) This can only
happen if fi(a’i)= fi_l(ai). However, by (D) for i- 1, index[f l(f/_l(ai))] _<i

< i’, so (D) continues to hold for i. The claim follows by induction.
The proof of Theorem 3.4 is thus reduced to showing that (E) holds for all i,

0 _< __< n. We do this in two steps. First let h max {i’a > 1/2}, where h is taken
to be 0 if the set is empty.

CLAIM 3.4.5. Each ai, 1 <__ h, is placed by BFD in position fo(ai).
Proof. Since the first elements placed in each of the bins under BFD form a

nonincreasing sequence from left to right, the first time that the BFD choice could
differ from the FFD choice can only have occurred when some bin B to the right
of the FFD choice already contained two or more elements. But if this happens
before ah is assigned, the right-hand bin B would have had a level exceeding -} and
would not have room for any additional elements exceeding . Thus, until a is
assigned, each a goes under BFD into the position it filled in PF, that is, position
fo(ai).

COROLLARY. (E) holdsfor all i, 0 <= <__ h.

ONE-DIMENSIONAL PACKING ALGORITHMS 313

Now let us order the positions by letting (j, k)_< (j’, k’) mean that either
j < j’ orj j’ and k =< k’. The following fact aboutfo will be useful in showing that
(E) holds for > h.

CLAIM 3.4.6. If (j, k), (j’, k’) Sh, k < kj, and (j, k) <= (j’, k’), then index[f x(j, k)]
=< index[fff l(j,, k’)].

Proof. Let a be the element in position (j, k) in PF, ai, the element in (j’, k’).
Since the positions are empty in Ph, we must have - _< ai, ai, <= -}. If j j’, the
result is immediate, as position (j, k’), k’ >_ k, cannot have been filled before (j, k)
under FF and so we must have i’ >= as desired. So assume j < j’. Since k < kj,
position (j, k3) must have been unfilled when ai was to be assigned under FF, and
so until a was assigned, the gap in bin j, was at least 2.- 1/2. If i’ < i, then a, was
assigned before a was, and so would have fit in bin j, contradicting our assumption
that the FF rule assigned a, to bin j’, which is to the right of bin j. Thus we must
have i’ => in this case also, and the claim is proved.

We are now ready to conclude the proof of Theorem 3.4 with the following
claim.

CLAIM 3.4.7. (E)holdsfor all i, h <= <= n.

Proof By Claim 3.4.5, we know that (E) holds for h. Suppose it holds for
1. We shall show it holds for i, and the claim will follow by induction. Consider

element a. Let (j, k) be the position it fills in P, and let (j’, k’) f_ l(a). If k _> k,
then (E) does not apply to the position filled by ai, and so automatically continues
to hold. So we may assume k < k. If (j, k) _< (j’, k’), then by Claim 3.4.6 and (D),

index[fff l(j, k)] _< index[fff l(j’, k’)] _< index[fLll(j’, k’)] i,

and (E) would not be violated.
The only other possibility is (j, k) > (j’, k’) and k < k. We shall show that in

fact this cannot happen. Since both positions (j, k) and (j’, k’) must be empty in

Pi-1 and ai goes in the bottom-most unfilled position in bin j, (j,k)> (j’, k’)
impliesj’ < j, and so binj is to the right ofbinj’. By(D) and (E) for and Claim
3.4.3, a would have fit in bin j’ of P_ 1. Since it went to the right of bin j’ under the
BFD rule, the level of bin j must have exceeded that of bin j’ in Pi_ 1. However, since
k < kj, (E) applies to the elements in bin j in Pi-1, and so they take up no more
space than the corresponding elements in PF. Consequently the gap in bin j,
which we shall write gap(j), is at least as large as f l(j, k) + f-l(j, k) _>_ +

1/2. Thus gap(f), the gap in bin j’ in Pi- 1, must exceed 1/2. Now we cannot have
k 1, as then gap(j)= => gap(j’), and we must have gap(j’)> gap(j). Thus
k > 1, and consequently binj must contain a bottom element b with b > gap(f)
> 1/2 (see Fig. 7). Moreover, since list L is in decreasing order, the bottom elements
in the bins form a nonincreasing sequence from left to right, and so if k 2 we
would again have gap(j) >= gap(f). Hence k > 2 and there is a second element in
bin j in P_ (call it b2) with b2 > gap(j’) > 1/2. But by (E) for 1, this means that
the sum of the bottom two elements in bin j in PF also exceeds , and hence the
bin could have contained at most one additional element greater than or equal to ,
so that k =< 3. Since k > 2 we thus have k >_ k, the desired contradiction. So this
case is impossible, (E) cannot be violated, and the claim is proved.

314 D.S. JOHNSON, A. DEMERS, J. D. ULLMAN, M. R. GAREY AND R. L. GRAHAM

b

b2

gap(j

BIN i" BIN

FG. 7

Thus by Claims 3.4.5 and 3.4.7, (E) holds for all i, 0 __< =< n. Claim 3.4.1 and
3.4.4 tell us that (A), (B) and (D) also hold for such i. Thus (C) holds by Claim 3.4.3,
and the theorem follows by Claim 3.4.2. Q.E.D.

A similar argument [6], [8] can be used to show the following result (which,
however, will not be needed in our main task of completing the proof of Theorem
3.2).

THEOREM 3.5. IfL
_

[1/2, 1], then BFD(L) FFD(L).
Notice that the examples given in Figs. 5 and 6 show that the lower bounds

of and 1/2 in Theorems 3.4 and 3.5 are best possible.

4. First-fit decreasing upper bounds. In the previous section we reduced the
proof of Theorem 3.2 to the task of showing that if L (1, 1], then FFD(L)
=< L* + 4. In this section we shall indicate how this can be done, and prove a
simpler upper bound for the case when L (0, 1/2].

The strategy behind such proofs is basically the same as the one used in 2
for FF and BF upper bounds. Essentially, a "weighting function" is defined which
assigns real number values or "weights" to the elements of L, depending on their
size, in such a way that

(i) The total "weight" of all the elements in the list L is no less than a fixed
constant c short of the number of bins used in the particular packing
under consideration (e.g., FF or FFD).

(ii) The total weight of any legally packed bin must be less than some fixed
constant r.

17For FF we had r and c 2;for FFD we shall have r and c 4.
However, the actual details ofthe proofforFFD are considerablymorecomplex

than for FF and BF, requiring the introduction of a number of new concepts.
Rather than burden the reader with this long3 and detailed proof, we shall attempt
to illustrate the basic ideas involved by describing in detail the major techniques
used in the proofofa slightly simpler result, followed by an indication ofthe method
for extending that proof to a proof of Theorem 3.2. Complete details can be found
in Johnson [8].

THEOREM 4.1. For all lists L (0, 1/2], FFD(L) =6--6--<71, +5.

Exceeding 75 pages.

ONE-DIMENSIONAL PACKING ALGORITHMS 315

Remark. Theorem 4.1 gives the best bound possible, as can be seen from Fig. 8,
which gives optimal and FFD packings of lists L for which FFD(L)= 71r.

even though all elements in L are less than 1/2, in fact, less than 1/2. The e in the figure
must satisfy 0 < e =< . We thus will be able to conclude that

lim R/v(k)= lim R/v3(k)
k-

in the terminology of 2.

5/29-

5/29-

5/29

6/29 -I

8/29+

(x 6ON)

////////

8/29+

8/29+

8/29+

OPTIMAL PACKING
L 60N

29-4
(///////.

6/29+E

6/29+E

5/29-5/29-

5/29-(

5/29-(
6/29+e

6/29+

(x 15N)

5/29-E

’(x 20Ni’- (x 56N)

FIG. 8. A 71/60 example

FFD PACKING
FFD(L) 7’1N

We first give an overview of the proof, and then proceed to fill in many of the
details. To begin with, the weighting function W which will be used is not really a
function of elements, but rather a function of sets of elements,

W" 2L -- Q (the rational numbers).

W will be defined in terms of two auxiliary functions.

wa’L--, Q and w2"L x L- Q.

The definitions of w and w2 will be made precise when we give the details of the
proof.

Given a set of elements X __%_ L, we obtain the weight W(X) as follows: for
any partition r of X into one- and two-element sets, let

316 D. S. JOHNSON, A. DEMERS, J. D. ULLMAN, M. R. GAREY AND R. L. GRAHAM

rt(1) {x:{x} e re}, (the set of elements which are in one-element sets in the
partition

7t(2) {(x, y) :index(x) < index(y) and {x, y} ert}, (a set of ordered pairs cor-
responding to the two-element sets in

Then let

Z Z
xn(1) (x,y)(2)

Finally we define W(X) min {Wlz(r)}, where r ranges over all partitions of X
into one- and two-element sets. An elementary consequence of the definition as
given so far is that W is subadditive, i.e.,

W U1Xi=
<__ w(x3.

i=1

Having defined the weighting function W, we can then divide the remainder
of the proof of Theorem 4.1 into the two parts indicated at the beginning of the
section. We shall state each part as a lemma, with the first given in sufficient gener-
ality so that it can also be used in the proof of the result.

LEMMA 4.2. For any integer N >= 4 and L c (l/N, 1/2],

W(L) >_ FFD(L) N + 2.

LEMMA 4.3. IfX
_

(-, 1/2] is any set of elements whose sum does not exceed 1,
then W(X) <= -.

By combining these two lemmas with the subadditivity of W, we can conclude
that for any L c (+, 1/2], and X the set of elements in the ith bin of a given optimal
packing of L, we have

L*

FFD(L)- 5 < W(L)< W(X,)< 71.,

i=1

Thus Theorem 4.1 will be proved, since by Lemma 3.3 we can restrict our attention
to lists L c_ (-, 1/2] when proving this upper bound.

We now begin a proof ofLemma 4.2, during which we will provide the remain-
ing details of the definition of W. Let us call x e L a k-piece if x e (1/(k + 1), l/k].
We shall also refer to 2-pieces as B-pieces, 3-pieces as C-pieces, etc. By a k-bin we
mean a bin whose largest element is a k-piece.

Define wl(x) [1/x]- 1. Thus ifx is a k-piece, wl(x) 1/k. Let BASIC denote
the set {x e L: for some k, x is a k-piece and is in a k-bin in the FFD packing of L}.

CLAIM 4.2.1. IfL (1 IN, 1/2], then
N-1

wl(x)>=FFD(L)_
j-1

BASIC 2 J

Proof. Note that for each k, 2 __< k < N, all k-bins, except possibly for the last
(rightmost) k-bin, must contain k k-pieces. For instance, every B-bin, that is, every
2-bin, must contain 2 B-pieces, except possibly for the rightmost one, which may
contain only one B-piece. Thus, with the possible exception of the rightmost
k-bin, all k-bins must contain elements of BASIC whose total w 1-weight is at least
k(1/k) 1. Since even the last k-bin must contain one k-piece belonging to BASIC,
its deficiency can be at most (k 1)/k. This proves the claim.

ONE-DIMENSIONAL PACKING ALGORITHMS 317

As a consequence of Claim 4.2.1, we could satisfy Lemma 4.2 by merely
defining W(X) wl(X) xx w(x). The reason we do not do this, but instead
introduce w2, is in order that we can prove Lemma 4.3. There are many sets of

71elements X whose sum does not exceed and yet for which w(x) > . This is
not surprising in light of the fact that there are probably many elements from L
which are not in BASIC, so that in fact w(L) is probably much larger than
wl(BASIC) and hence much larger than FFD(L). Thus w is in a sense "over-
charging" the bins of the FFD packing.

The elements of SURPLUS L- BASIC can thus be considered excess
baggage in the weight calculated by w. The purpose of w2 is to enable us to avoid
counting this unneeded contribution to the total weight by SURPLUS. Given a
pair of elements, w2 will do this by "discounting" the wl-weight of the second
element by an appropriate amount if certain discounting relations are satisfied by
the members of the pair. The relations can be generally described as follows" (x, y)
is said to obey relation k if x is a k-piece and kx + y _< 1. We define w2 by

w(x) + [(k 1) if (x, y) obeys relation k,
W2(X Y)

w(x) + w(y) otherwise.

Another way of looking at w2 is to note that if (x, y) obeys relation k, then
w({x, y}) Wz(X, y) w(y)/k, and y has been discounted by a factor of 1/k.

As a concrete example, suppose x is a B-piece (2-piece), y a C-piece, and
2x+y<_ 1. Thenw({x,y})=1/2+1/2=andwz(x,y)=1/2+1/2"1/2==--1/2".
If 2x + y > 1, then Wz(X, y) w({x, y})= -.

We are now going to show that the "discount" due to using w2 instead of w
on a pair of elements actually corresponds to an element in SURPLUS, or at
least a portion of one, so that, modulo certain edge effects, the lower bound proven
for w(BASIC) also holds for W12(g), where rc is any partition of L into one- and
two-element sets. Formally, we have Claim 4.2.2.

CLAIM 4.2.2. If N >= 4 and is a partition of L c_ (I/N, 1/2 into one- and two-

element sets, then
N-1 1

Wz(rc) >__ w(BASIC)-
j=3J

Lemma 4.2 will follow from Claims 4.2.1 and 4.2.2, since together they tell us
that for all such zt,

N- NIwz(rc)>- FFD(L)-
j- 1 1

j=2 J j= 3 ff FFD(L) U + 2,

and so W(L) minx w2(r) must also exceed that lower bound.
Proof of Claim 4.2.2. Let Rk, 2 _< k <_ N 2, be the set of all pairs in the

partition rc which obey relation k. Then, since no pairs in zt can obey any relation
k’ > N 2, R U N- 2 Rk is the set of all pairs in r obeying discounting relations.

k=2
If we let DISCOUNT(x,y)= wa(x)+ w(y)- w2(x,y), and DISCOUNT(X)

x.r)x DISCOUNT(x, y) for any set of pairs X, we then have

w12(z0 w(BASIC)+ Wl(SURPLUS)- DISCOUNT(R),

318 D. S. JOHNSON, A. DEMERS, J. D. ULLMAN, M. R. GAREY AND R. L. GRAHAM

and consequently all we need prove is that

(4.2.2a) w(SURPLUS) _>_ DISCOUNT(R)-

To show that (4.2.2a) holds, we construct a system of billing" so that for
each (x, y)e R, DISCOUNT(x, y) is billed to some specific element of SURPLUS
(or perhaps divided among a number of such elements), and no element of
SURPLUS is billed for a total of more than its w-weight. A small number of
DISCOUNTS will go unbilled and these will account for the (l/j) term. More
formally, we construct a billing map BILL’R x SURPLUS (0,-] and a set
UNBILLED such that

N-2

(4.2.2b) DISCOUNT(UNBILLED) __< 1/(j + 1).
j=2

For all (x, y)e R UNBILLED,

(4.2.2c) BILL((x, y), z) _>_ DISCOUNT(x, y).
SURPLUS

For all z e SURPLUS,

(4.2.2d) BILL((x,y), z) <= wl(z).
(x,y) R

Inequality (4.2.2a), and hence Claim 4.2.2 will then follow from (4.2.2b)-
4.2.2d.

To keep this paper to a reasonable length, we shall not present the billing
procedure in all its intricacies [8]. However, we will present the basic idea behind
it and an indication of why additional intricacies are necessary.

Initially we set BILL((x, y), z) 0 for all (x, y) e R, z SURPLUS. As we
proceed, some ofthese values will be reset. At any given point in time, z SURPLUS
will have been charged the current value of tx,y)R BILL((x, y), z). For (x, y) R,
we will say that DISCOUNT(x, y) has been billed if

Y BILLx, Yt, zl >_- DISCOUNTIx, Yl.
SURPLUS

We shall treat each R in turn, defining a set UNBILLED

Rk and then

billing the DISCOUNT for each pair in Rk UNBILLEDk in such a way that no
element of SURPLUS will have been charged more than its wl-weight. UN-
BILLED will be defined as Uk_--22 UNBILLEDk. And we will have DISCOUNT
(UNBILLEDk)_<_ l/k+ 1, 2=<k<N-2. The basic idea involved in the
processing of Rk can be explained as follows’Assume that

(G1) no z SURPLUS which is in a k’-bin, k’ >= k, in the FFD-packing has
yet been charged more than 0,

(G2) no member of any pair in R is in a k’-bin, k’ < k.
All the billing we shall do in this case will be to elements of SURPLUSk, the
members of SURPLUS which are in k-bins.

First take all pairs in Rk and relabel them (xi, Yi) in order of increasing index
(with respect to the original list) of their second components. We will thus have
index(y1) < index(y2) < < index(ym), where m]Rk], and hence y =>

ONE-DIMENSIONAL PACKING ALGORITHMS 319

Y2 >- >- Ym" Note that the Xi’S and yi’s are all distinct since the {xi, y}’s form
a partition of R and hence are disjoint.

Suppose we can construct a 1-1 map

g’{ykj’l <= j <= [m/k]} SURPLUS
such that for all y Domain(g),

(G3) index(g(yi)) __<. index(y/).
We can then use g to define BILL for elements of R. For <= j <= [m/k] and
0_<_i=<k- 1, let

BILL((xj+i, Y,j+i), g(Ykj)) DISCOUNT(xj+i, Y,j+i).

(For j [m/k and > m k[m/k-I the definition will be vacuous.)
If we let UNBILLED {(xi, yg)’l _< < k} we thus have for all (x, y) R

UNBILLEDk that DISCOUNT(x, y) has been billed. Moreover,

DISCOUNT(UNB LLED,)
-1 1 1

DISCOUNT(x,y)=< (k- 1). k + 1
<

k +i=1

Finally, the only elements charged are g(y,j), and since g is 1-1, the most g(yj) is
charged is

k-1

BILL((x, y), g(ykj)) E DISCOUNT(xj+i, Y,j+i)
(x,y)eRk 0

Wl(Ykj+i
ki:o
1

<-[k. wl(Ykj)] wI(Ykj) < Wl(g(Ykj))k

by (G3) because index(y+k_l)> > index(yj)>_ index(g(yj)) and L is in
decreasing order.

If the above held for all k, 2 <= k <= N 2, and if g were 1-1 throughout the
composite range [yj’l <= j <= [m/k], 2 <= k <= N 2}, we would have properties
(4.2.2b) through (4.2.2d), and hence Claim 4.2.2 would be proved.

How might we define g so that the above does hold? In the case when both
(G1) and (G2) hold, as they must trivially for k 2, the process is fairly straight-
forward.

Observe that since all (xi, yi)e R obey relation k, we have y + kxi <= 1,
1 _< <_ m, and hence, by the indexing of the pairs, Yi + kxj _<_ 1 for 1 _<_ j =< i.

Let us now look at the FFD-packing again, in particular the k-bins. (See
Fig. 9.) There must be at least m/k] k-bins, since by assumption (G2) there are at
least]Rkl-- m k-pieces in k’-bins for k’_>_ k and hence in k-bins. We label the
bottom k elements in each k-bin from top to bottom and right to left, as shown in
Fig. 9. Then b must be a k-piece, as are all the labeled elements with higher index.
The remaining elements in the bin containing b (the b,-bin) need not all be k-
pieces. Indeed, some may not even exist, if this is the last bin in the packing, in

320 D. S. JOHNSON, A. DEMERS, J. D. ULLMAN, M. R. GAREY AND R. L. GRAHAM

bk rm/k’l

bok-k+t

bik

bk+t

b2k-1
b2k

FrG. 9. K-bins of FFD packing labeled for Lemma 4.2.2

bk-1
bk

which case we set the corresponding b 0. By the way FFD is executed, we must
have

bk[,,/k >= bk[m/kl >= > b3 > b2 > b

Now all the xi’s occur in this list; thus for no j < k[m/k] can we have b
for all i, 1 _<_ _<_ j, as that would put one too many xi’s to the right of bj in the
sequence. Thus for each j there exists an i(j) <= j such that xi(j) >= bj. We can thus
conclude that for all h, j, 1 <= j <__ h <= [m/k],

k.

Ykh / Z bkj-k+i Ykh / kbk <= Ykh + kXi(k <= 1.
i=1

Consequently Ykh would fit as the (k + 1)st element in any of the bins to the right
of and including the bkh-bin. Using this fact we can define our function g as follows.

If Yk is in a k-bin in the FFD-packing, then we must have Yk SURPLUSk.
Let g(Yk) Yk" If not, then Yk must by assumption be in some bin to the right of
the bk-bin. Since Yk would have fit in that bin unless it already contained k + 1
elements, the bk-bin must have contained that many elements when Yk was assigned,
one of which must be an element of SURPLUSk and have lower index than Yk.
Let g(Yk) be the largest such element.

Note that in both cases, g(Yk)e SURPLUSk and obeys (G3) for i= k, i.e.,
index(g(yk)) __< index(Yk).

Continuing by induction, assume that values for g(Ykh), 1 <__ h j <__ [m/k],
have been assigned and are all distinct elements of SURPLUSk obeying (G3).
If Yk is in a k-bin, it cannot be g(Ykh) for any h < j, since by (G3) and the labeling of
the yi’s we have index(g(Ykh)) <= indeX(Ykh) < index(Yk). So in this case we again
define g(Ykj) Ykj" If Ykj is not in a k-bin, then it must have gone to the right of the
bk- through bkj-bins, into each of which it would have fit as the (k / 1)st element.
Hence all j bins must contain elements of SURPLUS with index lower than that
of Yjk" Since at mostj i ofthem can have yet been assigned to the range of g, there
is at least one still unassigned and we can let such an element of SURPLUS be
g(Ykj). This maintains the 1-1 property of g and insures that (G3) will hold for

kj.

ONE-DIMENSIONAL PACKING ALGORITHMS 321

Thus by induction we have defined our map

g" {Ykj" 1 <= j <-- [m/k]} SURPLUS

obeying property (G3) throughout its domain.
The above analysis depended on assumptions (G1) and (G2), which, as we

have said, clearly hold for k 2. We might thus hope to proceed by induction.
In our billing procedure, only elements of SURPLUSk received new charges, so
(G1) will continue to hold when we begin to process Rk / ,.

However, there is no guarantee that (G2) will hold for any k > 2. This is
what gives rise to complications. If (x, y) R and x is not in a k-bin, then it must
be in a k’-bin, k’ < k, and hence a member of SURPLUS. If x has not yet been
charged, we can bill DISCOUNT(x, y) to x. If it has been charged more than 0,
then x mu.st be g(z) for some z, with z _< x by (G1), and z may be a k-piece in a
k-bin. The more intricate argument here omitted shows how to modify our billing
procedure to take advantage of such possibilities and still guarantee that (4.2.2b)--
(4.2.2d) hold, and hence Claim 4.2.2, will hold. Q.E.D.

We have already seen that Lemma 4.2 follows from Claim 4.2.1 and 4.2.2.
To complete the proof of Theorem 4.1, we must now turn our attention to Lemma
4.3 which says that for any set X c (, 1/2] whose sum does not exceed 1 W(X) < 71

Since W(X) depends just on the types of the elements in X (e.g., B, C, ..., etc.)
and which discounting relations are satisfied (not on the precise values of the
elements), it is easy to see that there are a relatively small finite number of possible
configurations to consider. We shall illustrate the type of calculation necessary by
treating several typical cases, leaving the remaining 70-0dd, more or less routine,
cases to the ambitious reader.4

(i) X {B,, C2, C3), i.e., X consists of one B-piece and two C-pieces with
C2 C3. Then

71W(X) wI(X Wl(B1) - Wl(C2) -- Wl(C3)-- } -}- 1/2 - 1/2-- - < 6(ii) X {B, B2
g

3 F,} Here w,(X)= 1/2 + 1/2 + - + } 4’ > 71 so the
partition of X into 1-element sets is not adequate for determining W. Note,
however, that

B, + E3 1 B2 F4 < -}- - 1/2},
which implies

2B, + E3 < 22

so that (B, ,E3) obeys relation 2. Hence we get a discount of 1/2.1/2 here.
Similarly (B2, F4) obeys relation 2 and we get an additional discount of 2. Thus

W(X) < " 75-
as required.

(iii) X {C,,C2,E3,E4,Es}. This configuration is impossible since Cie
(1/4, 1/2] and Eje(,-}] imply C, + C2 + E3 + E4 + E5 > 1.

(iv) S {C 02 E3 E4 E5} Then W(X) < w,(X) 1/2 + 1/4 + 1/2 + 1/2 + 1/2 7,

Note that this is the configuration which occurs in the construction used to prove
the lower bound for Theorem 4.1.

Complete details may be found in [8].

322 D.S. JOHNSON, A. DEMERS, J. D. ULLMAN, M. R. GAREY AND R. L. GRAHAM

When all possible cases are finally checked (there are only two which yield a
bound of ,71" all other cases are bounded by 67--), the proof of Theorem 5 follows at
once from the preceding remarks.

It is not difficult to show that if no element of L exceeds 9, then the preceding
analysis proves W(X) <__ - for all sets X of elements in a legally packed bin. (Case
(ii) cannot occur since there are now no B-pieces;in case (iv), additional dis-
counting now becomes possible.) This observation leads us to the following
corollary.

COROLLARY. (a) For

lim RFD(k 71.

(b) for o (1/4,],
lim RFD(k)- .

The lower bound for (b) is proved with a construction similar to those used
earlier, with the list L (a l, aa, ..., a) composed of 24N elements, half equal to
.25 + e and half equal to .25 e, where 0 < e < 11/2.

A similar (but more complicated) analysis can be given to establish Theorem
4.4.

THEOREM 4.4. For e (-}, 1/4],
lim RFo(k 23

20"
k

The reader is referred to Johnson [8] for a much more complete discussion of the
details needed to complete the proofs of these and other similar results.

As proposed at the beginning of this section, the techniques used in the proof
of Theorem 4.1 form a significant part of the proof of Theorem 3.2, whose crucial
assertion is that FFD(L) L* + 4 for all lists L G (, 1].

The inclusion of A-pieces, that is, elements which exceed , causes rather
severe problems for the relatively simple calculations we were able to perform in
proving Theorem 4.1. We are now forced to resort to somewhat more subtle ideas.
The basic strategy is as follows.

(a) We assume we have a list L (a a2 an), consisting of A-,
B-, C-, D- and E-pieces, where the E-pieces lie in (,]. Let P* denote some
optimal packing of L and let PVVD denote the FFD-packing of L. Define to be
the set of non-A-pieces in L and

{a e " a is not in an A-bin in P*},

{a " a is not in an A-bin in PVFD}"

(b) A key idea now is to note that a packing of the non-A-bins in PFFD is the
same as if we had applied FFD directly to alone. And since does not contain
any A-pieces, all the facts we proved before about W will hold for that packing.
In particular, from Lemma 4.2 with N 6 we have

(*) W() FFD(L) -IAI 4

where IA[denotes the number of A-pieces in L.

ONE-DIMENSIONAL PACKING ALGORITHMS 323

(C) However, we still face the problem that 6o need not contain the same
elements as . Some elements that are not in A-bins in one packing may be in
A-bins in the other. In addition, there is the fact that the number of A-bins is the
same in both packings and must somehow be counted when we try to put a bound
on FFD(L). To take care of these two problems, we introduce two functions:

f:L2 and g:LQ.

They satisfy the two properties (i) - U ’= f(ai) and (ii) IAI _-> = g(ai).

(d) fand g can be extended to set functions on subsets X L by

f(s) U f(a), g(x) g(a).
aX aX

We can then use a case, analysis to establish the following critical inequality for
the set of pieces X in any legally filled bin"

W(f(X)) + g(X) __< -(y(X) + g(X)),

where
if X contains no A-pieces,

otherwise.

We can say that the left-hand side of the inequality counts bins in PFFD and
the right-hand side does the same for P* (and multiplies the result by -), since
W counts non-A-bins in PVVD, Y counts them in P*, and g counts the A-bins in
both packings.

(e) Given this intuitive way of looking at (**), we observe that, if f and g
satisfy (i) and (ii), respectively, and if property (**) holds for all possible X (the set
of elements in the ith bin of P*), Theorem 3.2 then follows by summation. For in
this case we would have

L* L*

W(ff)+g(L)__< U W(f(X,)) +
i=

L*

<= -y(X,) + -g(L)
i=1

19-9(L* -IAI + g(L))

by subadditivity of W and (i) and (ii)

by (**)

by definition of y.

Thus by (*),

FED(L)- IAI 4 + g(L) __< 9-t(L* -IAI + g(L)),

implying that

FFD(L) __< L* (IA]- g(L)) + 4

< L* + 4 by (ii),

which is just Theorem 3.2.
Unfortunately, the amount of space required to present the details necessary

to establish the preceding remarks prohibit us from giving them here. The defini-
tions off and g are also somewhat complicated, although intuitively f assigns to

324 D. S. JOHNSON, A. DEMERS, J. D. ULLMAN, M. R. GAREY AND R. L. GRAHAM

each piece a in L a subset of for which a is, in a rough sense, "uniquely respon-
sible", while g serves to count those A-bins which "collaborated" in this "respon-
sibility". Needless to say, the actual arguments are considerably more complex
than those given for Theorem 4.1. The interested reader is referred to Johnson
in which the complete details of these proof techniques may be found.

5. Concluding remarks. The four bin-packing algorithms studied in this paper
are actually special cases of more general classes of algorithms which have been
considered in some detail by Johnson [8], [9]. We mention here several relatively
unexplored directions in this area which seem to be of some interest.

(i) What is the worst-case behavior for BFD and FFD when the lists L are
restricted from above and below, i.e., L

_
(a, fl) for fixed 0 < =< fl < 1. The

corresponding results for FF and BF are known and can be found in Johnson [83.
It appears that the precise bounds on this behavior will probably be rather
complicated functions of and fl, depending on certain of their number-theoretic
properties.

(ii) How do these various algorithms compare among themselves? For
example, we have seen that BFD(L) _< FFD(L) for L

_ , 1]. On the other hand,
BFD(L)/FFD(L) >= 1-9-q can occur for lists L with arbitrarily large L*. How large
can this ratio be for large L*? How small can it be? The same questions can be
asked for other pairs of algorithms.

(iii) What is the trade-off between the effectiveness of an algorithm and the
efficiency of implementation of the algorithm? For example, for a list L with n
elements FFD(L) and BFD(L) are both bounded above by L* and both can be
implemented using O(n log n) operations. How well can an O(n) algorithm per-
form? If we are willing to use an O(n2) algorithm, how close to L* can we be
guaranteed of coming?

(iv) It is possible to consider bins with differing capacities. How does the
ordering ofthe bin sizes affect the number ofbins required by the various algorithms
under consideration? For example, by how much can ordering the bins largest
first differ from the optimal ordering when FFD is applied?

(v) All the questions raised so far also apply (with suitable modifications)
to two-dimensional bin packing. In view of potential applications, this direction
would seem to warrant further investigation.

(vi) What is the expected behavior of these algorithms? For example, if the
elements of L are chosen uniformly from [0, 13, what is the expected value of
FF(L)/L*? FFD(L)/L*? Simulation results on.FF, BF, FFD, BFD [4], [8] indicate
that FFD(L) and BFD(L) are almost always better than FF(L) and BF(L) for a
random L, with BF occasionally slightly better than FF.

REFERENCES

[1] A. R. BROWN, Optimum Packing and Depletion, American Elsevier, New York, 1971.
[2] R. W. CONWAY, W. L. MAXWELL AND L. W. MILLER, Theory of Scheduling, Addison-Wesley,

Reading, Mass., 1967.
[3] S. A. COOK, The complexity of theorem-proving procedures, Proc. 3rd Annual ACM Symp. on the

Theory of Computing, 1971, pp. 151-158.
[4] J. CroNY, Private communication.
[5] S. EILON AND. N. CHRISTOFIDES, The loading problem, Management Sci., 17 (1971), pp. 259-268.

ONE-DIMENSIONAL PACKING ALGORITHMS 325

[6] M. R. GAREY, R. L. GRAHAM AND J. D. ULLMAN, Worst-case analysis of memory allocation
algorithms, Proc. 4th Annual ACM Symp. on the Theory of Computing, 1972, pp. 143-150.

[7] P. C. GILMORE AND R. E. GOMORY, A linear programming approach to the cutting stock problem H,
Operations Res., 11 (1963), pp. 863-888.

[8] D. S. JOHNSON, Near-optimal bin packing algorithms, Doctoral thesis, Mass. Inst. of Tech.,
Cambridge, Mass., 1973.

[9] , Fast algorithms for bin packing, J. Comput. Systems Sci., 8 (1974), pp. 272-314.
10] R. M. KARP, Reducibility among combinatorialproblems, Complexity ofComputer Computations,

R. E. Miller and J. W. Thatcher, eds., Plenum Press, New York, 1972, pp. 85-104.

