SIAM J. ArpL. MATH.
Vol. 17, No. 2, March 1969

BOUNDS ON MULTIPROCESSING TIMING ANOMALIES*
R. L. GRAHAM?

1. Introduction. It is well known (cf. [5], [6], [8]) to workers in the field of
parallel computation that a multiprocessing system consisting of many identical
processors acting in parallel may exhibit certain somewhat unexpected *““anomal-
ies,” even though the system operates under a rather natural set of rules; e.g., it
can happen that increasing the number of processors can increase the length of
time required to execute a given set of tasks. In this paper we study a typical model
of such a multiprocessing system, and we determine the precise extent by which the
execution time for a set of tasks can be influenced because of these timing anomalies.
A special case of this model will be shown to generate an interesting number-
theoretic question, partial answers to which are given in the latter half of the paper.

2. Description of the system; examples of anomalies. Let us suppose we are
given n (abstract) identical processing units P;, i = 1,---, n, and a set of tasks
T ={Ty,---, T,} which is to be processed by the P;. We are also given a partial
order! < on T and a function u: T — (0, 00). Once a processor P, begins to execute
atask T;, it works without interruption until the completion of that task, requiring
altogether u(T;) units of time. It is also required that the partial order be respected
in the following sense: If T; < T} then T; cannot be started until T; has been com-
pleted. Finally, we are given a sequence L = (T;,, ---, T,) consisting of all the
tasks of T and called a priority list. The P; execute the T; as foliows : Initially, at
time 0, all the processors (instantaneously) scan the list L from the beginning,
searching for tasks T; which are “ready’ to be executed, i.e., which have no pre-
decessors under <. The first ready task 7T; in L which P; comes to is started by
P;; P; continues to execute T; for the (T} units of time required to complete
T;. In general, at any time a processor P; completes a task, it immediately scans
L for the first available ready task to execute. If there are currently no such tasks,
then P, becomes idle. (We shall also say that P, is executing an empty task denoted
by ¢;.) P; remains idle until some other P; completes a task, at which time P,
(and, of course, P;) immediately scans L for ready tasks (which may now exist
because of the completion of P;). If two (or more) processors both attempt to
start executing a task, it will be our convention to assign the task to the processor
with the smaller index. The least time at which all tasks of T have been completed
will be denoted by w. In the interests of mathematical rigor, it will be convenient
to consider the y(T}) units of time required for the execution of T; to be a half-open
interval [t,t + u(T})) on the time axis.

* Received by the editors January 7, 1968. Presented by invitation at the Symposium on Com-
binatorial Mathematics, sponsored by the Office of Naval Research, at the 1967 Fall Meeting of Society
for Industrial and Applied Mathematics held at the University of California, Santa Barbara, November
29-December 2, 1967.

+ Bell Telephone Laboratories, Incorporated, Murray Hill, New Jersey 07974.

! Compare with [4].

416

MULTIPROCESSING TIMING ANOMALIES 417

We now consider an example which illustrates the working of the preceding
multiprocessing system and various anomalies associated with it. We indicate the
partial order < on T and the function u by a directed graph G(<, p). In G(<, 1)
the vertices correspond to the 7, and a directed edge from T; to T;denotes T; < T;.
The vertex T; of G(<, u) will actually be labeled with the symbols T;/u(T}). The
activity of each P, is conveniently represented by a timing diagram D. D consists
of n horizontal half-lines (labeled by the P)) in which each line is a time axis starting
from time 0 and is subdivided into labeled half-open segments according to the
corresponding activity of P;.

Examplen=3;,L =(T},T,,---, Ty).

T3 O———0 T,,/9

T./2 O Ts/4
G(<, p): /2 O O T,/4
L2 O O T/4
T,/2 O Ty/4
71 { T9 |
3 9 '
T2 | T4 | TS J T7 |
: = 12.
D > T T T) w=1
Ty] P Tg L I3 |

2 2 4 4

Note that in D we have labeled the intervals above by the task and below by its
length.
It is evident from the definition of w that it is a function of L, u, < and n.
Let us vary each of these four parameters in the example and see the effect this
variation has on w.
(i) Replace Lby L' =(T,, T,, T, T, T, T3, Tpy, T, Tg), leaving u, < and
n unchanged. In this case we obtain

T T ,
3 I 2 T 9 B
D/, ’TZ { T5 { T7 % P1 %
N I 4
T4 1 T6 1 T8 L P2 }
2 4 ' 4 " 4

and o' = (L, p, <, n) = 14.

418 R. L. GRAHAM

(ii) Change < to <’ by removing T, — Ts and T, — T;. Then

LR R .
3 0 4 9

D Tz; T4% T, | Py |
T2 2 4 8

T3§ T, | Ty [P2 i

2 4 4 6 ‘

and o' = o' (L, 4, <, n) = 16.
(iii) Decrease p to y’ by defining p'(T;) = u(T;) — 1 for all i. In this case
G(<, u) becomes

T,2 O—0O T,/8

T,/1 O O T3
O Tg/3
/1 O O T3
/1 O Ty/3
and
Tl | TS i T8 i P3 i
23 '3 5 '
D/_ ’TZ|T41 T6 1 T9 ;
NI E 8
T3fp1| T7 } ‘Pz {
11 3 8

with ' = o'(L, ¢/, <,n) = 13.
(iv) Increase n from 3 to 4. Then

Tl } 1‘8 i Py i
3 4 R '
T2 t T‘S | T9 i
2 T 4 i 9 l
T3 } ’T6 ll P> i
2 4 9 '
T4 1 T7 I @3 |
2 1 4 T 9 1

and o’ = 15.

MULTIPROCESSING TIMING ANOMALIES 419

The examples in (i), (iii) and (iv) show that contrary to what might be generally
expected, relaxing <, decreasing u, or increasing n can all cause w to increase.
In the next section we obtain an upper bound on the factor by which w can increase
by simultaneously changing L, relaxing <, decreasing u and changing n. This
bound is optimal in the sense that it cannot be replaced by any smaller function of
the same variables.

3. The general bound. Suppose we are given a set T of tasks which we wish
to execute two separate times. The first time we are given a time function y, a
partial order <, a priority list L and a multiprocessing system composed of n
identical processors P;,i = 1, - - -, n. The second time we are given a time function
¢ £ u, a partial order? <’ < <, a priority list L', and n’ identical processors
P,i=1,---,n. Let wand o denote the respective finishing times. Our next goal
is to establish the following theorem.

THEOREM 1.

’

2<1+n—1
0]

n/
Proof. Consider the timing diagram D’ obtained by executing the tasks T;
of T using the primed parameters.
Py ‘ 1
P, f

D

P. f
0 w’

The set of all points of time in [0, w’) can be partitioned into two subsets 4 and B.
A is defined to be the set of all points of time for which all processors are executing
some task of T. Similarly, B is defined to be the set of all points of time for which
at least one processor is idle (but not all processors are idle). We note that both
A and B are the disjoint union of half-open intervals. Let T}, denote a task which
finishes in D’ at time w'. Let $(T},) denote the time at which T;, is started. There are
two possibilities. If S(7},) € B and S(T},) is not a boundary point of B, then by the
definition of B there is some processor P; which for some ¢ > 0 is idle during the
time [S(T;,) - &, S(T;))). The question which naturally occurs is why T; was not _
started until time S(T;) when P; was idle before and during this time. The only
possible answer is that there must be some task 7}, in D’ such that T;, <’ T;, and
T;, is completed at time S(T;,) (for this would certainly cause T;, to wait until
time S(T;,) to be started).

On the other hand, suppose S(T;,)€ 4 or S(T;) # 0 is a boundary point of
B and there exists x < S(Tj,) such that xe B. Let x; = Lub. {x:x < S(T},) and

2 Since a partial order on T'is a subset of T x T, <' € < has the obvious meaning.

420 R. L. GRAHAM

x € B}. By the construction of A and B, we see that x € 4, and for some processor
P, and some ¢ > 0, P, is idle during the time [x; — ¢, x;). We again ask why T},
was not started during this time period. The only possible answer is that some
task T;, must have been executed during this period upon which T} depended
in order to be started. For certainly if this were not the case, then either T;, or
some predecessor of T}, should have been started during this time.

In either case (S(T;,) € A or B) we have seen that either there exists a task T;
which is completed at time F(T},) such that T;, <’ T; and y € [F(T},), S(T},)) implies
ye A or x < S(T;,) implies xe A or x < 0. We can repeat this construction in-
ductively, forming T;,, T, - - - , etc., until we reach a task T; for which x < S(T;)
implies x € A or x < 0. Consequently, we have shown the existence of a chain of
tasks

(1) T, <'T,

in D' such that at every time t € B, some T, is being executed. We say that this chain
covers B. The important thing to notice about this chain is

< < T, <,

m-—1

@ ZD,) =@ -1 k; #(T;),

L4

where the left-hand sum is over all empty tasks ¢;in D'. But (1) and the hypothesis
<’ € < imply ’

&) L, <T,_ <--- <T,<T,
Thus
@) oz Y uT)z Y w(T).

Consequently, by (2) and (4),
1
) W=f{
n

< %(nw + (n' — Nw).

Y WT+ Y u’((pi-)}

TyeT @ieD

From this we obtain

(6) C <t
w

and the theorem is proved.

Examples are given in [2] which show that the bound in (6) is best possible.
In fact, for n = »’, it is shown that the ratio of 2 — 1/n for w’/w can be achieved (to
within an arbitrary ¢ > 0) by the variation of any one of L, u or <. It can be noted
that for n = 1, o’ is never greater than «, while for n > 1, ' can be greater than
w even though n’ is quite large.

MULTIPROCESSING TIMING ANOMALIES 421

4. A modified system. It may be pointed out that it is quite reasonable to
consider a multiprocessor system in which the priority list L is “dynamically
formed” as opposed to the fixed list we have used thus far. For example one quite
reasonable way of doing this is as follows: At any time a processor is free, it
immediately begins to execute the ready task which currently heads the longest
chain of unexecuted tasks (in the sense that the sum of the task times in the chain
is maximal). Suppose by following this algorithm of choosing tasks we have a
finishing time of w;. If we denote by w, the minimum possible finishing time
(for all possible lists), then we would like to assert something about the ratio
wp/we. It follows from Theorem 1 that w,/we < 2 — 1/n; we could hope in fact
that w;/w, would always be considerably closer to 1 than this. Unfortunately,
however, this is not the case since it can be shown that the best possible bound on
this ratio is given by

Wy, 2
“L<o- ,

wWo n+1
(which is a slight improvement). Similarly, we might use the algorithm that a
processor always tries to execute the ready task T; which has the largest sum
wT) + ZTi<Tj W(T) (i.e., the sum of the descendant lengths is maximal). If we
denote the finishing time using this algorithm by w,,, then it is again possible to
produce examples for which wy/wg is as large as 2 — 2/(n + 1).

However, there is a special case for which it is possible to lower the preceding
bounds significantly and still use algorithms which require relatively little effort.
This is the case in which < is empty, and it is this case to which we shall restrict
our attention for the remainder of the paper.

5. The special case in which < is empty. As before we are given tasks
T={T,---, T}, a time function u:T - (0,), and n processing units. We
could ask for an algorithm for choosing the T; for which the finishing time is
optimal, i.e., as small as possible. However, in general, it seems quite likely® that this
could only be achieved by an exponential (in) number of steps, and even for
moderate r, this would be prohibitive. It is more reasonable to ask for a method of
obtaining a finishing time w such that w/w, is known to be relatively close to 1,
and only a modest amount of energy is expended in obtaining w. The algorithm
which generates w; described in the preceding section is an example of such a
method. In this algorithm, since < is now empty, a free processor always starts
to execute the longest remaining unexecuted task. With w, as the finishing time
for this algorithm we have the following theorem.

THEOREM 2.

™)

4 1
3

wy,
I b
3n

IA

Wo
and this bound is best possible.

3 This has never been proved.

422 R. L. GRAHAM

Proof. Assume there exist a set of tasks T = {Ty, ---, T;} and u: T — (0, c0)
which contradict (7). Let «; denote g T}) and let us renumber the T; so that

(®) A Z Uy =0 =

The theorem clearly holds for n = 1; hence, we can assume that n = 2 and r is
minimal.

First note that, by the definition of w;, the order in which the tasks are
executed corresponds precisely to using the priority list L = (T}, T5,---, T)).
Suppose in the corresponding timing diagram D;, T, is a task with the latest
finishing time (which must be w,), where m < r. If we consider the truncated set
T ={T,---, T,} with the list L' = (T}, - - - , T,,), we see that the execution time
' for T’ using L’ is exactly w,. On the other hand, for the optimal value wy
for T, it is true that wy £ w,, where w, denotes the optimal time for the set T.
Hence

’

w>ﬂ>4 1

wy we 3 3n

and-the set T’ forms a smaller counterexample to the theorem. This contradicts
the minimality assumption on r. Thus, we can assume that T, is the only task which
finishes at time wy .

It is immediate that

S| -

9 Wy 2

r
> .
i=1

Also, it follows that if T denotes the starting time of 7, then

r—1
(10) Y o 2w, WL =1+ a,
i=1

since no processor is idle before T, starts being executed. Therefore

-1
w;, T+a A 1
R -
Wo Wo Wo nwo i=1

n—1a 1
(= De 1

nwyg nwoq ;=1
n— 1o,
S
T nwy

Since T contradicts N,

MULTIPROCESSING TIMING ANOMALIES 423

and finally

Wo
11 oa > —-
(11 >
Hence, if (7) is false, in an optimal solution (which has timing diagram D), no
processor can execute more than two tasks.
Suppose the following configuration occurs in Dy :

DO: , 0 > aj, o > aj'.

then in Dy the (possibly) new finishing time «’ certainly satisfies o' < wy, i.€., this
single interchange could not have caused w, to increase. Also, if the configuration

Dy: , o > o,

occurs in Dy, then moving o; from the line with «; to the line with o; cannot cause
wp to increase. Let us call either of these two preceding operations a Type 1
operation. By a Type 2 operation on D, we mean changing any occurrence of

. | {
Do‘ I ! , o4 < aj’

to the form

®

424 R. L. GRAHAM

Clearly, this operation does not affect w,. For any timing diagram D we define
a function #(D) as follows : Let F; denote the least time ¢ such that for every time
t' = t, the processor P;isidle in D. Then
gD)= Y IF-F|.
1<i<j=<n

It is not difficult to check:

{a) If D' is obtained from D by a Type 1 operation, then (D) < &(D);

(b) if D’ is obtained from D by a Type 2 operation, then (D) = #(D).

Now we start from Dg and apply all possible Type 1 and Type 2 operations
until the resulting timing diagram D* has no internal configurations to which
either type of operation may be applied. That such a D* exists follows from the
facts that there are only a finite number of possible arrangements of the r tasks on
n lines, between two Type 1 operations only a finite number of Type 2 operations
may be performed, and only a finite number of Type 1 operations may be performed
because of (a). Hence, in D* it follows that for any configuration of the form

% %
o o
D*: % —
o; o
|

Ay
we have:
(12) @; > oy implies o = o, o <o and oy > ap.

Thus, by a suitable rearrangement of the lines of D* we can bring D* into the form

%,
1
O,
f
%,
1
%,
I i
— o T 1
D i1 &y
1 §
; 1
%, %y

MULTIPROCESSING TIMING ANOMALIES 425

where
Oy 2 Oy = -00 2 O,
oy 2 0, 2 e 2 %, s
and, by (12),
o =0y = o = o

But (12) also implies o, = a;, and o;, = o;;. Hence we combine these to obtain

(13) Ok >"'§“k520€i12"'zai,>ai;§"'§“ia-

1 = =

Since none of the operations applied to D, caused w, to increase, by the optimality
of w, the finishing time of D must also be w, . But note that D looks very much like*
the timing diagram D, obtained by using the decreasing length list (T, -- -, T)).
In fact the only way in which D, could differ from D is in the assignment of the
second-layer tasks T;,. Specifically, a difference could occur only if for some pair
T;., T, wehave o, + o, < o; forsomem < k,

Inthiscase,in D, , T;, withlength«;, might be assigned to P;instead of P,. However,
if this situation were possible, then, in D,

- -

and it would be possible to move «;; from P; to P;; and since the finishing time is not
increased, it is still w, . This is a contradiction since this is now an optimal solution
which has three tasks assigned to one processor. Hence, we conclude that D,
and D are isomorphic (in the obvious sense) and w, = w, . But this contradicts
the hypothesis that w;/w, > 4/3 — 1/(3n), and the validity of the bound given
by the theorem is established.

To show that this bound is best possible, we consider the following set of task

lengths:
(g, 00, ,00)=02n—1,2n—1,2n —2,2n —2,---,n+ L,n + 1,n,n,n),

* Up to renaming tasks of equal length.

426 R. L. GRAHAM
where r = 2n + 1. Specifically we have
k+1
ak=2n—[—~g-], k=1,---,2n, and oy,41 = 1

In this case

] i)|
Py = 1] 1
1 %2n a2n+l
P, f 1
*3) X2n-1
D . | |
L- T T
¥3 Aop—2
s wp,=4n —1,
Il i
I T
0y— 1 Oyt 2
P | '
" OC,, (xn+ 1
and
P 1 i
1 1 1
% X2n-2
P, i f
%) A2n-3
D,:
0) C00 = 3"9
| i
Ap—2 On+1
i f
O(n— 1 (xn
P, ——t—ri
Aop-1 oy X2p+1
and therefore
wy, 4 1

we 3 3n
It will be admitted that the bound 4/3 — 1/(3n) is not the first expression which
comes to mind if one were to make an a priori guess at the answer. In the following
section, however, it will be seen that this as well as the earlier bound of 2 — 1/n are
both simple special cases of a more general result.

6. A general algorithm. Following a suggestion of D. Kleitman and D. Knuth,
we were led to consider the following algorithm (still for the case in which < is
empty): For an integer k = 0, choose the k longest tasks of the set of tasks
T ={Ty,---, T,} and arrange them in a list L which gives the optimal solution

MULTIPROCESSING TIMING ANOMALIES 427

a, for these k tasks. Now, extend L to a sequence containing all the tasks of T by
adjoining the remaining r — k tasks arbitrarily to L, forming the list L(k). Let
(k) denote the finishing time in the timing diagram D(k) for T using L(k). Again,
let wqy denote the minimum possible finishing time for T. Our final result is the
following theorem (where [-] denotes the greatest integer function).

THEOREM 3.

g(k—)< 1—-1/n
wy 1 + [k/n]

This bound is best possible for k = 0 (mod n).

Proof. If w(k) = wy, then w(k) = wg and the theorem holds. We can therefore
assume (k) > w,. We can also assume r > k. Let a* denote max, <<, {o;}
where, as before, o; = p(T}). By the definition of «* and the rules of operation of the
multiprocessor system it follows that no processor can be idle before time
w(k) — o*. Hence,

(14) Y o = n(wlk) — a*) + o*
i=1
and consequently,
12 -1
(15) wo ==Y ;= alk) - (")oc*.
njij=y n

There are at least k + 1 tasks T; which have length > o*. Hence, some processor
must execute at least 1 + [k/n] of these “long™ tasks. This implies

16 oz 4] £]Jor
n

By (15) and (16) we finally obtain

n—1 1
n 1+ [kml)’

n—1

(17) wk) £ wy + ()oc* < wo(l +

which is the bound stated in the theorem.
To show that this bound is best possible when k = 0 (mod n) we present the
following example: Define a;for 1l < i<k + 1 + nn — 1) by
{nfor1§i§k+1,
T lifork+2<i<k+1+nn-—1).
For this set of tasks and the list L(k) = (T1, .-+, T, v, -, Tes14nm-1ys Tis1)
we have w(k) = k + 2n — 1. Since wy = k + n,
— — -1 —1
a)(k):k+2n 1=1+n 1=1+1 /n=1 1 /n.
Wo k+n k+n 1+ k/n 1 + [k/n]

This completes the proof of the theorem.

428 R. L. GRAHAM

We have already seen several special cases of Theorem 3. For k = 0, we have

which is also implied by Theorem 1 for n = »'. Theorem 3 implies
o _o@n) o 1-1n 4 1
wo = wo — 1+[nn] 3 3n

which is also the bound of Theorem 2.

There is an obvious algorithm for achieving the optimal solution for the n
largest tasks ; namely, just assign one task to each processor. If the remainingr — n
tasks are chosen arbitrarily, then by Theorem 3 we conclude

w(n) < 3 1

wo — 2 2n
It would be interesting to know other simple algorithms which are optimal for
the cases r = 3n, 4n, etc.

The problem we have been considering is equivalent to the following: We
are given a set (with possible repetition) of positive real numbers 4 = {ay, &2, - -,
o,}. For each partition 7 of A4 into n subsets 4,, ---, 4,, let m(n) denote max;
Y ses; @ and let my denote min, m(n). For a given ¢ = 0, we wish to “efficiently”
determine a partition n = n(e) such that

i) <1l+e

Mo
We must keep in mind, of course, that we can always find a partition z such that
m(r) = mg just by a finite enumeration of all partitions of 4. This algorithm,
however, requires an “‘exponential” amount of work (in terms of the number of
tasksr). On the other hand, by simply ordering the ; into a nonincreasing sequence,
which can be done in roughly r log, r comparisons, we can form a partition 7 for
which m(rn)/m, < 1 + 4 (by Theorem 2).

Clearly a basic problem in this area is to make the preceding concept of
“amount of work” precise and to develop strong upper and lower bounds on the
work needed to achieve near optimal solutions. For example, suppose we restrict
ourselves to the two operations of addition and comparison and assume n = 2.
It is probably true that there exists a constant C > 1 such that any algorithm which
determines an optimal partition 7 (i.e., such that m(n) = m,) for any finite set of
tasks T must require at least C!T! operations. However, this is not known at present.

REFERENCES

[1] E. L. Copp, Multiprogram scheduling, Comm. ACM, 3 (1960), pp. 347-350.

[2] R. L. GRAHAM, Bounds for certain multiprocessing anomalies, Bell System Tech. I., 45 (1966),
pp. 1563-1581.

[3] J. HELLER, Sequencing aspects of multiprogramming, J. Assoc. Comput. Mach., 8 (1961), pp. 426
439.

MULTIPROCESSING TIMING ANOMALIES 429

[4] J. L. KEeLLRY, General Topology, Van Nostrand, Princeton, 1955.

[5] B. LieBESMAN, The use of a special algebra in schedule analysis, to appear.

[6] G. K. MANACHER, Production and stabilization of real-time task schedules, J. Assoc. Comput.
Mach., 14 (1967), pp. 439-465.

[7] B. P. OcHsNER, Controlling a multiprocessor system, Record 44, Bell Laboratories, 1966, pp.
59-62.

[8] P. RICHARDS, Parallel programming, Rep. TD-B60-27, Technical Operations Inc., 1960.

[9] M. ROTHKOPF, Scheduling independent tasks on one or more processors, Interim Tech. Rep. 2,
Operations Research Center, M.1.T., Cambridge, 1964.

