ON FINITE SUMS OF RECIPROCALS OF
DISTINCT »TH POWERS

R. L. GRAHAM

Introduction. It has long been known that every positive rational
number can be represented as a finite sum of reciprocals of distinet
positive integers (the first proof having been given by Leonardo
Pisano [6] in 1202). It is the purpose of this paper to characterize
{cf. Theorem 4) those rational numbers which can be written as finite
sums of reciprocals of distinet nth powers of integers, where n is an
arbitrary (fixed) positive integer and “finite sum” denotes a sum with
a finite number of summands. It will follow, for example, that p/q
is the finite sum of reciprocals of distinet squares® if and only if
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Our starting point will be the following result:

THEOREM A. Let n be a positive integer and let H™ denote the
sequence (17, 27", 3", ...). Then the rational number plq is the
finite sum of distinct terms taken from H® if and only if for all

& > 0, there is a finite sum s of distinct terms taken from H" such
that 0 < s — plg < e.

Theorem A is an immediate consequence of a result of the author
[2, Theorem 4] together with the fact that every sufficiently large
integer is the sum of distinet nth powers of positive integers (cf.,

(8], [7] or [3]).

The main results, We begin with several definitions. Let S =
(s, 8, +-+) denote a (possibly finite) sequence of real numbers.

DEFINITION 1. P(S) is defined to be the set of all sums of the

form >\7., &8, where ¢, = 0 or 1 and all but a finite number of the
g, are 0,

DEFINITION 2. Ac(S) is defined to be the set of all real numbers
« such that for all ¢ > 0, there is an se P(S) such that 0 £ s — 2 < &.
Note that in this terminology Theorem A becomes:

(1) P(H") = Ac(H*) N Q
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where @ denotes the set of rational numbers.

DEFINITION 8. A term s, of S is said to be smoothly replaceable
wn S (abbreviated s.r. wn S) if s, = 31 Su1se

THEOREM 1. Let S = (s, s, --+) be a sequence of real numbers
such that:

1. s,10.

2, There exists an integer r such that n = r implies that s, is
smoothly replaceable in S.

Then

Ac(S)= U =,z + 0)
T€P,_

where P,_, = P((sy, + -, s,_,)) (note that P, = {0}) and o = 3,7, s,(where
possibly o 1s infinite),

Proof. Let x€U,ep, [, 7+ 0) and assume that « ¢ Ac(S). Then
% € [z, + o) for some 7w € P,;. A sum of the form = + %, 8;, where
=<y < oor < 9 will be ealled “minimal” if

k-1 k
(2) n+§sit<x<n+;si,

(where a sum of the form 3., is taken to be 0 for b < a). Note
that since « ¢ Ac(S) D P(S) then we never get equality in (2). Let
M denote the set of minimal sums. Then M must contain infinitely
many elements. For suppose M is a finite set. Let m denote the
largest index of any s; which is used in any element of M and let
P=7+ 35,8, + S, be an element of M which uses s, (where r <
J1< 3. < +++ < J,<m and possibly » is zero). Thus we have

ﬂ+,§sjk<w<n+%sjk+tz=1sm+t

since s, is s.r. in S. Therefore there is a least d = 1 such that
2< P =7+ 3018, + St Sn. Hence p is a “minimal” sum which
uses 8,4 and m 4+ d > m. This is a contradiction to the definition
of m and consequently M must be infinite. Now, let § = inf{p —a: pe M}.
Since ¢ Ac(S) then 6 > 0. There exist p, D, -+ € M such that
Do —® <0+ 0/2" Since s,]0 then there exists ¢ such that » = ¢
implies that s, < /2. Also, there exists w such that n = w implies
that p, uses an s, for some k = ¢ (since only a finite number of p;
can be formed from the s, with k < ¢). Therefore we can write
Do =T + 2718, Where k, = c¢. Hence
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which is a contradiction to the assumption that p, is “minimal.”
Thus, we must have x € A¢(S) and consequently

(3) ey [z, = + 0) < Ac(S) .
T€Lpq

To show inclusion in the other direction let x ¢ Ac¢(S) and suppose
that @ € Usep,_, [7, © + 0). Thus, either # <0, x = 37,8, or there
exist 7 and 7’ in P,_; such that # + ¢ < & < @’ where no element of
P,_, is contained in the interval [7 4 o, 7). Since the first two pos-
sibilities imply that x ¢ Ac(S) (contradicting the hypothesis) then we
may assume that the third possibility holds. Therefore there exists
0 > 0 such that

(4) e<n —9d.

Let p be any element of P(S). Then p = X s, + 3.1, 8;, for some
m and % where

1S3, << o  <lp=Sr—1<5,<fH< <.

Thus for n* = X, s; we have pe[n* n* + g). Consequently any
element p of P(S) must fall into an interval [z*, n* + o) for some
w* e P,_, and therefore, if p exceeds & then it must exceed « by at
least o (since p¢[m + o, ') and thus by (4) p > x e[x + o, 7’) implies
p=n" = ax + 6). This contradicts the hypothesis that xe A4e(S) and
hence we conclude that Ac(S)C Usrer, ,[7, ® + 0). Thus, by (3) we
have Ac(S) = Urer,_,[7, = + 0) and the theorem is proved.

THEOREM 2. Let S = (s, S, *++) be a sequence of real mumbers
such that:

1. s,|0.

2. There exists an integer v such that n < r implies that s, s
not s.r. in S while n = r implies that s, is s.x. in S.

Then Ac(S) is the disjoint union of exactly 2! half-open inter-
vals each of length S5, s,.

Proof. By Theorem 1 we have Ac(S) = Urep,_,[7, © + 0) Where
6=73%5%,8 and P, = P((8, ++,8.-)). Let ®#=3% s, and ' =
>9-18;, be any two formally distinct sums of the s, where 1=
1< o<, £r—land 1£5,< -+ <jJ, =7 —1and we can assume
without loss of generality that = = n’. Then either there is a least
m =1 such that ¢, % j, or we have 1, =3, for k=1,2, -+, » and
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% > . In the first case we have

K3 m—1 3
= gsik = g.sjk + gsik

m—1

Zs,k + Zs,mﬂ, (since s; is not s.r. in S)
=7n' + o (since j, =14, +1).

In the second case we have

U

Z S.’lk kz sik

=y+1

T =

mg

> Z, .+ Zs%HH (since s;,,, is not s.r. in S)

> 4 0 (since Gpu+1=Zi, +1 7).

Thus, in either case we see that # > 7" + ¢. Consequently, any two
formally distinet sums in P,_, are separated by a distance of more
than ¢ and hence, each element 7w of P,_;, gives rise to a half-open
interval [z, # + ) which is disjoint from any other interval [7’, 7’ + 0)
for = # n' € P,_;. Therefore Ac(S) = Urer, [, 7 + 0) is the disjoint
union of exactly 2" half-open intervals [x, 7 + 0), we P,_,, (since
there are exactly 2" formally distinct sums of the form >;7i¢.s,, &, =
0 or 1) where each interval is of length . This proves the theorem.

We now need three additional lemmas in order to prove the main
theorems.

LEMMA 1. Let S = (s, s, ++-) be a sequence of nonnegative real
numbers and suppose that there exists an m such that n=m
implies that s, <2s,.,.. Then n=m implies that s, is s.r. in S (i.e.,
8, = D1 8utr)e

Proof, If X5..s,= o then the lemma is immediate. Assume
that >5..s, < . Then

anzanZ%an_l, k=128, .-
d 13 1 12
k:l - 2 k=1 Sntim 23” 2 k=18n+k )

Therefore, s, < 371 Suisy 1.€., .8, 18 s.1: in S,

LEMMA 2. Suppose that k< (2 — 1) and k™ 4s s.r. in H"
(where H®™ was defined to be the sequence (17,27 <+¢)). Then
(k + 1)™ is also s.r. in H™.
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Proof.
k é (21/n _ 1)—1 [ 7]; é 21/n . 1

1 n

(5) —(1+3) 22
k/

— Lk =2k + 1)™.
Since by hypothesis, > 5;. 7™ = k", then by (5)

T

ek =Dz + ) — kD= (ke + 1)

i 2

Hence, (k + 1) is s.r. in H™ and the lemma is proved.
LEmMMA 3. Suppose that k= (Y — 1)~*, Then k™ is s.r. in H,.

Proof.
= k=—r= Q" —1)"

1

— =21
— 2y s

—_— " < 2(r + 1),
Therefore, by Lemma 1, " is s.r. in H",

THEOREM 3. Let t, denote the largest integer k such that k"
is not s.r. in H™ and let P denote P(17", 27", «++,t;™). Then
Ac(H") = Uz, 7+ 5 (¢, + k™)
TEP k=1
18 the disjoint union of exactly 2i» intervals. Moreover, t, < (2V"— 1)
and t, ~ nfln 2 (where In 2 denotes log, 2).

Proof. With the exception of f, ~ n/ln 2, the theorem follows
directly from the preceding results. The following argument, due to
L. Shepp, shows that ¢, ~ n/ln 2.

Consider the function f,(x) defined by

(6) 7o) = o(§ e = L)

for n =2,8,--- and « > 0. Since
=51+ 57 1
k=1 2

then f.(x) < 0 for sufficiently small # >0, f.(®) >0 for sufficiently
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large x, and f,.(x) is continuous and monotone increasing for « > 0.
Hence the equation f,(#) = 0 has a unique positive root #, and from
the definition of ¢, it follows by (6) that 0 <, — ¢, =< 1. Thus, to
show that ¢, ~ n/ln 2, it suffices to show that z, ~ n/in 2. Now it is
easily shown (cf., [4], p. 18) that for ¢ >0, (1 + a/n)™ is a decreas-
ing function of n. Thus, f.(an) is a decreasing function of # and
since f(2a) < o for a > 0 then

lim £, (@n) = lim 3} ( Eki)— —1

n—roo k=

—Ehm( ];>_”—1

1n—o0
= —1 + ie—k/m — (61/‘” _ 1)—1 -1
k=1

since the monotone convergence theorem (ef., [5]) allows us to inter-
change the sum and limit. Suppose now that for some ¢ > 0, there
exist n, < m, < +-- such that #,, > n(1/ln2 4+ ¢). Then

0 =lim £, (5) 2 lim £ (m( 2 + )
— (e(1nn2+s)"1 —-11t—-1

o (21/(1+E n2) __ 1)—1 — 1 > 0

which is a contradiction. Similarly, if for some ¢, 0<e<1/ln2,
there exist n, < 7, < --- such that

1
oo < 1 g5 = )

then
0 = limfy () < lim fo(m 75 — ¢))
— (e(mnz—z)”‘l S |
= (QUa~einy _ DT—-1<90

which is again impossible. Hence we have shown that for all ¢ > 0,
there exists an #», such that » > n, implies that

n(—l;b%— )é%§%<-l-7%§+€>

or equivalently

, 1
n In2

fiA

€.
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Therefore, lim z,/n = 1/Iln 2 and the theorem is proved.:

The fol'ig‘;ving table gives the values of {, for some small values
of n.

n t (@7 — 1™
1 0 1
2 1 2
3 2 3
4 4 5
5 5 6
10 12 13
100 ? 143
1000 ? 1442

We may now combine Theorem 3 and Theorem A (cf. Eq. (1))
and express the result in ordinary terminology to give:

THEOREM 4. Let n be a positive integer, let t, be the largest
integer k such that k=™ > 35,k + j)™ and let P denote the set
{Zn, €57 &= 0 or 1}.  Then the rational number plq can be written
as a finite sum of reciprocals of distinct nth powers of integers if
and only if

LeUlr,m+ 3t +k™.
q rEP k=1

COROLLARY 1. p/q can expressed as the finite sum of reciprocals
of distinct squares if and only if

2efo. 2 _p)u[L2),

COROLLARY 2. p/q can be expressed as the finite sum of recipro-
cals of distinct cubes if and only if

%f[QC@W—%JU[%ﬂ@%—QU[LC@y-%JU[%3g&>
where {(8) = X, k™ = 1.2020569- - -

REMARKS. In theory it should be possible to caleculate directly
from the relevant theorems (cf., {2], [3]) an explicit bound for the
number of terms of H” needed to represent p/¢ as an element of
P(H"). However, since the theorems were not designed to minimize
such a bound, but rather merely to show its existence, then under-
standably, this calculated bound would probably be many orders of

2 In fact, it can be shown that z, has the expansion n/ln2 —1/2 +em—t 4 ---
+ cxn—* 4+ O(n—*—1) for any k.
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magnitude too large. Erdos and Stein [1] and, independently, van
Albada and van Lint [9] have shown that if f(n) denotes the least
number of terms of H'= (17, 27, ---) needed to represent the integer
n as an element of P(H") then f(n)~e* ™ where v is Euler’s constant.

It should be pointed out that a more general form of Theorem A
may be derived from [2] which can be used to prove results of the
following type:

COROLLARY A. The rational plq with (v, @) = 1 can be expressed
as a finite sum of reciprocals of distinct odd squares if and only if
g is odd and plqel0, (7*/8) — 1) U [1, =*8).

COROLLARY B. The rational plqg with (p, q) = 1 can be expressed
as a finite sum of reciprocals of distinct squares which are congruent
to 4 modulo 5 if and only if (¢,5) =1 and

Pelo o138 [L Vol -1y, 18
P [’a 36>U 5 ¢ 4>U[4’a 9>U[36’“>
where @ = 26 — 1/ B)nY125 = 5wy (5% + 2)~* + (5% + 3)~%) = 0.43648- - -

It is not difficult to obtain representations of specific rationals as
elements of P(H™) (for small n), e.g.,

=27+ 87+ 47 + 57 + 670 + 157 + 18 + 367 + 60~ + 180,

I

272+ 4741077+ 12774207+ 30 4 607,

I

272457410 + 1570 + 167 + T4 4 11172 4 1857° + 240~°

_03101 co|= pojm

+ 2967 + 4447° + 1480°°, ete.!
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