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S U M M A R Y
The power spectral density of geophysical signals provides information about the processes that
generated them. We present a new approach to determine power spectra based on Thomson’s
multitaper analysis method. Our method reduces the bias due to the curvature of the spectrum
close to the frequency of interest. Even while maintaining the same resolution bandwidth, bias
is reduced in areas where the power spectrum is significantly quadratic. No additional sidelobe
leakage is introduced. In addition, our methodology reliably estimates the derivatives (slope
and curvature) of the spectrum. The extra information gleaned from the signal is useful for
parameter estimation or to compare different signals.
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1 I N T RO D U C T I O N

There are many applications in geophysics where relevant informa-

tion contained in a given signal may be extracted from its power

spectrum. In normal mode seismology (Gilbert 1970) and climate

time-series analysis (Chappellaz et al. 1990) the scientist may be

interested in periodic components usually immersed in some back-

ground noise. A continuous spectrum is estimated from a short

time-series in earthquake source physics studies (Brune 1970) and

from bathymetry profiles to investigate seafloor roughness (Goff &

Jordan 1988). The cross-spectrum is used to compare two signals in

seismology (Vernon et al. 1991; Hough & Field 1996), investigate

the transfer function in electromagnetism (Constable & Constable

2004), and study the elastic thickness of the lithosphere (Simons

et al. 2000). In each of these cases, it is desirable to be able to obtain

a reasonable spectrum, with little or no bias and small uncertainties.

We present a brief review of some terminology, although the reader

should have some familiarity with modern methods of spectral es-

timation; for more thorough theory and discussion see Percival &

Walden (1993).

The periodogram (Schuster 1898) was the first (non-parametric)

direct spectral estimate of the power spectral density (PSD) function.

The periodogram is a biased estimate due to spectral leakage, the

tendency for power from strong peaks to spread into neighbouring

frequency intervals of lower power. It thus becomes necessary to

use the method of tapering to effectively reduce this bias (Priestley

1981; Percival & Walden 1993).

For a data sequence x(t) with N points, the direct spectrum esti-

mate at frequency f is:

∗Now at: Department of Geophysics, Stanford University, Stanford,
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Ŝ( f ) =
∣∣∣∣∣

N−1∑
t=0

x(t)a(t) e−2π i f t

∣∣∣∣∣
2

, (1)

where a(t) is a series of weights called a taper. Eq. (1) is sometimes

called a single-taper, modified or windowed periodogram. If a(t) is

a boxcar function, eq. (1) is called the periodogram.

In Thomson (1982) the multitaper spectral analysis method was

introduced. In this method the data sequence x(t) is multiplied by

a set of orthogonal sequences (tapers) to form a number of single

taper periodograms, which are then averaged as an estimate of the

PSD. This approach was introduced as an alternative to averaging in

the frequency domain (e.g. smoothed periodogram) as a procedure

to reduce the variance of the estimate. The multitaper method has

been widely used in geophysical applications and has been shown

in multiple cases to outperform the single-tapered, smoothed peri-

odogram (Park et al. 1987b; Bronez 1992; Riedel et al. 1993). In

the latter, a multitaper estimate that is subsequently smoothed is

preferred.

Single taper estimates have a major limitation, in the sense that

by using one taper a significant portion of the signal is discarded.

The data points at the extremes are down-weighted, causing the

variance of the direct spectral estimate to be greater than that of

the periodogram. In the multitaper method, the statistical informa-

tion discarded by one taper is partially recovered by the others. The

tapers are constructed to optimize resistance to spectral leakage.

The multitaper spectrum is constructed by a weighted sum of these

single tapered periodograms. The weighting function is defined to

generate a smooth estimate with less variance than single taper meth-

ods and at the same time to have reduced bias from spectral leakage.

The adaptive weighting proposed by Thomson (1982) is ideal to

minimize spectral leakage but suffers from local bias. To achieve

maximum suppression of random variability, the multitaper method

must average the true spectrum over a designated frequency interval,
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introducing this second form of bias, which flattens out the local

structure of the spectrum on the interval.

Riedel & Sidorenko (1995) suggested a different weighting func-

tion to minimize the local bias. They take a different set of orthogo-

nal tapers and, assuming quadratic structure of the spectrum, reduce

the bias introduced by the curvature of the spectrum. Because the

chosen tapers minimize local bias, there is little spectral leakage

reduction and this method does not perform as well with very high

dynamic range signals.

In this paper, we present an improved multitaper spectral esti-

mate using Thomson’s method modified to reduce curvature bias.

The second derivative of the spectrum is estimated by means of an

expansion of the spectrum via the Chebyshev polynomials. Because

we use the Slepian tapers and the adaptive weighting functions, the

estimate is resistant to spectral leakage, yet reduces bias due to

spectral curvature. In addition, we can estimate the derivative of the

spectrum (slope), which can be used in parameter estimation or as

a discriminant for comparing different signals.

This paper is organized as follows. In the next section, we out-

line the problem associated with the estimation of the PSD. After

this, we provide a brief review of the multitaper spectrum estimation

method and discuss some of its properties. Then, we introduce the

new methodology, first explaining in Section 4 the estimation of

the derivatives of the spectrum and in Section 5 the estimation of

the unbiased spectral estimate. Finally, we give a number of ex-

amples to compare the original and the new multitaper methods.

There is an application to bathymetric data and the application of

the derivatives of the spectrum for comparing signals.

2 S P E C T RU M E S T I M AT I O N

In time-series analysis it is often useful to describe the PSD of the

signal, given that it may have information of the background noise,

periodic components, and transients. These pieces of information

are fundamental in geophysics (Thomson 1990). For a more com-

plete understanding of this section we point the reader to Priestley

(1981), Percival & Walden (1993) and references therein.

To start (see Table 1), we need to consider a stationary stochastic

process x(t), a zero mean discrete time-series consisting of N con-

Table 1. Essential notation and mathematical symbols used in this paper. In the text, θ̂ means estimate of the variable θ ; E[·] is the

expected value and ∗ represents the complex conjugate.

Symbol Description

x(t) The time-series to be analysed (assumed with unit time intervals)

N The number of data points of the time-series

t The time variable (t = 0, 1, 2, . . . , N − 1)

f ,f ′ Continuous frequency variables

vk (t) Slepian sequences. Are a function of both N and a bandwidth W
W Bandwidth of the windows vk , which define the inner interval (f − W , f + W )

λk Eigenvalues of the Slepian sequences. Also give the fraction of energy in the inner band (− W , W )

K Number of tapers or windows to be used. Number of Slepian sequences used

dZ(f ) Orthogonal incremental process from Cramér Spectral representation Also known as generalized Fourier transform.

V k The Slepian functions, Fourier transform of vk ’s. Functions are orthogonal in the whole interval (− 1
2 , 1

2 )

Vk Orthonormal version of Slepian functions in inner interval (−W , W ) Defined as Vk = Vk/λk

Y k (f ) kth eigencomponent, the discrete Fourier transform of x(t)vk (t) in the interval (− 1
2 , 1

2 )

Yk ( f ) Idealized kth eigencomponent in the interval (−W , W ). Theoretically contain information from the inner interval.

Sk (f ) The kth eigenspectra. A direct spectral estimate using vk as a taper

Cjk (f ) Covariance matrix of the idealized eigencomponents at the single frequency f . C jk = Y j Y∗
k .

S(f ) The power spectral density (PSD) of the time-series.

T n(f ) The nth Chebyshev polynomial function.

αn The nth Chebyshev coefficient for the expansion of the spectrum S(f )

dk (f ) Multitaper weights used to obtain estimates of the band-limited coefficients Yk ( f )

tiguous samples and assume that the sampling rate is always unity,

so that t = 0, 1, 2, . . . , N − 1. Define the Fourier transform of the

observations

Y ( f ) =
N−1∑
t=0

x(t) e−2π i f t , −1

2
≤ f ≤ 1

2
. (2)

We assume the signal is a harmonizable process, thus has a Cramér

spectral representation (Cramér 1940)

x(t) =
∫ 1

2

− 1
2

e2π i f t dZ ( f ) (3)

for all t, where dZ(·) is an orthogonal incremental process (Doob

1952; Priestley 1981).

The random orthogonal measure dZ(f ) has its first moment

E [dZ ( f )] = 0 (4)

and second moment (of relevance for our purposes)

E
[|dZ ( f )|2] = S( f ) df, (5)

where S(f ) is defined as the PSD function of the process and E[·]
is the expected value. Note here that the frequency variable f is

continuous and so we are in fact trying to find a function S(f ) from

the finite series x(t).
Plugging the Cramér spectral representation (3) into the dis-

crete Fourier transform (2), we arrive at the basic integral equation

(Thomson 1982, 1990)

Y ( f ) =
∫ 1

2

− 1
2

[
sin Nπ ( f − v)

sin π ( f − v)
eπ i( f −v)(N−1)

]
dZ (v)

=
∫ 1

2

− 1
2

D( f, v) dZ (v), (6)

where D( f, v) is a modified Dirichlet kernel (see Thomson 1990;

Percival & Walden 1993, eq. A11). The basic integral equation is

a convolution that can be interpreted as the smearing of the true

dZ(f ) projected into Y (f ), due to the finite duration of the time-

series x(t).
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This paper is about obtaining an approximate solution to this

equation and based on that solution (via eq. 5) obtaining reliable

estimates of the PSD of the signal.

3 M U LT I TA P E R S P E C T RU M

E S T I M AT E S

We give a brief review of the standard theory for multitaper spectral

analysis. Proof of various assertions can be found in (Thomson

1982, 1990; Park et al. 1987b; Percival & Walden 1993). Note that

given the properties of (6) and the smoothing of the Dirichlet kernel

there is no unique solution to this problem. The multitaper spectrum

estimate is an approximate least-squares solution to eq. (6) using an

eigenfunction expansion. The choice of this type of solution will be

explained next.

Choosing the windowed periodogram (eq. 1) as a spectral esti-

mator is a natural first choice. Slightly rewriting the discrete Fourier

transform (2) and squaring

Ŝ( f ) = |Y ( f )|2 =
∣∣∣∣∣

N−1∑
t=0

x(t)a(t) e−2π i f t

∣∣∣∣∣
2

, (7)

where the sequence a(t) is called a taper. In the case of (2) the taper

a(t) = 1 is a boxcar function. To maintain total power correctly a(t)
needs to be normalized:

N−1∑
t=0

|a(t)|2 = 1. (8)

In the frequency domain, the properties of the taper are deduced

from its Fourier transform

A( f ) =
N−1∑
t=0

a(t) e−2π i f t . (9)

We call the function A(f ) the spectral window associated with a. For

conventional tapers, |A(f )| has a broad main lobe and a succession

of smaller sidelobes (see Fig. 1).

The choice of the taper can have a significant effect on the resul-

tant spectrum estimate. One can observe this by expressing eq. (7) as

a convolution of the transform of the taper (9) and the true spectrum

E[Ŝ( f )] =
∫ 1

2

− 1
2

|A( f ′)|2 S( f − f ′) df ′. (10)

Here, as in (6), there is smearing or smoothing of the true spectrum.

This means that the choice of window is important. A good taper

will have a spectral window with low amplitudes whenever |f − f ′|
is large, leading to an estimate Ŝ( f ) based primarily on information

close to the frequency f of interest. The objective of the taper a(t)
is to prevent energy at distant frequencies from biasing the estimate

at the frequency of interest. This bias is known as spectral leakage.

We wish to minimize the leakage at frequency f from frequencies

f ′ �= f .

In practice, it is not sensible to be concerned about |f ′ − f | ≤
1/N , since this is the lowest frequency accessible from a record

of length N . A resolution bandwidth W is chosen, where 1/N <

W ≤ 1/2, and the fraction of energy of A in the interval (−W , W )

is given by:

λ(N , W ) =

∫ W

−W
|A( f )|2 df

∫ 1
2

− 1
2

|A( f )|2 df

, (11)
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Figure 1. Selected Slepian sequences and corresponding Slepian functions

for N = 100 samples and a choice of NW = 4. Sometimes called 4π Slepian

sequences.

where λ is a measure of spectral concentration. It is clear that no

choice of W can make λ greater than unity. Our task is to maximize

λ.

To maximize λ substitute (9) in (11), take the gradient of λ with

respect to the vector a = [a(0), a(1), . . . , a(N − 1)] and set to zero

to obtain a matrix eigenvalue problem:

D · a − λa = 0, (12)

where the matrix D has components

Dt,t ′ = sin 2πW (t − t ′)
π (t − t ′)

, t, t ′ = 0, 1, . . . , N − 1 (13)

and is symmetric.

The solution of (12) has (dropping dependence on N and W )

eigenvalues 1 > λ0 > λ1 > · · · > λN−1 > 0 and associated eigen-

vectors vk(t), called the Slepian sequences (Slepian 1978). The

first eigenvalue λ0 is extraordinarily close to unity, thus making

the choice a(t) = v0(t) the taper with the best possible suppression

of spectral leakage for the particular choice of bandwidth W . In fact,

the first 2NW − 1 eigenvalues are also very close to one, leading

to a family of very good tapers for bias reduction. The multitaper

method exploits the fact that a number of tapers have good spectral

leakage reduction, and uses all of them rather than only one.

3.1 Properties of Slepian sequences and functions

The Slepian sequences are solutions of the symmetric matrix eigen-

value problem (12)–(13). The eigenvectors with associated eigen-

values λk are real and orthonormal as usual

N−1∑
t=0

v j (t)vk(t) = δ jk . (14)
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These vectors will be used as tapers in (7). We define the Slepian

functions as the spectral windows, the Fourier transforms of the

sequences

Vk( f ) =
N−1∑
t=0

vk(t)e−2π i f t . (15)

Note that the V k’s are complex functions of frequency. Fig. 1

shows three Slepian sequences and their corresponding Slepian

functions.

One of the central features of the Slepian sequences is that or-

thogonality conditions also hold in the frequency domain (both in

the whole and inner intervals),

∫ 1
2

− 1
2

Vj ( f )V ∗
k ( f ) df = δ jk (16)

∫ W

−W
Vj ( f )V ∗

k ( f ) df = λkδ jk . (17)

It is convenient to define an orthonormal version of the V k’s on the

inner interval (−W , W )

Vk( f ) = Vk( f )√
λk

(18)

with the obvious property∫ W

−W
V j ( f )V∗

k ( f ) df = δ jk . (19)

This last property will be exploited in the sections to come. Fig. 2

shows a selection of the Vk( f ) functions in the inner interval. Note

how the real part of the functions is always even and the imaginary

part is odd. See also how the amplitude of the functions increases

Figure 2. Orthonormal version of the Slepian functions in Fig. 1, Vk ( f ) in

the inner interval. Only three functions are shown in the example with their

real and imaginary amplitudes normalized. Number and thin lines show

the index of the corresponding Slepian function plotted. The symmetry and

amplitude of the functions are of interest.

outward as the Slepian function index increases and are more sen-

sitive to structure further from the centre frequency.

3.2 The multitaper method

The objective of this method is to estimate the spectrum S(f ) by

using K of the Slepian sequences to obtain the k eigencomponents:

Yk( f ) =
N−1∑
t=0

x(t)vk(t)e−2π i f t (20)

and a set of K eigenspectra as in (7):

Ŝk( f ) = |Yk( f )|2 (21)

from which we can form the mean spectrum

S̄( f ) = 1

K

K∑
k=1

Ŝk( f ). (22)

The idea of taking an average is to reduce the variance in the spec-

tral estimate. As will be shown below, the mean spectrum is not an

ideal estimate and we prefer a weighted average instead, one that

minimizes some measure of discrepancy. While the spectral leak-

age properties of the Ŝ0 eigenspectrum are very good, since the

eigenvalues are close to unity when K < 2NW − 1, the leakage

characteristics of the successive estimates degrade. It is clear that

by using Ŝ = |Y0|2, the least amount of spectral leakage is achieved.

Nevertheless, including the other eigencomponents (Y 1, Y 2, . . . ,

Y K), while increasing spectral leakage, reduces the variance of the

spectral estimate and is thus preferred.

In order to estimate the discrepancy of the different eigencompo-

nents Y k , we combine (20) with (3)

Yk( f ) =
N−1∑
t=0

x(t)vk(t)e−2π i f t

=
N−1∑
t=0

∫ 1
2

− 1
2

dZ ( f ′)e2π i f ′tvk(t)e−2π i f t

=
∫ 1

2

− 1
2

N−1∑
t=0

vk(t)e−2π i( f − f ′)t dZ ( f ′)

and using the definition of the Fourier transform of the taper (15)

we obtain:

Yk( f ) =
∫ 1

2

− 1
2

Vk( f − f ′) dZ ( f ′) (23)

containing information from the whole interval (− 1
2 ,

1
2 ).

If the sequence x(t) were passed by a perfect bandpass filter from

f − W to f + W before truncation to the sample size with N data

points, we would obtain the idealized eigencomponents Yk( f ) that,

though unobservable, would be represented by:

Yk( f ) =
∫ W

−W

Vk( f ′)√
λk

dZ ( f − f ′) =
∫ W

−W
Vk( f ′) dZ ( f − f ′). (24)

Note that here we adopt the orthonormal functions Vk , in order to

maintain the correct normalization. The Yk takes only information

over the inner interval (−W , W ).

In order to estimate Ŝ( f ), we find a set of frequency dependent

weights dk(f ), as proposed by (Thomson 1982, 1990):

dk( f ) =
√

λk S( f )

λk S( f ) + (1 − λk)σ 2
, (25)
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where σ 2 is the variance of the signal x(t). The multitaper spectrum

is then obtained

Ŝ( f ) =

K−1∑
k=0

d2
k |Yk( f )|2

K−1∑
k=0

d2
k

. (26)

Since we don’t know the spectrum S(f ) in (25), we are required to

assume an initial estimate of the spectrum (averaging the first two k
eigenspectra S0 + S1 for example) and find the adaptive weights dk

iteratively. In (Prieto et al. 2007) the reader can find a more complete

discussion of the adaptive weights and a derivation can be found in

Thomson (1982) or Percival & Walden (1993).

4 E S T I M AT I N G T H E D E R I VAT I V E S

O F T H E S P E C T RU M

At this point we introduce the covariance matrix of the multitaper

components by an approach developed by Thomson (1990) which

we will call the Quadratic multitaper method. More information

about the spectrum can be obtained by looking at the covariance

matrix of the K components at the single frequency f :

C jk( f ) = E
[
d j Y j dkY ∗

k

] = E
[
Y j Y∗

k

]
(27)

with j , k = 1, . . . , K . We use the orthogonal increment property

(5) and substituting (24):

C jk( f ) =
∫ W

−W
G jk( f ′) S( f − f ′) df ′, (28)

where G jk( f ) = V j ( f )V∗
k ( f ). If the spectrum does not vary in the

interval (−W , W ) then the covariance matrix is diagonal

C( f ) = S( f ) I, (29)

where I is the K × K identity matrix. Note that the multitaper spec-

trum in (26) is equivalent to taking the trace of C (f ) and normalizing

by the weights.

When the spectrum is constant in the interval (−W , W ), the orig-

inal multitaper method as proposed by Thomson (1982) is unbiased

and provides an appropriate estimate of the spectrum. If, however,

the spectrum varies within the interval, the matrix C(f ) will not

be diagonal and (26) may be biased. Clearly, we rarely obtain per-

fectly diagonal covariance matrices and the spectrum is not perfectly

resolved.

Like (6) eq. (28) is a Fredholm integral of the first kind and suffers

from similar non-uniqueness and smearing features, except in this

case we have reduced spectral leakage and are only concerned about

the interval (−W , W ).

Thomson (1990) suggested taking a set of orthogonal eigenfunc-

tions to expand the spectrum to solve (28). Here we propose to

employ the Chebyshev polynomials for estimating the derivatives

of the spectrum and using these derivatives to obtain an improved

solution of the spectrum S(f ). We prefer the Chebyshev polynomials

(Mason & Handscomb 2003) because, as can be seen from Fig. 3,

these polynomials are sensitive to structure at the edges of the in-

terval, where the eigenfunctions proposed by Thomson (1990) have

very little energy.

We write the spectrum in the inner interval as:

S( f − f ′) = α0T0

(
f ′

W

)
+ α1T1

(
f ′

W

)
+ α2T2

(
f ′

W

)

− W ≤ f ′ ≤ W, (30)
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Figure 3. Comparison between first three basis functions used in Thomson

(1990) (A) and Chebyshev polynomials (B) used in this study. Note that

in (A), the basis functions always tend to zero when getting close to either

−W or W and are not sensitive to structure at the boundaries. The Chebyshev

polynomials in (B) are also very simple approximations of a constant, slope

and quadratic terms.

where T n(x) is the Chebyshev polynomial (Mason & Handscomb

2003) of degree n (see Fig. 3). Returning to the inverse problem (28)

in spectrum estimation and inserting (30):

C jk( f ) = α0 H (0)
jk + α1 H (1)

jk + α2 H (2)
jk + O( f − f ′)3, (31)

where the matrices

H (0)
jk =

∫ W

−W
G jk( f ′) T0( f ′) d f ′ = δ jk

H (1)
jk =

∫ W

−W
G jk( f ′) T1( f ′) d f ′

H (2)
jk =

∫ W

−W
G jk( f ′) T2( f ′) d f ′

describe the zero, first and second derivative basis matrices. We can

then obtain the Chebyshev coefficients, α0, α1, α2, by solving the

least-squares problem where we use the observed values of djdkYjY ∗
k

to approximate the left-hand side.

The Chebyshev coefficients are estimates of the derivatives of the

spectrum

α0 ≈ S( f )

α1 ≈ S′( f )

α2 ≈ S′′( f )

around the centre frequency on the interval (f − W , f + W ).

In practice, the calculation of the integrals in H (1)
jk and H (2)

jk is done

numerically using a trapezoidal quadrature. In Fig. 4, we plot the

case of the three matrices in (31). The absolute values are plotted.

Note that both the zero and second order terms are only present in
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Figure 4. Comparison between the different basis matrices for zero (left-

hand panel), first (middle panel) and second (right-hand panel) order coeffi-

cients. The absolute values are shown for simplicity. Note that the completely

white matrices show that the real part of the covariance matrix is insensitive

to slopes, while the imaginary part is insensitive to a constant and quadratic

structure of the spectrum.

the real part of the covariance matrix, while the first order term is

present only in the imaginary part of the covariance matrix.

It is clear that the constant term will result in a diagonal covari-

ance matrix, while the effects of the first and second order terms

are quite different. H (1)
jk has no effect on the diagonal terms, sug-

gesting that this term does not bias the spectrum estimate (26). In

contrast, H (2)
jk has an important contribution to the diagonal but is

also present in the off-diagonal terms, showing the dependence of

the eigencomponents in spectra that are highly variable. A slight

correlation between the estimates of α0 and α2 is present.

5 R E D U C I N G T H E B I A S O F

M U LT I TA P E R E S T I M AT E S

Up to now, the literature (e.g. Thomson 1982; Park 1992; Percival

& Walden 1993, and many others) has assumed the spectrum varies

slowly in this interval and can be taken out of the integral in eq. (28).

Now, within (−W , W ) we can try to find further information on the

structure of the spectrum and relax the assumption of a constant

spectrum inside the interval.

Assume the spectrum has a Taylor series expansion on the interval

(f − W , f + W ) of the form:

S( f ) = S( f ′) + ( f − f ′)S′( f ′)

+ 1
2 ( f − f ′)2 S′′( f ′) + O( f − f ′)3.

We know that the estimate of the spectrum Ŝ( f ) at any frequency f
is an average over the interval (f − W , f + W ):

E[Ŝ( f )] = 1

2W

∫ W

−W

[
S( f ′) + 1

2 ( f − f ′)2 S′′( f ′)
]

d f ′

= S( f ) + 1

6
W 2 S′′( f ),

where the term associated with the first derivative does not contribute

to the integral due to symmetry. Note that in Fig. 4 the matrix H(1),

associated with the slope, is zero in the main diagonal and does not

bias E[Ŝ( f )].

We can obtain the Quadratic multitaper estimate of the spectrum

S̃( f ) at frequency f by applying the correction:

S̃( f ) = Ŝ( f ) − 1

6
W 2α̂2, (32)

where we assume α̂2 ≈ S′′( f ) obtained by solving (31). Note that

we apply the correction to the multitaper estimate Ŝ( f ) in (26).

Applying the quadratic correction in (32) will increase the vari-

ance of the overall estimate, because α̂2 is also uncertain. We propose

to implement a mean-square error criteria instead of directly apply-

ing (32) to avoid exacerbating the uncertainties of the Quadratic

multitaper:

S̃( f ) = Ŝ( f ) − μ
1

6
W 2α̂2, (33)

where μ is a weight:

μ = α2
2

(α2
2 + var{α2}) . (34)

In Appendix A the derivation of the weight μ in (34) is explained

as well as the approximate estimation of the variance of α2.

The Quadratic multitaper is an approximately unbiased estimate

of the PSD of the signal analysed. As will be demonstrated in the next

section with different examples, the Quadratic multitaper method

provides a reduction of curvature bias while at the same time gen-

erating smooth estimates.

6 E X A M P L E S

As a demonstration of the benefits of the Quadratic multitaper spec-

trum method (QMT) we show a number of synthetic examples

and compare the results to the original (OMT) adaptive multita-

per method by Thomson (1982). The main features we would like

to concentrate on are the resolution close to significant structure in

the spectrum, smoothness of the resultant estimates and the overall

spectral leakage properties.

6.1 Random signal

The first signal to be analysed is a simple pseudo-random number

r(t) with a normal distribution and standard deviation σ = 1. The

number of data points for this example is N = 1000, For all plots

in this paper we compute six tapers (K = 6) with 3.5 as the time-

bandwidth product.

A visual inspection of the results of the two different methods in

Fig. 5 shows that the method presented here generates a smoother

spectrum than the original method. A more quantitative compari-

son is provided in Table 2, where 10 random realizations of a 1000

sample long random time-series were analysed and two different

measures were used to assess the smoothness of the resultant spec-

trum: the norm of the second (numerical) derivative of the spectrum

and a count of the number of maxima in each spectra.

Results of these measures of smoothness in Table 2 demonstrate

that the QMT generates smoother estimates of the spectrum. In all

10 realizations, both measures of smoothness where lower when

using the Quadratic method.

6.2 Periodic components

We test the effectiveness of the new method with two signals; we

examine a random signal r(t) with σ = 1.0 and a pair of periodic

components. The number of data points is reduced to N = 100 in

order to have a comparison of spectral leakage around the linear

components.
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Figure 5. Spectrum estimation of pseudo-random number signal. The signal is a normally distributed random vector, with N = 1000 samples. The top panel

shows the time-series random signal. The middle panels show the OMT (left-hand panel) and the QMT (right-hand panel) estimates of the spectrum. Bottom

panels show a detailed view of the estimates between 0.01 and 0.1 Hz and the 2W bandwidth for reference. The QMT generates a smoother spectral estimate.

Table 2. Comparison of smoothness for the

multitaper methods.

Original Quadratic

Number of realizations 10 10

Second derivative norm 216.8 49.9

Standard deviation 22.2 5.99

Count of maxima 123.3 67.3

Standard deviation 5.07 3.62

Our first test is to see whether this method represents the peri-

odic components in the signal better, without introducing additional

spectral leakage. For this, we take the signal:

x(t) = A0 sin(2π f1t) + A0 sin(2π f2t) + r (t), (35)

where f 1 = 0.05, f 2 = 0.3 and the amplification factor A0 = 105.

Two questions arise here. How well can we describe the periodic

components; effectively, line features in the spectrum, and is there

any spectral leakage introduced due to the Quadratic multitaper

method? Fig. 6 shows the results of spectral analysis from both OMT

(grey) and QMT, on linear and log axes. The linear plot clearly shows

the more accurate description of the periodic components provided

by the QMT, the logarithmic plot shows that no additional spectral

leakage is introduced. Note how both methods overlap at very low

amplitudes. The signal has 8–10 orders of magnitude dynamic range

and both methods behave similarly in terms of spectral leakage.

The second test signal has a much smaller signal-to-noise ratio. In

this case we let the amplification factor be A0 = 1.0 and the standard

deviation σ of r(t) remains fixed. Fig. 7 shows the result of spectral

analysis on this signal. We would like to stress two important features

that can be seen from these results. First, the linear components

are better described by the QMT. Second, the information outside

the range of the periodic components is smoother, as shown in the

random signal example (Table 2).

Additionally, we have also obtained extra information about the

spectrum. Fig. 7 shows the estimate of the first and second deriva-

tives of the spectral contents of the signal. As expected, the first

derivative should be very close to zero, when getting close to the

periodic component. Similarly, the second derivative of the spec-

trum should have a large negative value, showing that the line repre-

sents a local maxima of the spectrum. These two features are clearly

present in the estimates of the derivatives. Given the randomness of

the signal and also uncertainties due to the non-uniqueness of the

problem in our example, the second derivative around the 0.3 Hz

components is not exactly the largest negative value, but is rather off

by a frequency bin. This shows that still some uncertainties remain
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Figure 6. Spectrum estimation for a high dynamic range signal with two

periodic components at 0.05 and 0.3 Hz. N = 100 points, time-bandwidth

product NW = 3.5 and K = 6 . The linear scale spectrum (top panel)

shows the improved performance of the QMT in describing the periodic

components, while the logarithmic scale (lower panel) shows the similar

spectral leakage properties of both methods.

in all estimates, including the spectrum and its derivatives. Nev-

ertheless, the extra information that is gained from the derivatives

could certainly be relevant.

Note that the estimates of the derivatives are not computed by a

numerical differentiation of the spectrum estimate Ŝ( f ), but rather

by the steps described in the previous sections.

A method for the detection of periodic components using the

multitaper method was developed by Thomson (1982), known as the

F-test for spectral lines. For a complete description of the methodol-

ogy the reader is referred to Thomson (1982) and Percival & Walden

(1993). The method can be applied for reshaping the spectrum near

spectral lines (e.g. Park et al. 1987a; Thomson 1990; Denison et al.
1999) or even for removal of these periodic signals embedded in a

coloured spectrum (Percival & Walden 1993, Chap. 10; lees 1995).

For high signal-to-noise ratios as in Fig. 6, F-test or other line de-

tection methods are preferred for harmonic analysis.

The general idea of spectral reshaping is to subtract the effect

of the statistically significant lines from the eigencomponents Y k

(see eq. 23). This subtraction is done before the adaptive weighting

in eqs (25) and (26), meaning that it is possible to perform either

OMT or the QMT estimates on the remaining stochastic part of

the spectrum (without the deterministic periodic components, just

removed), with similar improvements as presented in the examples

above, if the Quadratic multitaper method is applied.

6.3 Resolution test and the choice of multitaper

parameters

One important question that remains unanswered in spectral anal-

ysis using multitaper methods is, what is the optimal choice of the

time-bandwidth product NW (the averaging bandwidth) and the

number of tapers K (the more tapers, the smoother the estimate)?

Or, having a chosen bandwidth W , what is the ideal number of ta-

pers that should be used? Riedel & Sidorenko (1995) invented the

sine multitaper method to get around this problem by choosing an

optimal number of tapers iteratively at each frequency.

In the multitaper method literature, it has been proposed that

K = 2NW − 1 as an appropriate choice, since the eigenvalues λk

are all close to unity. This choice is essentially based on the leakage

properties of the tapers, but does not take into account the particular

shape of the spectrum of the signal under analysis. In this subsection,

we present a comparison of the effect of the choices of NW and K
on the resolution of the spectra around a periodic component. We

show how the QMT is less dependent on these choices compared

with OMT.

In Fig. 8 and Table 3, we compare the resolution of OMT and

the Quadratic multitaper method. A useful criterion is that of the

width of the half-power points, also known as the 3-dB bandwidth.

This criterion reflects the fact that two equal-strength periodic com-

ponents separated by less than the 3-dB bandwidth will show in

the spectrum as a single peak instead of two (Harris 1978). We use

the signal in the previous section (Fig. 6) and plot the spectrum

centred on one of the periodic components on a dB scale defined

as:

dB = 10 log10 [S( f )/S( f0)] , (36)

where f 0 is the frequency of the periodic component. We vary the

time-bandwidth NW and the number of tapers K to investigate the

effect of these choices. We also present in Table 3 the result of

the 3- and 9-dB ( 1
8 th power) bandwidths for the different choices of

NW and K by applying a linear interpolation.

The QMT always outperforms the original method given the same

parameters as shown in Table 3. Note that at the 9-dB line in Fig. 8

(see Table 3 as well) both methods provide similar results, with the

method introduced here being slightly better.

An important result obtained by conducting this test is the fact

that the 3-dB bandwidth is less sensitive to the choice of NW for

the QMT (see Fig. 8a). Once we reach the 9-dB bandwidth, a larger

value of NW decreases the resolving power. On the other hand the

choice of K is directly proportional to the resolution bandwidth for

both methods (this is also evident from Fig. 2), with the Quadratic

method having narrower 3- and 9-dB bandwidths in all cases. A

final observation from Table 3 indicates that a comparatively bet-

ter resolution is achieved with the QMT even if one more taper

K is used compared to OMT (compare also red and grey lines in

Fig. 8b), leading to smoother estimates due to the increased degrees

of freedom.

6.4 Synthetic earthquake signal

In geophysical applications many signals have a red spectrum with

a large dynamic range but rarely with deterministic components

(periodic signals). The spectra are continuous, for example the

Earth’s background seismic noise (Berger et al. 2004), medium

and small sized earthquake sources (e.g. Abercrombie 1995; Prieto

et al. 2004), the crustal magnetic field (Korte et al. 2002), and many

others.

Consider the spectrum of an earthquake, which follows the Brune

(1970) model:

u̇( f ) = 2π f M0

1 + ( f/ fc)2
, (37)

C© 2007 The Authors, GJI, 171, 1269–1281

Journal compilation C© 2007 RAS



Reducing the bias of multitaper spectrum estimates 1277

0 0.1 0.2 0.3 0.4 0.5

12

8

4

0

16

0 0.1 0.2 0.3 0.4 0.5

2

0

-2

-4

4

0 20 40 60 80 100
Time (s)

A
m

p
li

tu
d

e

P
S

D

Frequency (Hz)Frequency (Hz)

Original MT Quadratic MT

-W W -W W

A

0 0.1 0.2 0.3 0.4 0.5
Frequency (Hz)

200

0

-200

-400

400

200

0

-200

-400

400

Spectrum Derivatives

S‘

S‘’

B

Figure 7. Spectrum estimation of a normally distributed random signal with two sinusoids at 0.05 and 0.3 Hz. Parameters as in Fig. 6. Plots below the time-series

contain the estimates of the spectrum using the OMT (left-hand panel) and the QMT (right-hand panel). The figures in the bounded box (right-hand panel)

show the first and second derivatives as estimated from the covariance matrix. Vertical grey lines represent the location of the line components. Note how the

derivative estimates help in pinning where the line components are located.

ORIGINAL MT

C
O

N
ST

A
N

T
 # T

A
P

E
R

S
C

O
N

ST
A

N
T

 B
A

N
D

W
ID

T
H

QUADRATIC MT

0

-3

-6

-9

0

-3

-6

-9

NW=3

NW=5

NW=3

NW=5

K=8

K=4

K=8K=4

K=5

K=5

d
B

  
[1

0
 •

 l
og

(S
(f

)/
S(

f 0
) 

]

f0 - f f0 f0+f
Frequency

f0 - f f0 f0+f
Frequency

d
B

  
[1

0
 •

 l
og

(S
(f

)/
S(

f 0
) 

]

B

A

Figure 8. Resolution test comparison between OMT and the QMT with different choices of time-bandwidth product NW and number of tapers K for a periodic

component in the spectrum in Fig. 6. In A we plot the spectral shape around a periodic component at frequency f 0 for two choices of time-bandwidth product

NW with K = 7 tapers using the two methods. Two dashed lines represent the 3-dB (half-power) and 9-dB lines. The QMT has a 3-dB bandwidth that is

narrower than the equivalent multitaper estimate and is relatively independent of the choice of NW. In B we fix the time-bandwidth product NW = 4.0 and vary

the number of tapers. For the same choice of parameters the QMT outperforms the OMT with a narrower 3-dB bandwidth. We added the Quadratic estimate

using NW = 4.0 and K = 5 on both plots for reference (grey line), resulting in a similar resolution to that of the K = 4 OMT (red line on left-hand plot)

showing that the QMT can effectively provide smoother estimates (by using more tapers) without the loss of resolution.

where u̇( f ) is the velocity amplitude source spectrum associated

with the earthquake, M 0 is the seismic moment (related to the size of

the earthquake) and f c is the corner frequency. The corner frequency

represents the predominant frequency content of the radiated seismic

energy from the earthquake rupture. The spectrum from this model

has a triangular shape if plotted in log–log axes with a slope of two

in power.

In this synthetic example, we generate a pseudo-random time-

series with 1000 samples whose spectra follow the source model

in eq. (37). Even though OMT possesses good spectral leakage
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Table 3. Comparison between multitaper methods by their 3- and 9-dB

bandwidths in Rayleigh frequency f R units with different choices of time-

bandwidth product NW and number of tapers K for a periodic component

in the spectrum in Fig. 6.

3-dB 9-dB

K NW Original Quadratic Original Quadratic

7 3.0 3.07 2.85 3.22 3.16

7 3.5 3.11 2.96 3.32 3.22

7 4.0 3.33 2.84 4.01 3.65

7 4.5 3.65 2.75 4.16 4.03

7 5.0 4.03 2.81 4.28 4.10

Constant number of tapers, varying time-bandwidth

3-dB 9-dB

K NW Original Quadratic Original Quadratic

4 4.0 2.47 1.79 3.08 2.68

5 4.0 3.01 2.05 3.25 3.08

6 4.0 3.17 2.54 3.53 3.29

7 4.0 3.33 2.84 4.01 3.65

8 4.0 4.01 3.23 4.17 4.09

Varying number of tapers, constant time-bandwidth

reduction, the spectrum may be biased due to the quadratic effects

we discussed previously. This is especially true when the corner

frequency gets extremely close to the sampling frequency, so that

the curvature around f c is described by a small number of spectral

points.

Fig. 9 shows the spectral estimates from a realization of a syn-

thetic source model with f c = 0.005 Hz using OMT and the QMT.

The triangular shape that is expected from source spectra is better

constraint using the new method.

In addition to the standard spectrum, it is also possible to obtain an

estimate of the derivative of the spectrum. The derivative estimate

of two different source models are shown in Fig. 10, taken from

an average of 100 random realizations and corresponding standard

errors. The two cases presented have corner frequencies close to the

Rayleigh frequency f R. Whenever the corner frequency is close to

the sampling frequency, its curvature is represented by few spectrum

bins.

The uncertainties of the derivative estimate are, similar to the

uncertainties of the PSD, proportional to the amplitude of the spec-

trum. Using the derivative provides additional degrees of freedom

for estimating parameters from the specrum.

6.5 Bathymetry profiles

A simple, isotropic, three-parameter model for the power spectrum

of marine topography has been proposed of the form (Goff & Jordan

1988):

S(k) = a4

[1 + (k/kc)2]μ
, (38)

where a is the amplitude of the total root-mean-square roughness

of the topography, k = |k| is the wavenumber, μ > 1 is the slope

in the roll-off in the short wavelength part of the spectrum, and

k c is the corner wavenumber. We decided to use bathymetry data,

given their more closely isotropic behaviour (stationarity in terms

of time-series) and the availability of very high quality data sets.

We used bathymetry data obtained in the Central Pacific region

(See Fig. 11), drawn from ship multibeam data (see also Marine
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Figure 11. Location of the study area, where the profiles were taken from.

Four of these profiles run across the mid-ocean ridge, and one is parallel to

the transform fault. Location of the profiles is shown as thick black lines.

Geoscience Data System, http://www.marine-geo.org Macdonald

et al. 1992). From the available data we chose five profiles (east–

west directions), four of them crossing the mid-ocean ridge, the

other along the transform fault.

The idea of this example is to show what extra information can

be extracted via the QMT. The bathymetry profiles have a sampling

rate of 500 samples per deg and a total of 1251 samples per profile.

The location of the profiles is shown in Fig. 11.

Fig. 12 shows the QMT analysis of the selected profiles. The spec-

trum is shown to have a large dynamic range (about seven orders

of magnitude) over the entire frequency range. We focus our atten-

tion at the lower frequency range, where the corner wavenumber is

expected from the model in eq. (38). The spectral shapes are very

similar for all profiles and the different k0 values are hardly distin-

guishable. An independent observation of the different behaviour

between profiles can be drawn from the derivative estimates. See

Fig. 12 and caption for discussion.

From the methods described above, we can obtain estimates of

the derivative of the spectrum, and by normalizing by the spectrum,

S′( f )

S( f )
= d

d f
{log S( f )} (39)

we have an estimate of the derivative of the log spectrum (Thomson

1994). The derivatives also provide the means for comparing the

different profiles, and clearly show the presence of two groups with

particular spectral characteristics. This suggests that the profiles

sampling the transform fault posses a lower corner frequency than

the profiles sampling the mid-ocean ridge structure.

7 C O N C L U S I O N S

Multitaper spectral analysis is the method by which the data are

multiplied by a set of orthogonal (in time and frequency) sequences,
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Figure 12. Spectral analysis of five selected profiles of bathymetric data in the Central Pacific Ocean around 9◦N (see map in Fig. 11). QMT (left-hand plots)

show very similar behaviour of the spectra. In addition to the standard spectra, the method provides an estimate of the derivative of the spectra (right-hand plot).

We show the scaled derivative (approximately the derivative of ln (PSD). Note that the spectra can be grouped according to the derivatives, with one profile

having a quite different behaviour (magenta line) showing a lower corner frequency. This derivative corresponds to profile E in Fig. 11, which samples the

transform fault; while the rest of the profiles sample the mid-ocean ridge.
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all having good spectral leakage properties. The sequences have the

property of concentrating within a band 2W the frequency content

of the spectral estimate. A simple average of the eigenspectra Ŝk

is not ideal, given the large dynamic ranges of some signals, and

an adaptive weighting function is necessary, especially in regions

where the spectrum has low amplitudes, and thus is prone to leakage

from frequencies that have much larger amplitudes.

As noted by Riedel & Sidorenko (1995) and confirmed in this

study, in regions where spectral leakage is not expected, correspond-

ing to the regions of the spectrum with large amplitudes, the local

or quadratic bias can have an important effect on the shape of the

spectrum.

We introduce the Quadratic multitaper method, which estimates

the derivatives of the spectrum, that is, the slope and curvature of

the spectrum on the interval (−W , W ) by solving a parameter esti-

mation problem relating the derivatives of the spectrum and the K
eigencomponents.

With the estimation of the second derivative (the curvature of the

spectrum), we can apply a correction to the spectrum to obtain a

new estimate that is unbiased to quadratic structure. This method

reduces to the original Thomson (1982) multitaper estimate when

the spectrum is locally flat in the interval (−W , W ).

We present a variety of examples that indicate that the Quadratic

multitaper method provides a smoother, less biased spectral esti-

mate of the data as well as independent estimates of the derivatives

of the spectrum. The information contained in the slope estimates

can readily be applied in parameter estimation, or as an additional

discriminant to compare two signals. No additional spectral leakage

was introduced in the examples shown in this study.

We also discuss the effect of chosen multitaper parameters such

as the time-bandwidth product and the number of tapers to com-

pute. Even though it is still a user-defined set of parameters, we

show that the Quadratic multitaper method leads to increased reso-

lution compared to OMT and it is less dependent on the choice of

the time-bandwidth in the inner interval. It allows the use of more

tapers without the loss of resolution power compared to the original

multitaper method.

Finally, model parameters can be found by analysing the

goodness-of-fit between a Quadratic spectral estimate plus the slope

of the spectrum of a data set with a theoretical model of the spectrum

and its derivative. Another approach would be to generate from the

theoretical model a covariance matrix Cjk (as in eq. 28) and find the

model that best fits the data. In the later case, the information is not

restricted to curvature; rather all information from the theoretical

models is used.
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A P P E N D I X A : Q UA D R AT I C

M E A N - S Q UA R E E R RO R

In eq. (33), a correction for the curvature or quadratic bias is applied

to the multitaper estimate. In Section 5, we defined the expected

value of the spectrum as an average over the inner interval (−W ,

W ):

E[Ŝ( f )] = S( f ) + 1

6
W 2 S′′( f ) (A1)

and by applying the correction in 33, we have the expected value of

the Quadratic multitaper estimate

E[S̃( f )] = S( f ) + 1

6
W 2 S′′( f ) − μ

1

6
W 2 S′′( f ), (A2)

where we assume that E[α̂2] = S′′( f ).

The bias of the Quadratic multitaper is then

E [β] = E[S̃( f )] − S( f ) = 1

6
W 2 S′′( f )(1 − μ) (A3)

and the variance, using the rules of propagation of errors (Taylor

1997) in eq. (33),

var{S̃} = var{Ŝ} + μ2 W 4

36
var{S′′} (A4)

and we can now define the mean square error (bias2 + variance):

L =
[

(1 − μ)
W 2

6
S′′

]2

+ var{Ŝ} + μ2 W 4

36
var{S′′}, (A5)

where the first term is the bias squared and the two on the right

represent the variance. It is assumed that the covariance is in-

significant. Taking the derivative with respect to μ and setting to

zero

∂L

∂μ
= (1 − μ)

[
S′′]2 + μ var{S′′} = 0 (A6)

and rearranging yields

μ = [S′′]2

([S′′]2 + var{S′′}) (A7)

which is the solution shown in 34, using α2 as estimates of S′′.
To obtain the variance of the estimates α̂0, α̂1 and α̂2 in the least

squares problem (31), we compute the covariance matrix of the

coefficients, following Lawson & Hanson (1974).
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