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OPTIMAL TREE STRUCTURES FOR GROUP KEY MANAGEMENT
WITH BATCH UPDATES∗

RONALD L. GRAHAM† , MINMING LI‡ , AND FRANCES F. YAO‡.

Abstract. We investigate the key management problem for broadcasting applications. Previous
work showed that batch rekeying can be more cost-effective than individual rekeying. Under the
assumption that every user has probability p of being replaced by a new user during a batch rekeying
period, we study the structure of the optimal key trees. Constant bounds on both the branching
degree and the subtree size at any internal node are established for the optimal tree. These limits
are then utilized to give an O(n) dynamic programming algorithm for constructing the optimal tree
for n users and any fixed value of p. In particular, we show that when p > 1 − 3−1/3

≈ 0.307, the
optimal tree is an n-star, and when p ≤ 1−3−1/3, each nonroot internal node has a branching degree
of at most 4. We also study the case when p tends to 0 and show that the optimal tree resembles a
balanced ternary tree to varying degrees depending on certain number-theoretical properties of n.
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1. Introduction. In the group broadcast problem, we have n subscribers and a
group controller (GC) that periodically broadcasts messages (e.g., a video clip) to all
the subscribers over an insecure channel. To guarantee that only the authorized users
can decode the contents of the messages, the GC will dynamically update the group
key for the whole group. Whenever some user leaves or joins, the GC will generate
a new group key and in some way notify the remaining users in the group. A recent
survey of the key management problem for groups of low-state devices can be found
in [1]. Here, we consider the key tree model [4] for the key management problem.
We describe this model briefly as follows (precise formulation is given in section 2).
Every leaf node of the key tree represents a user and stores his individual key. Every
internal node stores a key shared by all leaf descendants of the internal node. Every
user possesses all the keys along the path from the leaf node (representing the user)
to the root node. To prevent revoked users from knowing future message contents
and also to prevent new users from knowing past message contents, the GC updates a
set of keys, whenever a new user joins or a current user leaves, as follows. So long as
there is a user change among the leaf descendants of an internal node v, the GC will:
(1) replace the old key stored at v with a new key, and (2) broadcast (to all users) the
new key encrypted with the key stored at each child node of v. Note that only users
represented by leaf descendants of v can get useful information from the broadcast.
Furthermore, this procedure must be done in a bottom-up fashion (i.e., starting with
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the lowest v whose key must be updated—see section 2 for details) to guarantee that
a revoked user will not know the new keys. The cost of the above procedure counts
the number of encryptions used in step 2 (or equivalently, the number of broadcasts
made by the GC).

When users change frequently, this method for updating the group keys whenever
a user leaves or joins may be too costly. Thus, a batch rekeying strategy was proposed
by Li et al. in [2] whereby rekeying was done only periodically instead of immediately
after each member change. They designed a marking algorithm for processing the
batch updates. It was shown by simulation that, using their algorithm, among the
totally balanced key trees (where internal nodes of the tree have branching degree
2i), a degree of 4 is the best when the number of requests (leave/join) within a batch
is not large. For a large number of requests, using a star (a tree of depth 1) to
organize the users outperforms all the balanced key trees mentioned above in their
simulation. Further analysis of the batch rekeying model was done by Zhu, Chan,
and Noubir in [5]. They introduced a new model to investigate the special case when
the number of joins always equals the number of leaves during a batch period. Thus,
they assumed that during a certain period, every user has a probability p of being
replaced by a new user. They then studied the optimal tree under two assumptions:
(A) the tree is totally balanced, and (B) every node on level i has 2ki children. Under
these assumptions, characterizations of the optimal key tree were given together with
an algorithm for computing it. In particular, it was shown that every node on an
intermediate level of the tree should have a degree of 4 (that is, i = 2).

In this paper, we carry out the first theoretical investigation for the optimal tree
as modelled by [5] but without assumptions (A) and (B). In the following discussion,
an “optimal tree” always refers to a true minimum-cost key tree without any a priori
restrictions on its structure; i.e., we allow the degree of each node in the tree to
be arbitrary and independent of each other. Denote such a tree by a (p, n)-optimal
tree where n is the number of users (i.e., number of leaves of the tree), and p is the
probability that a leaf gets updated. The main results of the paper are as follows.
We identify for p a range 1 ≥ p ≥ 1 − 3−1/3

≈ 0.307, where a star (a tree of depth 1)
is the (p, n)-optimal tree for all n. We also prove, for all (p, n)-optimal trees, a
constant upper bound 4 to the branching degree of any node v other than the root,
and an upper bound (as a function of p) to the size of the subtree rooted at v. These
characterizations enable us to design a dynamic programming algorithm to compute
the optimal tree in time O(n). We further study the case when p → 0 and show
that the optimal tree is as close to a balanced ternary tree with n leaves as possible,
subject to number-theoretical properties of n (see Theorem 4 for a precise statement).

The rest of the paper is organized as follows. In section 2, we describe the batch
update model in detail. In section 3, we find the range of p when the (p, n)-optimal
tree is a star. We derive properties of the general optimal trees in section 4 and give
a linear-time dynamic programming algorithm for constructing them in section 5.
Finally, we carry out the analysis for the case p → 0 in section 6 and show that, in
most cases, a branching degree of 3 is employed by the optimal tree.

2. Preliminaries. Before giving a precise formulation of the tree optimization
problem to be considered, we briefly discuss its motivation and review the basic key
tree model for group key management. This model is referred to in the literature
either as key tree [4] or LKH (logical key hierarchy) [3].

In the key tree model, there is a GC, represented by the root, and n subscribers
(or users) represented by the n leaves of the tree. The tree structure is used by the
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GC for key management purposes. Associated with every node of the tree (whether
internal node or leaf) is an encryption key. The key associated with the root is
called the traffic encryption key (TEK), which is used for accessing encrypted service
contents by the subscribers. The key kv associated with each nonroot node v is called
a key encryption key (KEK) which is used for updating the TEK when necessary.
Each subscriber possesses all the keys along the path from the leaf representing the
subscriber to the root.

In the batch update model to be considered, only simultaneous join/leave is al-
lowed, that is, whenever there is a revoked user, a new user will be assigned to that
vacant position. This assumption is justified since, in a steady state, the number of
joins and departures would be roughly equal during a batch processing period. To
guarantee forward and backward security, a new user assigned to a position (leaf)
will be given a new key by the GC and, furthermore, all the keys associated with the
ancestors of the leaf must be updated by the GC. The updates are performed from the
lowest ancestor upward for security reasons. We will explain the updating procedure
together with the updating cost in what follows.

The GC first communicates with each new subscriber separately to assign a new
key to the corresponding leaf. After that, the GC will broadcast certain encrypted
messages to all subscribers in such a way so that each valid subscriber will know
all the new keys associated with its leaf-to-root path while the revoked subscribers
will not know any of the new keys. The GC accomplishes this task by broadcasting
the new keys, in encrypted form, from the lowest level upward recursively as follows.
Let v be an internal node at the lowest level whose key needs to be (but has not
yet been) updated. For each child u of v, the GC broadcasts a message containing
Eknew

u
(knewv ), which means the encryption of knewv with the key knewu . Thus the GC

sends out dv broadcast messages for updating kv if v has dv children. Updating this
way ensures that the revoked subscribers will not know any information about the
new keys while current subscribers can use one of their KEKs to decrypt the useful
Eknew

u
(knewv ) sequentially until they get the new TEK.

We adopt the probabilistic model introduced in [5] that each of the n positions
has the same probability p to independently experience subscriber change during a
batch rekeying period. Under this model, an internal node v with Nv leaf descendants
will have a probability of 1 − qNv for which its associated key kv requires updating,
where q = 1 − p. The updating incurs dv · (1 − qNv ) expected broadcast messages
by the procedure described above. We thus define the expected updating cost C(T )
of a key tree T by C(T ) =

∑
v dv · (1 − qNv ), where the sum is taken over all the

internal nodes v of T . It is more convenient to remove the factor dv from the formula
by associating the cost 1 − qNv with each of v’s children. This way we express C(T )
as a node weight summation: for each nonroot tree node u, its node weight is defined
to be 1 − qNv , where v is u’s parent. The optimization problem we are interested in
can now be formulated as follows.

Optimal key tree for batch updates. We are given two parameters 0 ≤ p ≤ 1
and n > 0. Let q = 1−p. For a rooted tree T with n leaves and node set V (including
internal nodes and leaves), define a weight function c(u) on V as follows. Let c(r) = 0
for root r. For every nonroot node u, let c(u) = 1− qNv , where v is u’s parent. Define
the cost of T as C(T ) =

∑
u∈V c(u). Find a T for which C(T ) is minimized. We say

that such a tree is (p, n)-optimal and denote its cost by OPT (p, n).

We will first study the case when p is any fixed constant and later the case for
p → 0. Notice that C(T ) ≥

∑
v dv(1 − q) ≥ pn implies OPT (p, n) ≥ pn. On
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the other hand, we have OPT (p, n) ≤ (1 − qn)n by considering a tree where all
leaves are attached directly to the root (i.e., a star). Thus we know asymptotically
OPT (p, n) = Ω(n) when p is a constant. However, it is still interesting to identify the
exact optimal tree which can achieve significantly better cost than a star, especially
when p is a small constant.

3. The star optimal bound. We start with some basic definitions about rooted
trees. We say a tree is of depth k if the longest leaf-root path consists of k edges. A
tree of depth 2 is also referred to as a two-level tree. A tree of depth 1 is called a
k-star if it has k leaves. A tree edge (u, v), where u is a child of v, is said to be at
depth k if the path from u to the root consists of k edges. The branching degree of a
node v is the number of children of v; the subtree size of v, denoted by Nv, refers to
the number of leaf descendants of v.

Lemma 1. If the n-star can achieve OPT (p, n), then the (n − 1)-star can also
achieve OPT (p, n− 1).

Proof. We prove the lemma by contradiction. Suppose the (n − 1)-star cannot
achieve OPT (p, n − 1). Let the degree of the root in a (p, n − 1)-optimal tree be
k, where k < n − 1. Write the optimal cost as OPT (p, n − 1) = k(1 − qn−1) + C,
where C represents the contribution to the cost by edges at depth ≥ 2. Thus we have
(n− 1)(1− qn−1) > k(1− qn−1) +C, which implies n(1− qn) > (k + 1)(1− qn) +C.
This means we can reduce the cost of OPT (p, n) by adopting the same structure of
the (p, n− 1)-optimal tree but with root degree k + 1, a contradiction.

Lemma 2. When 0 ≤ q ≤ 3−1/3, the n-star is strictly better than any two-level
tree.

Proof. A two-level tree can be obtained from a star by successively grouping
certain nodes together to form a subtree of the root. To prove the lemma, we need
only show that the above operation always increases the cost of the tree; i.e., for any
grouping size k, where 1 < k < n, we will show that 1− qn < 1

k (1− qn)+1− qk. This
is trivially true when k = 1 or q = 0, so we assume that k ≥ 2 and q > 0.

With fixed q > 0, define f(k) for integer k by f(k) = k logk(1/q). We observe
that for any fixed q, where 0 < q < 1, the value of f(k) is minimized when k = 3.
Thus, when 0 < q ≤ 3−1/3, we have k logk(1/q) ≥ 1 which implies kqk ≤ 1. Hence,
for 0 < q ≤ 3−1/3, we have

1 − qn −
(

1

k
(1 − qn) + 1 − qk

)
=

1

k
(kqk − 1 − (k − 1)qn)

<
1

k
(kqk − 1)

≤ 0.

Lemma 3. Let p and n be given. If the n-star is strictly better than any two-level
tree, then the n-star is the (p, n)-optimal tree.

Proof. If the n-star is not a (p, n)-optimal tree, then we can transform the (p, n)-
optimal tree from the bottom up, every time combining two levels into a star. By
Lemma 1, the m-star is strictly better than any two-level tree for 1 < m < n and
p. Since one level is always better than two levels, we can eventually transform the
optimal tree into the n-star without increasing the cost.

Theorem 1. When 1 ≥ p ≥ 1 − 3−1/3, the n-star is the (p, n)-optimal tree for
any n. For 2 ≤ n ≤ 4, the n-star is the (p, n)-optimal tree for any p > 0.
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Fig. 1. Tree transformation 1.

Proof. The first part of the theorem follows from Lemmas 2 and 3. The cases of
2 ≤ n ≤ 4 can be verified easily.

4. Properties of an optimal tree. By Theorem 1, the structure of a (p, n)-
optimal tree is uniquely determined for 0 ≤ q ≤ 3−1/3

≈ 0.693 (or 1 ≥ p ≥ 1−3−1/3
≈

0.307). We now derive some properties of the optimal trees which will be used for
constructing a (p, n)-optimal tree in the remaining range 1 ≥ q > 3−1/3. Note that
Lemmas 4 and 5 as well as Theorem 2 are true for all (p, n)-optimal trees where
0 ≤ p ≤ 1 and n > 0.

For a tree T , we associate a value tv = qNv with every node v (thus tv = q if v is
a leaf). The subtree rooted at u is denoted by Tu. We say Tu is a subtree of v if u is
a child of v.

Lemma 4. For a nonroot internal node v with a branching degree of k in a
(p, n)-optimal tree, every child u of v satisfies tu ≥ k−1

k .

Proof. Assume tu < k−1
k , we can then move u up to become a sibling of v, as

shown in Figure 1. In this way, we increase the total cost of the tree by

ΔC = (1 − qNw) + (k − 1)(1 − qNv−Nu) − k(1 − qNv )

< 1 + (k − 1)(1 − qNv−Nu) − k(1 − qNv−Nutu)

= qNv−Nu(ktu − (k − 1))

< 0,

where w is the parent of v and Nv represents the value before the transformation.
This contradicts the cost optimality of the original tree.

Lemma 5. Every nonroot internal node in a (p, n)-optimal tree has a branching
degree of ≤ 5.

Proof. By Lemma 4, if a nonroot internal node v in the optimal tree has a
branching degree of k ≥ 6, then for any child u of v we have tu ≥ k−1

k . We can group
together two children of v, with the largest and the second largest tu values, to form
a single subtree of v as shown in Figure 2. By this transformation, we increase the
total cost by

ΔC = 2(1 − tu1tu2) − (1 − tv)

= tv − 2tu1tu2 + 1.

Note that tv is the product of tu over all children u of v. Thus, we have tv <
(tu1tu2)

k/2, which implies ΔC < zk − 2z2 + 1, where k−1
k ≤ z ≤ 1.

It is easy to verify that z6 − 2z2 + 1 < 0 for 5/6 ≤ z ≤ 1. Because the value
of zk − 2z2 + 1 decreases with k for fixed z, we see that ΔC < 0 for any k ≥ 6 and
k−1
k ≤ z ≤ 1, which proves the lemma.
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Fig. 2. Tree transformation 2.

Fig. 3. Tree transformation 3.

Theorem 2. In a (p, n)-optimal tree,
(1) any internal node other than the root must have a branching degree of ≤ 4;
(2) the size of any subtree Tv, where v is a child of the root, is upper bounded by

max{4(log q−1)−1, 1}.
Proof. By using Lemma 5, we can complete the proof of (1) by showing that the

optimal tree does not have any internal node with a branching degree of 5.
Assume there is a nonroot internal node v with five children u1, . . . , u5. For

simplicity, we write tui
as ti and assume t1 ≥ · · · ≥ t5. First, observe that z5−2z2+1 <

0 when z ≥ 0.86. According to Lemma 4 and the proof of Lemma 5, it must be the case
that both conditions t1t2 < (0.86)2 = 0.7396 and 0.8 ≤ ti < 0.86 for 2 ≤ i ≤ 5 hold.
We now prove that under these conditions, another tree transformation will reduce
the total cost which contradicts the tree’s optimality. We transform the optimal tree
into tree T ′ as shown in Figure 3. By doing so, we increase the total cost by

ΔC = 3(1 − t3t4t5) + 2(1 − t1t2) + (1 − tw) − 5(1 − tv)

< −2t1t2 − 3t3t4t5 + 5tv + 1

= (5t3t4t5 − 2)t1t2 − (3t3t4t5 − 1),

where tv represents the value before transformation. By using the fact that ti ≥ 0.8
for 1 ≤ i ≤ 5 and t1t2 < 0.7396, it can be verified that ΔC < 0. This completes the
proof of property (1).

For property (2), as we have shown in Lemma 4, any child u of v satisfies q(u) =
qNu > 1/2. Thus, Nu < (log q−1)−1. Since v has a branching degree of at most 4 by
property (1) and also Nv ≥ 1, we have Nv ≤ max{4(log q−1)−1, 1}. This completes
the proof of the theorem.

5. Algorithm for constructing the optimal tree. We will construct a (p, n)-
optimal tree by assembling a forest of suitable subtrees. We first generalize the cost
function from trees to forests as follows.
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Definition 1. For L ≤ n, we define a (p, n, L)-forest to be a forest of key trees
with L leaves in total. The cost of the tree edges in the forest are defined as before,
while the cost of the forest is the sum of individual tree costs plus k · (1 − qn), where
k is the number of trees in the forest. We refer to the (p, n, L)-forest with minimum
cost as the optimal (p, n, L)-forest and denote that minimum cost by F (p, n, L).

Theorem 3. For any fixed p, Algorithm 1 computes the (p, n)-optimal tree cost
in O(n) time.

Proof. Based on Theorem 2, in a (p, n)-optimal tree, any subtree Tv, where v
is a child of the root, satisfies (1) its size is at most max{4(log q−1)−1, 1} and (2)
the branching degree of any internal node in Tv is at most 4. For fixed q, we view
4(log q−1)−1 as a constant and denote it by K. For each i, where 2 ≤ i ≤ K, we
consider the minimum cost R(i) of any tree Tv with size i and subject to the degree
restriction stated in (2). The value of R(i) can be computed in constant time as
follows. First, define (k1, k2, k3, k4) to be an i-quadruple if k1 + k2 + k3 + k4 = i,
0 ≤ k1, k2, k3, k4 ≤ i, and k∗ ≥ 2, where k∗ is the number of positive elements in
(k1, k2, k3, k4). Then R(i) is the minimum value of R(k1) +R(k2) +R(k3) +R(k4) +
(1 − qi) · k∗ over all i-quadruples (k1, k2, k3, k4), and it can be computed in O(K3)
time using dynamic programming. Now, we can obtain the true (p, n)-optimal tree
also by dynamic programming, by computing optimal (p, n, L)-forests as subproblems
of size L for 1 ≤ L ≤ n as given in Algorithm 1. Thus, the total running time of
the algorithm is O(n · K + K4) which is O(n) for fixed p. Algorithm 1 focuses on
computing the optimal tree cost; the tree structure can be obtained by keeping track
of the optimal branching at every dynamic programming iteration.

Algorithm 1 Computing optimal key tree

Input: n and p (0 ≤ p ≤ 1)
Output: Optimal tree cost OPT (n, p)

q = 1 − p
K = min{4(log q−1)−1, n}
if q ≤ 3−1/3 or 2 ≤ n ≤ 4 then
OPT (p, n) ← n · (1 − qn)
Return OPT (p, n)

end if
R(1) = 0
for i = 2 to 4 do
R(i) = i ∗ (1 − qi)

end for
i = 5
while i < K do

Compute R(i), cost of the restricted (p, i)-optimal tree.
i = i + 1

end while
F (p, n, 0) ← 0
for L = 1 to n do
F (p, n, L) ← min(R(j) + 1 − qn + F (p, n, L− j)) over all j, 1 ≤ j ≤ min{K,L}.

end for
OPT (n, p) ← F (p, n, n)
Return OPT (n, p)
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Fig. 4. Optimal small trees.

6. Optimal trees as p → 0. Algorithm 1 has running time O(n · K + K4),
where K is upper bounded by 4(log q−1)−1 (and also by n). We can regard O(K4) as
a constant term for a fixed value of p, but its values get large as p → 0. Therefore, in
this final section we will study the structure of (p, n)-optimal trees as p → 0. It turns
out the structure of (p, n)-optimal trees depends rather critically on certain number-
theoretic properties of n. (Some of the detailed computations will be suppressed.)
Suppose T = T (n) denotes a rooted tree with n leaves and edge set E.

For convenience, we let L(e) = Nv if e = (u, v) and u is a child of v. We express
the cost of T as

PT (p) = C(T ) =
∑
e∈E

(1 − (1 − p)L(e)).

Of course, PT (0) = 0 and PT (1) = |E|. The optimal trees as p → 0 are those with
PT (p) having the smallest slope at p = 0. Any such optimal tree will remain optimal
for an interval [0, c] for some (small) c > 0. The slope of PT (p) at p = 0 is denoted
by λT and can be expressed as

λT =
∑
e∈E

L(e).

We let λ∗(n) denote the smallest possible value of λT over all trees T = T (n) having
n leaves. Our first task will be to determine the exact value of λ∗(n) for all values of
n.

To begin with, it is easy to check by hand that the trees shown in Figure 4 are
optimal for the values 1 ≤ n ≤ 9. This implies the corresponding values of λ∗(n)
shown below:

n 1 2 3 4 5 6 7 8 9
λ∗(n) 0 4 9 16 23 30 38 44 54

.

For integers t ≥ 0, define the sets It = {3t, 3t + 1, . . . , 2 · 3t} and Jt = {2 · 3t, 2 ·
3t + 1, . . . , 3t+1}. Notice that λ∗(n) is linear on I0, I1, J0, and J1. We will show that
this holds in general for all It and Jt.

First, let us extend λ∗(n) to a real function λ∗(x) for all x ≥ 1 by linear interpo-
lation (see Figure 5).

The basic recurrence that λ∗(n) satisfies is

(6.1) λ∗(n) = min
2≤r≤n

{
rn +

∑
λ∗(ik)

}
,

where the sum is taken over all ik ≥ 1 such that i1 + · · · + ir = n and r denotes the
degree of the root ρ.
What we will prove is in the following lemma.
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Fig. 5. Graph of λ∗(n).

Lemma 6.

(6.2) λ∗(x) =

{
(3t + 4)x− 4 · 3t if x ∈ It,
(3t + 5)x− 6 · 3t if x ∈ Jt.

Proof. It is easy to check that this holds for t = 0 and 1. Assume that this holds
for some value t ≥ 1. We also assume that λ∗(x) is linear on Is and Js, s ≤ t, and
strictly convex between intervals, (i.e., the slopes are strictly increasing on successive
intervals). Thus, for each fixed value of r, the sum

∑
λ∗(ik) is minimized by taking

all the ik to be as equal as possible. In fact, we can take all ik = n
r , by the assumption

of linearity of λ∗(x) on the Is and Js, s ≤ t. (Here we need the elementary fact that
if n

r ∈ [a, a + 1] for some integer a, then n can be expressed as the sum of u a’s and
r − u a + 1’s, for some u with 0 ≤ u ≤ r.) Thus, we can write

λ∗(n) = min
2≤r≤n

{
rn + rλ∗

(n
r

)}
.

Our next job is to eliminate values of r as candidates for achieving the minimum. For
example, let us show that

5n + 5λ∗
(n

5

)
> 4n + 4λ∗

(n
4

)
.

Take n ∈ It and consider n
4 and n

5 . Since their ratio is 5
4 , then there are only four

possibilities (for some s < t):
(i) n

5 ,
n
4 ∈ Īs;

(ii) n
5 ,

n
4 ∈ J̄s;

(iii) n
5 ∈ Īs,

n
4 ∈ J̄s;

(iv) n
5 ∈ J̄s,

n
4 ∈ Īs+1,

where we use Īs and J̄s to denote the intervals [3s, 2 ·3s] and [2 ·3s, 3s+1], respectively.
In case (i), we have

5λ∗
(n

5

)
= 5(3s + 4)

n

5
− 5 · 4 · 3s = (3s + 4)n− 20 · 3s
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and

4λ∗
(n

4

)
= 4(3s + 4)

n

4
− 4 · 4 · 3s = (3s + 4)n− 16 · 3s.

Thus,

5n + 5λ∗
(n

5

)
− 4n− 4λ∗

(n
4

)
= n− 4 · 3s ≥ (5 − 4)3s = 3s > 0

since n ≥ 5 · 3s (because n
5 ∈ Īs).

Similarly, for case (ii) we have

5λ∗
(n

5

)
= (3s + 5)n− 30 · 3s

and

4λ∗
(n

4

)
= (3s + 5)n− 24 · 3s.

Thus,

5n + 5λ∗
(n

5

)
− 4n− 4λ∗

(n
4

)
= n− 6 · 3s ≥ (10 − 6)3s = 4 · 3s > 0

since n ≥ 10 · 3s (because n
5 ∈ J̄s).

For case (iii), we have

5λ∗
(n

5

)
= (3s + 4)n− 20 · 3s

and

4λ∗
(n

4

)
= (3s + 5)n− 24 · 3s.

Thus,

5n + 5λ∗
(n

5

)
− 4n− 4λ∗

(n
4

)
= 4 · 3s > 0.

Finally, for case (iv) we have

5λ∗
(n

5

)
= (3s + 5)n− 30 · 3s

and

4λ∗
(n

4

)
= (3s + 7)n− 48 · 3s.

Thus,

5n + 5λ∗
(n

5

)
− 4n− 4λ∗

(n
4

)
= −n + 18 · 3s ≥ 3 · 3s > 0

since n
5 ∈ J̄s =⇒ n ≤ 15 · 3s.

Hence, in all cases it is better to use r = 4 than r = 5; i.e., the value of r which
determines λ∗(n) for n ∈ It cannot be 5. A similar argument rules out any value
of r ≥ 5 (we omit the calculations which are very similar to the case we have just
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done). Also, it is easy to see that the same arguments apply if we initially assumed
that n ∈ Jt+1, where now we can assume that the induction hypothesis holds for all
s ≤ t, and for It+1, as well.

Thus, we are left with the possibilities that r = 2, 3, or 4. Here, things become
a little more interesting! When we apply the preceding argument to compare 3n +
λ∗(n/3) and 4n+λ∗(n/4), we find that the difference is positive in cases (ii) and (iii),
but can be 0 in cases (i) and (iv) exactly when n = 4 · 3t−1.

For r = 2, the same arguments show that there is a whole interval of values for n
where the difference 2n+2λ∗(n2 )−3n−3λ∗(n3 ) can be 0, namely when 4·3t ≤ n ≤ 6·3t
(it can never be negative).

With this information, we can now compute the values of λ∗(n) for n ∈ It+1∪Jt+1.
When we do this and extend to the real function λ∗(x), we find that (6.2) holds for
t+1. With this, the induction step is completed, and we have shown that (6.2) holds
for all t.

In particular, we have

(6.3) λ∗(3t) = t · 3t+1, λ∗(2 · 3t) = (6t + 4) · 3t, λ∗(4 · 3t) = (12t + 16) · 3t.

Let T ∗(n) denote an optimal tree with n leaves as p → 0. Although we now know
the slope λ∗(n) of PT∗(n), we don’t yet know the degree of the root of PT∗(n) in the
case that n is in the “ambiguous” range 4 · 3t ≤ n ≤ 6 · 3t. This will depend on the
second derivative of PT (p) evaluated at p = 0. This is just

−
∑
e∈E

(
L(e)

2

)
.

Since this is negative, we want to make the sum
∑

e∈E

(
L(e)

2

)
as large as possible in

order to find the optimal tree T ∗(n). Let μ∗(n) denote the largest possible value of
this sum over all trees T (n) for which λT (n) = λ∗(n). We know, in general, that an
optimal tree T ∗(n) with root degree r has on each of its root edges an optimal subtree
T ∗(ik), where

r∑
k=1

ik = n

and all the ik must lie in the same interval It (or Jt), since otherwise the optimal
value λ∗(n) would not be achieved.

First, observe that we know the optimal tree T ∗(3t) since it must have a root
degree of 3, so by induction we can deduce that μ∗(3t) = 1

4 (32t+2 − (2t + 3)3t+1).
Now, for T ∗(2 · 3t), either the root has degree 2, in which case the two subtrees
must both be T ∗(3t)’s, or the root has degree 3, in which case the three subtrees
are all T ∗(2 · 3t−1)’s (since in both cases, the subtree sizes are endpoints of an I
or J interval). By induction, we can conclude that degree 3 wins here and that
μ∗(2 · 3t) = 32t+2 − (3t + 7)3t. Finally, for T ∗(4 · 3t) (where there are three possible
choices for the root degree), we find that degree 4 wins in this case, and we have
μ∗(4 · 3t) = 41 · 32t − (6t + 17)3t. These are the only values of n for which a root
degree of 4 is optimal.

The remaining problem is to eliminate the possibility of a root degree of 2 for the
values 4 · 3t < n ≤ 6 · 3t. It should be noted that to obtain the largest possible μ∗(n),
the subtree sizes will tend to be as far apart as possible (consistent with staying in
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Fig. 6. An optimal T ∗(39).

the same I or J interval), again because of the tendency for μ∗(n) to be convex. It
isn’t convex everywhere (or even monotone), however, because of the unusually large
values at 4 · 3t. After all, since

μ∗(n) = max
2≤r≤4

(
r

(
n

2

)
+

∑
i1...ir

μ∗(ik)

)
,

then when r = 4, we get an especially large contribution from the term r
(
n
2

)
.

First, let us deal with n ∈ Jt, i.e., 2 · 3t ≤ n ≤ 3t+1. In this case, T ∗(n) has a
root degree of 3 and so all three (optimal) subtrees have sizes ik ∈ Jt−1. We put the
proof of the following lemma in the appendix.

Lemma 7. Let n = 2 · 3t + r with 0 ≤ r ≤ 3t. max{μ∗(i1) + μ∗(i2) + μ∗(i3) :
i1 + i2 + i3 = n, all ik ∈ Jt−1} occurs when the ik are “maximally spread,” i.e., when
at least two of the ik are equal to the endpoint values 2 · 3t−1 and 3t of Jt−1.

We derive in the following lemma that the optimal tree as p → 0 cannot have a
root degree of 2. Its proof is also put in the appendix.

Lemma 8. T ∗(n) cannot have a root degree of 2 for any n > 2.

We summarize what we have shown in the following result.

Theorem 4. As p → 0, the (p, n)-optimal tree T ∗(n) always has a root degree of
3 except for n of the form 4 ·3t, in which case T ∗(4 ·3t) has a root degree of 4, and for
n = 2, when T ∗(2) has a root degree of 2. When 2 · 3t ≤ n ≤ 3t+1, then T ∗(n) is as
close to a balanced ternary tree with n leaves as possible. Namely, all subtrees (as well
as T ∗(n) itself) have root degrees of 3, except for the very bottom level, where subtrees
of size 2 can occur. However, when 3t ≤ n < 2 · 3t, T ∗(n) can deviate substantially
from a balanced ternary tree.

As an example for the situation 3t ≤ n ≤ 2·3t, note that T ∗(39) has three subtrees
of sizes 9, 12, and 18 (see Figure 6). In general, it seems to be difficult to predict the
sizes of the subtrees in the optimal tree T ∗(n) for certain values of n. For example, for
n = 1252, the sizes are 280, 486, and 486, while for n = 1253, the sizes are 324, 443,
and 486. This is an example of the effect of a number of the form 324 = 4 · 34 having
an especially large value of μ∗, thereby causing a preferential bias towards using it.
In this case, μ∗(324) = 265680 while μ∗(323) = 240997, μ∗(325) = 244014. In fact,
we already see this happening at n = 11, where the optimal tree T ∗(11) has subtree
sizes 3, 4, and 4, which are not maximally spread in I1.
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Appendix.

Proof of Lemma 7. This is true by inspection for t = 0, 1. Suppose it holds for
some value of t ≥ 1 and let n = 2 · 3t+1 + r ∈ Jt+1. Now, by (1),

(A.1) μ∗(n) = 3

(
n

2

)
+ max{μ∗(i1) + μ∗(i2) + μ∗(i3) : i1 + i2 + i3 = n, all ik ∈ Jt}.

By induction, the maximum is achieved when the ik are maximally spread. In par-
ticular, this means that, assuming i1 ≤ i2 ≤ i3:

(a) if 0 ≤ r ≤ 3t, then i1 = 2 · 3t, i2 = 2 · 3t, i3 = 2 · 3t + r′;
(b) if 3t ≤ r ≤ 2 · 3t, then i1 = 2 · 3t, i2 = 2 · 3t + r′, i3 = 3t+1;
(c) if 2 · 3t ≤ r ≤ 3t+1, then i1 = 2 · 3t + r′, i2 = 3t+1, i3 = 3t+1.

Let Δ(m) denote the difference μ∗(m+1)−μ∗(m). Then this implies, for 0 ≤ r < 3t+1,
the fundamental equation

(A.2) Δ(2 · 3t+1 + r) = Δ(2 · 3t + r′) + 3n,

where 0 ≤ r′ < 3t and r ≡ r′ (mod 3t). The term 3n comes from the difference
3
(
n+1

2

)
− 3

(
n
2

)
= 3n. From this it follows (by induction) that a sum of k consecutive

values

Δ(2 · 3t+1 + u) + Δ(2 · 3t+1 + (u + 1)) + · · · + Δ(2 · 3t+1 + (u + k − 1))

for 0 ≤ u ≤ 3t+1 − k + 1 is minimized by taking u = 0 since the sum is a monotone
function of u. From this, the claim now follows, since any choice of the ik which
isn’t maximally spread can be replaced by a maximally spread choice which can only
increase the value of μ∗(i1) + μ∗(i2) + μ∗(i3) (the difference in the two values being
equal to the difference of two interval sums of the Δ’s).

The next step is to obtain an explicit expression for the value Δ(n) for n = 2·3t+r
with 0 ≤ r < 3t. We do this by iterating (5). The result is

(A.3) Δ(2 · 3t + r) = 3t+2 − 2 + 3Rt(r),

where Rt(r) is defined as follows. Write r in its base 3 expansion as r = rt−1rt−2rt−3 . . .
r2r1r0, where each rk ∈ {0, 1, 2}. Then Rt(r) is the sum of the t numbers correspond-
ing to the t rows (read in base 3) of the array

rt−1 rt−2 rt−3 . . . r2 r1 r0
0 rt−2 rt−3 . . . r2 r1 r0
0 0 rt−3 . . . r2 r1 r0
0 0 0 . . . r2 r1 r0

...
0 0 0 . . . r2 r1 r0
0 0 0 . . . 0 r1 r0
0 0 0 . . . 0 0 r0.

Thus, Rt(0) = 0, Rt(1) = 3t, Rt(14) = 14t− 21, etc.
From this we can write down an “explicit” expression for μ∗(n) for n = 2 ·3t+r ∈

Jt, which is

μ∗(2 · 3t + r) = μ∗(2 · 3t) + Δ(2 · 3t) + Δ(2 · 3t + 1) + · · · + Δ(2 · 3t + r − 1)

= 32t+2 − (3t + 7)3t + r · (3t+2 − 2) + 3

r−1∑
k=0

Rt(k).(A.4)
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Proof of Lemma 8. As we have seen, this is only possible when 4 · 3t ≤ n ≤ 6 · 3t.
For such n, 2 · 3t ≤ n

2 ≤ 3t+1. This implies that if T ∗(n) has a root degree of 2, then
the two subtrees T ∗(i1) and T ∗(i2) with i1 + i2 = n must have i1 and i2 both in Jt
and be maximally spread (by the same inductive argument as before), which in this
case means that at least one of the ik must be one of the endpoint values 2 ·3t or 3t+1

of Jt. More precisely, if T (2)(n) denotes the best tree on n leaves with a root degree of
2 (and, of course, achieving the optimal value of λ∗(n)), and we assume that i1 ≤ i2,
then

(a) if 4 · 3t ≤ n = 4 · 3t + r1 ≤ 5 · 3t, then i1 = 2 · 3t, i2 = 2 · 3t + r1;
(b) if 5 · 3t ≤ n = 5 · 3t + r2 ≤ 6 · 3t, then i1 = 2 · 3t + r2, i2 = 3t+1.

In either case, we have

(A.5) μT (2)(n) = 2

(
n

2

)
+ μ∗(i1) + μ∗(i2),

where we know exactly the values of μ∗(i1) and μ∗(i2), since both arguments are in
Jt. What we would like to do is compare this with the best tree T ′(n) with a root
degree of 3 and show that μT ′(n) > μT (2)(n). Unfortunately, we don’t know the best
tree T ′(n) with a root degree of 3. However, we know a pretty good one. This is the
tree for which all of its subtrees also have root degrees of 3, recursively, until down to
the very last level, in which any subtree with only 2 leaves must have a root degree
of 2. For this family of trees T ′(n), we let μ′(n) denote the corresponding value of
the second derivative (with its sign changed), and we let Δ′(m) = μ′(m+ 1)−μ′(m).
Thus, Δ(n) and Δ′(n) agree for n = 2, 3, 4, 5, 7, 8, 9 while we have Δ(6) = 24 and
Δ′(6) = 20.

More important is that Δ′(n) satisfies the same recurrence (5) that Δ(n) does,
namely,

(A.6) Δ′(3t+1 + r) = Δ′(3t + r′) + 3n,

where n = 3t+1 +r, 0 ≤ r < 3t+1, 0 ≤ r′ < 3t, and r ≡ r′ (mod 3t). This follows from
the same arguments which established (5). Iterating this, we obtain the analogue
of (6):

(A.7) Δ′(3t + r) =
3t+2 − 5

2
+ Rt(r).

Finally, summing this over r and using the fact that μ(3t) = 1
4 (32t+2 − (6t+9)3t), we

obtain the following analogue of (7):

(A.8) μ′(3t + r) =
1

4

(
32t+2 − (6t + 9)3t

)
+

r(3t+2 − 5)

2
+ 3

r−1∑
k=0

Rt(k).

We are now in a position to complete the argument. Let n = 4 · 3t + r. There are
two cases.

Case 1. 0 ≤ r ≤ 3t. In this case

μ′(n) = μ∗(3t) + μ∗(2 · 3t) + μ′(3t + r) + 3

(
n

2

)

and

μT (2)(n) = μ∗(2 · 3t) + μ∗(2 · 3t + r) + 2

(
n

2

)
.
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Hence,

μ′(n) > μT (2)(n)

if and only if

μ∗(3t) + μ∗(2 · 3t) + μ′(3t + r) + 3

(
n

2

)
> μ∗(2 · 3t) + μ∗(2 · 3t + r) + 2

(
n

2

)

if and only if

32t+2 − (6t + 9)3t

2
+

r(3t+2 − 5)

2
+ 3

r−1∑
k=0

Rt(k) +

(
n

2

)

> 32t+2 − (3t + 7)3t + r(3t+2 − 2) + 3

r−1∑
k=0

Rt(k)

if and only if

2

(
4 · 3t + r

2

)
> 32t+2 + r3t+2 − 5 · 3t + r,

which is easily verified. This finishes Case 1.
Case 2. 3t ≤ r ≤ 2 · 3t. Let s = r − 3t. In this case

μ′(n) = μ′(3t + s) + μ∗(2 · 3t) + μ∗(2 · 3t) + 3

(
n

2

)

and

μT (2)(n) = μ∗(2 · 3t + s) + μ∗(3t+1) + 2

(
n

2

)
.

Hence,

μ′(n) > μT (2)(n)

if and only if

μ′(3t + s) + μ∗(2 · 3t) + μ∗(2 · 3t) +

(
n

2

)
> μ∗(2 · 3t + s) + μ∗(3t+1)

if and only if

32t+2 − (6t + 9)3t

4
+

s(3t+2 − 5)

2
+ 3

r−1∑
k=0

Rt(k) + 2(32t+2 − (3t + 7)3t) +

(
5 · 3t + s

2

)

> 32t+2 − (3t + 7)3t + s(3t+2 − 2) + 3

r−1∑
k=0

Rt(k) +
32t+4 − (6t + 15)3t+1

4

if and only if

2

(
5 · 3t + s

2

)
> 18 · 32t − 4 · 3t + s(3t+2 + 1).
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As before, it is easy to check that this inequality holds, and Case 2 is completed.
Thus, we have shown that in the ambiguous range 4 · 3t ≤ n < 6 · 3t, there is

always a (ternary) tree T ′(n) which dominates the best tree T (2)(n) with a degree 2
root (where all trees under consideration must achieve the optimal value of λ∗(n)).
Consequently, the optimal tree T ∗(n) also dominates this T (2)(n) as well.
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