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1. Introduction

In this chapter we discuss several interrelated graph labeling problems.
These labeling problems have been studied in the past in various different
formulations. Typically, the problems can be described as follows: for a
given graph, find the optimal way of labeling the vertices with distinct
integers, k-tuples of integers, or group elements subject to certain objectives.
These problems often come up in connection with applications in network
addressing, circuit layout or code design.

For example, suppose that we consider labeling the vertices of a graph
G by distinct integers. (This can be viewed as arranging the vertices into a
line or alinear array.) If we want to find the labeling which minimizes the
maximum ‘stretch’ 5(G) over all the edges, we have the so-called band-
width problem. If we want to find the labeling which minimizes the total
‘length’ sum s(G) of the edges, we have the minimum-sum problem. If
we want to find the labeling which minimizes the maximum ‘overlap’
c(G), we have the cuwidth problem. (In Fig. 1 we illustrate a tree
together with several optimal labelings.) These problems will be rigorously
defined in Section 2.

‘These problems can be considered in the following general framework:
label the vertices of a graph G by distinct vertices of a ‘host graph’ H, and
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embed the edges of G into paths of H, subject to any one of the following
conditions:

(i) the maximum distance in H between adjacent vertices in G 1is
minimized;
(if) the total sum of distances in H between adjacent vertices in G is
mininmized;
(iii) the ‘frequency’ of edges in H appearing in paths joining adjacent
vertices in G is minimized.

For the case of labeling vertices by distinct integers, the host graph is
taken to be a path. In the case of labeling vertices by pairs of integers, the
host graph is just the grid graph in the plane. When vertices are labeled
by binary k-tuples, the labeling provides an embedding into a k-cube as
the host graph. Of course, most of the known results in the literature take
a path as the host graph.

We shall survey results on various optimal graph labeling problems,
and study the properties of these optimal labelings, the relationship with
other graph-theoretic parameters, and the algorithmic complexity in
determining these optimal labelings for graphs or some special classes of
graphs.
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2. Definitions and Examples

Let G be a graph with vertex-set V(G) and edge-set E(G). A labeling
of G in the host graph H is a one-to-one mapping x from V(G) to V(H).
Such a labeling can also be viewed as a placement of the vertices of G
into vertices of the fixed host graph H. The following list gives some
labelings of interest:

(i) The bandwidth b, (G) of a labeling s is defined by
b (G) = max{dy(x(v), 1(w)): vw € E(G)},
where dy (v, w') denotes the distance between v' and w' in H.

The bandwidth 5(G) of G is the minimum of b,(G) over all labelings a;
that is,

b(G) = min{b,(G): x is a labeling of G in H}.

(ii} A graph G’ is said to be a refinement of G if G’ is obtained from G
by a finite number of edge-subdivisions. (For example, in Fig. 2 T" is a
refinement of T.) The topological bandwidth b*(G) of G is defined by

b*(G) = min{b(G’): G' is a refinement of G}.

RE

b*(T) =2 b*(T') =3

Fig. 2

(i) The min-sum s(G) of a labeling 7 is

5(G) = min { Y, du(a(v), 7(w)): mis a labeling of G in H }
vw € E{(7)

(iv) Suppose we assign a set P, of paths p in H joining 7(v) to w(w)
for all vw € E(G)—that is, P, = {p(z(v), ni{w)): vww € E(G)}. We
define the cutwidth ¢, (G) of a labeling x to be the maximum number of
appearances of an edge e of H in the paths in P,. In other words,

&x(G) = max [(vw € E(G): e € E(p(a(v), 7(w))), p(a(¥), 7(w)) € P} .

The cutwidth ¢(G) of G is then defined to be
¢(G) = min{c,(G): n is a:labeling of G in H}.
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When the host graph H is a path with vertices {1, 2, ...}, the labeling
of G is a mapping from V() into the set of positive integers. Such a
labeling is often called a numbering of (. The distance between two
numbers is just the absolute value of the difference. The bandwidth of a
numbering 7 can therefore be written as

b (G) = max{|n(v) — m(w)|: vw € E(G)}.
Also the cutwidth of a numbering x can be written as
¢ (G) = max|{vw € E(G): n(v) =i < a(w)}|.

We conclude this section with a table showing various optimal numberings
for paths P, circuits C,, stars K, ,, and complete graphs K, (see [13]):

b b" K ¢
P,| 1 1 p—1 1
C, | 2 2 2Ap-1 2

Kip| el lpl Ll Lpl

K, |p=-1 p-1 p(p*-1 i’

3. The Bandwidth Numbering

Among all graph labeling problems, bandwidth numberings of graphs
have attracted the most attention in the literature. The bandwidth problem
originated in the 1950s in the form of finding a matrix equivalent to
a given matrix so that all the non-zero entries lie within a narrow band
about the main diagonal. Harper [29] investigated the bandwidth numberings
for n-cubes; these are related to the design of error-correcting codes
subject to minimizing the maximum absolute error. Since then there have
been a large number of papers on this subject, references for most of
which can be found in a recent survey [5] on bandwidth numberings.
One of the interesting problems on bandwidth is to characterize graphs
with large or small bandwidth. What does it take to force a large bandwidth
in a graph? There are two known factors which increase the bandwidth of
a graph — density (roughly, the ratio of the total number of vertices to the
maximum distance between pairs of vertices), and subtrees which are
refinements of complete binary trees. As we shall see, either of these two
conditions is sufficient but not necessary for forcing up the bandwidth
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of a graph. We list some known results as well as some obvious (but
unpublished) facts on lower bounds for bandwidth numberings.

The following two density lower bounds can be derived in a straight-
forward way. The first appeared in the early paper of Harper [29],
whereas the second one was a folklore theorem discovered by many
people independently (see [11]):

Theorem 3.1. Let 3S denote the set of vertices in S adjacent to some
vertices in V(G) — S. Then

b(G) = m:lxlgll'li:nk |as]. ||

Theorem 3.2. Let D(G) denote the diameter of G. Then
b(G) = (IV(G)l - V/D(G). ||

If G is a graph with p vertices and diameter D, we define the density
ds(G) to be (p — 1)/D. The local density of G is defined to be the
maximum density of all subgraphs of G, and can sometimes provide
better lower bounds for the bandwidth of G.

Theorem 3.3. b(G) = max{ds(G’): G’ is a subgraph of G}. ||
From Theorem 3.3 we can easily deduce the following result, by taking
G’ to be a star graph (see [11]).
Theorem 3.4. If A denotes the maximum degree in G, then
b(G) = ;4. ||

Systo and Zaks [43] proved that the local density lower bound in
Theorem 3.3 determines the bandwidth of a special class of trees called
caterpillars. A caterpillar is a tree in which the removal of all end-vertices
leaves a path P called the spine. The end-edges are called leaves.

Theorem 3.5. Let G be a caterpillar whose spine consists of the vertices
Ui, ..., Uy If the vertex-degrees p(uy), ..., p(u,,) form a monotone
sequence, then

b(G) = max{ [(|V(G)| — 1)/D(G)1},
where G, is the subcaterpillar formed by w,, . . ., u; and all vertices adjacent
to these w;, fori =1, ..., m. ||

In fact, the bandwidths of all caterpillars depend only on the local
density:

Theorem 3.6. If G is a caterpillar, then
b(G) = max{ [(|V(G")| - 1/D(G)]1},
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where G' consists of a subpath P’ of the spine and all vertices adjacent to
vertices in P'.

Proof. Suppose that & is a numbering of G with b,(G) = 5(G) = b.
We can normalize &t so that

() all vertices u;, | < i = m, on the spine are mapped to bi + 1;
(it) the leaves adjacent to u; occupy all the numbers from x(w;) — r; to
w(u;} + s;, except a(u;), with u; on the spine;
(iif) the number of r; with maximum value is minimized—the maximum
value is b — 1, except for r; which has value b;

(iv) some r; has maximum value,

Now we start from u; with r; of maximum value and search for the first
k(>=j)such thats, + r,yy < b — lors, = b — 1. If no such k exists, we
take k = m. If k satisfies s, + rpy; < b — 1lork = mands,, < b, then we
can modify & by increasing r, and s, by 1 for j < ¢ < k and thus decrease
the number of maximum r;, contradicting assumption (iii). We may assume
thatsy, = b — 1 (ors, =b)ands, +r, = b — 1forj=t= k. Thus, by
taking G’ with the spine P’ consisting of &, ..., u,, we have

V(G = )D(G') = [(b(k —j+ 1) + Dtk — j+2)] = b,

so b(G) = [(|V(G")| — 1)/D(G’)] for some G'. Combining this with
Theorem 3.3, we deduce Theorem 3.6. ||

Let 75 denote the k-level complete binary tree in which the ith level
consists of 2”1 vertices and each vertex in level i < k has two ‘sons’ at
level i + 1. Then the bandwidth of T, depends on k, as follows:

Theorem 3.7. b(T,.) = [(2Z¥' — 1)/(k - 1D].

Proof. By Theorem 3.2 we have b(T,,) = x, where x = [(2*7! - 1)/
(k — 1)]. It suffices to find a numbering & with b, (T, ;) = x. We define
7 by specifying in increasing order the vertices chosen from the left half
(descendants of the left son) of T,,—the first one chosen is labeled 1,
and so on; the right half is then chosen in the reverse order of the left
half. We first choose x vertices in the left-most part of the bottom (kth)
level. Then we choose the y, fathers of these x vertices and then choose
the x — y; left-most {unchosen) vertices of the bottom level. We continue
to choose x vertices at each step, in such a way that the y; fathers of
previously chosen ones are chosen first, and then the bottom level left-
most (unchosen) ones. It is not hard to check that, for i > 2, y, < ix + i.
We have y; < x if i < {x, which is true for k > 5. (For k =< 5, the
bandwidth can be verified directly.) So we can proceed until at most x
vertices are left. The remaining vertices are chosen at the final step. ||
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The complete k-level t-ary tree T, is also determined by its density;
the proof is quite similar to that of Theorem 3.7 and will not be included
here.

(1 -1
sk —Da-Dl !

For trees with bounded degree we have an upper bound which is within
a constant factor of the worst-case density lower bounds:

Theorem 3.8. b(7, ;) =

Theorem 3.9. Suppose that T is a tree on p vertices with bounded degree
p. Then

=
b(T) =5 logp 3
Proof. This upper bound is established by a numbering scheme which
uses a result in [6]—namely, for a given tree T and any positive value k
we can find a vertex v such that there is a subforest F, formed by
removing v from T, with k < |V (F)| < 2k. Now we first find a separator
set § consisting of [logp p — log,log, p + 1] = y vertices whose removal
separates T into at most y forests Fy, F, ..., F,, such that p/y < [V(F)| <

_2ply, for all i. Furthermore, we may assume that the forests F; are

arranged in increasing order of the number of edges from F; to T. Now
we partition the integers into 3y (increasing) blocks B;, each consisting of
[p/y] consecutive numbers. The labeling can be described recursively as
follows:

—the numbers in B; and B, are used to label F;;

—B; is used for labeling the vertices adjacent to vertices in Fy;

—B, and B; are used to label the (so-far unlabeled) vertices of Fs;
—Bs is used for labeling the unlabeled vertices adjacent to vertices of F,
and unlabeled vertices adjacent to vertices labeled by numbers in B;.

In general, Bj;., and B, are used for labeling the so-far unlabeled
vertices of F;y, and Bj;,; is used for labeling the (unlabeled) neighbors

of Fi;, and the (unlabeled) neighbors of vertices of Bs,. Since |J F; has

i=j
at most j vertices in the separating set S, the number of neighbors that
Bs;.3 used for labeling is at most

- - pl -1 14
Pl pi 2 41 = s p’ =
p-1 775

This labeling obviously has bandwidth 4— =
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The density or local density is not an upper bound for graphs in
general. There are graphs with large bandwidth but small density. The
following result comes from [12]:

Theorem 3.10. For each integer k, there is a tree with local density 1 or 2
and bandwidth at least k.

Proof. We consider a refinement T of the complete binary tree T,
with 2k levels. An edge joining a vertex of the ith level and a vertex of
the (i + 1)th level is replaced by a path of length 3%~/ It can be easily
checked that T has local density at most 2. The bandwidth of T is not less
than b™(T, ), which is k (see [12] and also Section 6). ||

Theorem 3.11. Any graph which contains a refinement of T, ; must have
bandwidth at least 1k. ||

Of course, there are graphs with large bandwidth which do not contain
large complete binary trees. This leads to the following interesting problem:

Problem 3.1. Suppose that the local density of G is at most ¢, and that
G does not contain any refinement of the complete binary tree with ¢,
levels. Is the bandwidth of G bounded above by a constant depending
only on ¢; and ¢,?

Note added in proof. This problem was recently answered in the negative
by Chung and Seymour.

Chvitalova and Opatrny [14] proved a somewhat weaker result:

Theorem 3.12. Suppose that T is an infinite countable tree such that
(i) the maximum degree satisfies A < ¢,
(i) the number of edge-disjoint semi-infinite paths in T is at most c,;
(iti) T does not contain (as a subgraph) a refinement of a complete

binary tree of c3 levels. Then T has a refinement T' with finite bandwidth
depending only on ¢,, ¢; and c;. ||

Another useful observation for dealing with bandwidth involves the
graph P, the kth power of the path P,, in which two vertices v, w are
adjacent if and only if 0 < |v — w| < k. It follows immediately that
b(G) = k if and only if G = P%. Many relationships between the band-
width and other graph invariants were derived using this observation (see
[11]); for example:

Theorem 3.13. Suppose that G has p vertices, q edges, connectivity k,
independence number Py, and degree-sequence py < p, < ... = p,.
Then:

b(G) = p — 3(1 + (@p - 1)* - 8));

b(G) = k;
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b(G) = E_l

b(G) = max max {p; — {3(j — 1)], 3p;}.

Proof. Observe that |V(G))| = |V(G,)|, and that G, ¢ G, implies
|E(G)| = |E(G2)l, k(G1) = x(G2), Bu(G1) = Bo(G,) and P,(G1) =
p,(Gz) for each j. By noting that for k = b(G) we have G ¢ P} and
|E( ) = 3k@2p — k — 1), we get k(Pp) = k. po(P5) = [(p — 1)”4
o, (Fp ) =min{p — 1, k + [3(j — 1], 2k} |

We remark that parts of Theorem 3.13 were also proved by A. K.
Dewdney [5], [13]. For completeness, we include here the bandwidths of
a few special graphs (see [11], [18] and [29]):

Theorem 3.14. (i) b(K,,) =3(r = 1) + 5, forr =
(ll) b(Kr,,rz,....r*) =P - I-%(rl + 1)];

n—1

(i) b(Q,) = > (L;’ij), where Q, is the n-cube. ||

k+1

4. Bandwidth Algorithms

Before we discuss the algorithmic aspects of the bandwidth problem, we
shall give a very brief introduction. In general, algorithms are step-by-
step procedures for producing solutions for problems. A polynomial-time
algorithm is an algorithm which always generates a solution in time p(n),
for some polynomial function p, where n denotes the input length, A
problem is considered to be intractable if it is so hard that no polynomial
algorithm can possibly solve it. Many problems that are not known to be
either provably intractable or provably polynomial turn out to be so-
called NP-complete (non-deterministic polynomial-time complete), which
were first introduced in the early 1970s (see [20]). A problem in the NP-
complete class has the property that if a polynomial-time algorithm is
ever found for it, then all the problems in this class must also have
polynomial-time algorithms. This NP-complete class of problems includes
many ‘classical’ problems, such as the traveling salesman problem, the
Hamiltonian circuit problem, integer linear programming, and many
others. The question of whether or not the NP-complete problems are
intractable is now considered to be one of the foremost open questions in
theoretical computer science,

Papadimitriou [36} first proved that the bandwidth problem is NP-
complete, by showing that it is polynomial transformable from the
3-partition problem. The 3-partition problem is one of the basic NP-
complete problems, and can be described as follows:
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Suppose that A is a set of 3m elements with total weight > w(a) =
ae A
mB. Can A be partitioned into m disjoint 3-sets A;(i = 1, ..., m) such
that >, w(a) = B for each i?
aeA;
Theorem 4.1. The bandwidth problem is NP-complete. ||

Garey et al. [19] proved that the bandwidth problem remains NP-
complete for trees with maximum degree 3. The bandwidth of a graph G
is 1 if and only if each connected component of G is an isolated vertex or
a path. In [19] there is a linear algorithm for testing if b(G) = 1 or 2.
Saxe [39] has shown that, for fixed k, the problem of determining b (G) <
k can be solved in polynomial time.

There are several approximation algorithms for the bandwidth problem,
such as the Cuthill—McKee algorithm [16] and the Gibbs—Poole—Stockmeyer
algorithm [23]. One way to judge the approximation algorithms is to
investigate the worst-case performance bounds (that is, the bounds for
the ratio of the bandwidth generated by the algorithm and the ‘optimum’
bandwidth of the graph), or the average performance bounds. However,
for these approximation algorithms neither the worst-case performance
nor the average performance bound has been extensively analyzed.

5. Bandwidth Labeling in Higher Dimensions

The (two-dimensional) grid graph is the graph whose vertex-set consists
of pairs of integers, and whose edge-set consists of {(i, f), (i + 1, )} and
{(i, ), (i, j + 1)}, for all integers i, j. Graph labeling problems whose
grid graph is the host graph often arise in the formulation of circuit
layout models involved in VLSI design or optimization (see [2], [3]). In
particular, the bandwidth of the layout is directly related to the per-
formance of the circuit if the length of the edge is proportional to the
propagation delay through the wire, which must be smaller than the
period of the system clock. In models with higher-dimensional grid graphs
as the host graph, bandwidth problems correspond to layout problems in
multi-layer circuits.

Before we proceed to discuss bandwidth results in grid graphs, we
remark that the distance of two vertices (a, b) and (¢, d) in the grid graph
is defined to be j& — ¢| + |b — d|. The k-dimensional grid graph G; has
vertex-set consisting of all k-tuples of integers, and edge-set consisting of
{{ay, ..., a .., ap), {ar, ....,a; + 1, ..., ax)}, for all g; and i.

Analogous to the bandwidth numbering problem, we have the following
density lower bound:



7 LABELINGS OF GRAPHS 161

Theorem 5.1. If G is a graph with p vertices and diameter D, then
the1 bandwidth of G in the 2-dimensional grid graph is bounded below by
(p’ — 1/D.
Proof. Let f denote the bandwidth labeling frem V{G) to the grid graph
G,. Consider the lines

Ly x +y = min{a: (a, b) = f(v), v e V(G)} = ps;

Ly:x + y = max{a: (a, b) = f(v), v e V(G)} = pa;

Ly x —y = min{b: (a, b) = f(v), v e V(G)} =qu;

Ly x —y = max{b: (a, b) = f(v), v € V(G)} = q..

Clearly all vertices of G are embedded (in G;) in the rectangle bounded
by these four lines. This rectangle contains at most (|p; — pa| + 1)
(lg1 — ga| + 1) vertices. Without loss of generality, we may assume that
|P1 — pal = |q1 — gal. Itis not hard to check that there are two vertices of G

embedded in G, with distance |p, — p,| in G. Therefore 8D = |p;, - p,l,
where b denotes the bandwidth. Since

(Ipr = pa|l + 1 2 (Ipy — pol + D1 — q2| + 1) = p,
we have b = (p! — 1)/D. ||
7 We also have the following theorem:

Theorem 5.2. Let b,( ) denote the bandwidth of G in the 2-dimensional
grid graph. Then

(GOl - 1] .0 |
DG : G' is a subgraph of G . ||

The higher-dimensional cases can be proved in a similar way.

b, (G) = max{[

Theorem 5.3. If G is a graph with p vertices and diameter D, then
the bandwidth of G in the k-dimensional grid graph is bounded below by
(p"* = 1/D. |

Theorem 5.4, Let bp(G) denote the bandwidth of G in the k-dimensional
grid graph. Then

V(G| - 1

G hof G¢.
DG ] G’ is a subgraph of } I

b (G) = max{ [

In the case of embedding complete binary trees in the 2-dimensional

grid graph, the density lower bound is essentially n'/log n, where n is the

input length. Paterson et al. [37] proved that the bandwidths b, of such
trees are within a constant factor of the density lower bounds:
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Theorem 5.5. If n = 2**1 — 1, then b,(T,,) = Q(n¥/log n); in other
words, by(T, ) is bounded above and below by expressions of the form
cnllog n. ||

Problem 5.1. Evaluate b, (T, ;), for general k.

Bhatt and Leighton [3] used a general technique to obtain upper
bounds for the bandwidth &, for binary trees (not necessarily complete)
and planar graphs:

Theorem 5.6. If T is a binary tree (thai is, a tree with maximum degree 3),
then

b>(T) < D(n'llog n). |
Theorem 5.7. If GG is a planar graph, then

n log n )
b = e |
2G) =0 (log log n I

Problem 5.2. Find good bounds for b,(G), when G is planar or of
bounded genus.

The algorithmic problem of finding optimal labelings in grid graphs
turns out to be considerably harder than the case of embedding into a
line, as the following result by Bhatt and Cosmadakis [2] shows:

Theorem 5.8. Given a binary tree T, the problem of deciding whether
b2(T) = 1 is NP-complete. ||

Unless otherwise specified, in the remainder of the chapter we discuss
only labelings with a path as the host graph.

6. Topological Bandwidth

We recall that the topological bandwidth 5*(G) of a graph G is the
minimum bandwidth " {G') over all refinements G’ of G. It follows from
the definition that b*(G’) = b*(G) for a refinement G’ of G. Strict
inequality can occur, as shown by Fig. 2.

The topological bandwidth problem can be related to optimization
problems arising in some models of VLSI design in which vertices of
degree 2 (interpreted as ‘drivers’ or ‘repeaters’) are inserted to help
minimize the length of the edges. There is also a sparse-matrix version of
the topological bandwidth problem [34]. Let A be a matrix arising from a
linear system Ax = b. The bandwidth problem is just the problem of
finding a permutation matrix P such that PAPT has all of its non-zero
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entries close to the main diagonal. The topological bandwidth problem
can then be viewed as the problem of further narrowing the ‘distance’ to
the main diagonal by repeatedly using the following operations: replace a
term g;x; by a new variable y and add a new equation a;x; = y.

There are fewer results on the topological bandwidth than on the
bandwidth of graphs. The following results are taken from [12], [35] and
[42].

Theorem 6.1. (i) b*(G) = 1A,
(i) b*(G) = min deg(v). ||
ve V{G)
Theorem 6.2. (i) For the k-level complete binary tree T, ,, b™(T, ;) =
[5k1;
(ify b™(Kz,) = [3(s + 3)]. ||

Theorem 6.3. (i) There is an O(n log n) algorithm for computing the
topological bandwidth of binary trees;

(i) the problem of determining the topological bandwidth of a graph is
NP-complete. ||

We conclude this section with the following problem:

Problem 6.1. Determine the computational complexity of the topological
bandwidth for trees.

Partial results in this direction can be found in Dewdnecy [17].

7. The Minimum Sum Problem

Instead of minimizing the maximum ‘stretch’ over all the edges, the

minimum sum problem is to search for a labeling which minimizes the

total sum of the stretches of the edges. In the case of labeling vertices by

integers (or when the host graph is a path), the minimum sum problem is

just that of minimizing s(G)= >, |a(v) — a(w)} over all numberings
vwe E(G

a. The minimum sum problem was (ﬁr)st investigated by Harper [27], who

determined the optimal labelings for the class of n-cubes which are
associated with designing error-correcting codes with minimum average
absolute errors:

Theorem 7.1. For the n-cube Q,, s(Q,) = 2"71(2" — 1). ||

Seidvasser {40] studied the maximum min-sum s(7T) over all trees with p
vertices and maximum degree p. His results were further improved by
Tordanski [30]:
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Theorem 7.2. For any tree T on p vertices and maximum degree p, we have

pp log p
log p

and there exist trees for which s (T) lies within a constant factor of this upper
bound, for all p and p. |}

s(TYy=¢ , for some constant c,

Chung [6] answered a question of Cahit [4] in determining s (75 ;) for the
complete k-level binary tree T, ,:

Theorem 7.3. s(Ta:) = 2*(3k + %) + (13 — 2 for k = 2. ||

For general ¢ (¢ > 2), it is much more difficult to derive an explicit
expression for T, .. A recurrence relation for s( 75 ;) can be described as
follows (see [6]):

Theorem 7.4. Let k = 3, and let f(k) be the integer | which satisfies
(-3 2+ 1+ 1<k<I3'+ 1L Then
s(Tsx) = 3722k — 1) — 5 + k — f(k) + s(T3-). |
As to the algorithmic problems, Garey et al. [22] have proved the NP-
completeness of the min-sum problem:

Theorem 7.5. The problem of determining the minimum sum labeling for
a general graph is NP-complete. ||

In the special case of a tree, Goldberg and Klipker [24] have an O(p?)
algorithm for determining a min-sum labeling for a tree on p vertices.
Shiloach [41] improved the algorithm to one which has O (p*?) in running
time. This was further improved by Chung in [8]:

Theorem 7.6. If & = log 3/log 2 = 1.6, there is an O(p*) algorithm for
finding the min-sum labeling for trees on p vertices. ||

8. The Cutwidth of Graphs

The cutwidth problem deals with the number of edges passing over
a vertex, when all vertices are arranged in a line; note that ¢(G) =
min max|{vw € E(G): #(v) <i < m(w)}|. The cutwidth often corresponds

to the area of the layout in VLSI design.
Lengauer {32] evaluated the cutwidths for the complete k-level t-ary
trees T, :

Theorem 8.1. ¢(T,,) = [5(k — Dt — D] + 1, for k = 3. ||
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The values of cutwidths for trees are at least as large as their topological
bandwidths (see {9], [34]):

Theorem 8.2. b"(G) = ¢(G). ||

For general graphs, 5™ (G) and ¢ (G) can be quite different; for example,
b*(K,)=p — 1and c(K,) = |ip®]. However, for a tree T it was proved in
{9] that the values of b™(T) and ¢(T) are quite close:

Theorem 8.3. b*(T) < c(T) < b*(T) + log, b*(T) + 2. |

These bounds are ‘almost’ best possible in the sense that, for each n, there
exists a tree Twith b*(T) = nand ¢(T) = n + logy n — 1, and there exists a
tree T with b*(7") = ¢(T") = n.

Stockmeyer (see [20]) proved the NP-completeness of the cutwidth
problem:

Theorem 8.4. The cutwidth problem for general graphs is NP-complete. ||

Recently, Makedon et al. [35] proved that the cutwidth problem remains
NP-complete when restricted to graphs with maximum degree 3. Gurari and
Sudborough {26] proved that, for fixed k, the problem of determining
whether the cutwidth is at most & is polynomial:

Theorem 8.5. There is an O(n*) algorithm for deciding whether ¢(G) < k
for a graph G. ||

Yannakakis [44] recently resolved the complexity problem for deter-
mining the cutwidth for trees:

Theorem 8.6. There isan O (nlog n) algorithm for determining the cutwidth
for a tree. ||

There are several results involving the relations of cutwidth with other
graph invariants, such as the search numbers and graph pebblings (see [33],
[38], [42]), which we shall not discuss here.

9. Concluding Remarks

Graph labeling is an active area within graph theory, having connections
with a variety of application-oriented areas such as VLSI optimization,
data structure and data representation. In the past few years, many new
directions and new results have been developed while many questions
remain unresolved. Here we mention several general directions for future
research.

(§) Find good approximation algorithms for the NP-complete labeling
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problems mentioned in Sections 3—8. Such algorithms are very desirable
because of the advancement in integrated circuit technology and the need
in design automation.

(it) Characterize graphs with good labelings—for example, the
problem posed in Section 3 (does bounded density and no large complete
binary subtree imply small bandwidth?) is one of the problems in charac-
terizing graphs with small bandwidth.

(#7) Until now, most of the work has been concentrated on the case in
which the host graph is a path. Resuits concerning the grid graphs as host
graphs are quite recent and are known only for the bandwidth labelings.
Most labeling problems using grid graphs as the host graphs have not
been studied. Many of these problems are of particular interest in rec-
tilinear network layout designs. There are many other good candidates
for host graphs, such as trees and circuits; in taking a circuit as host
graph, we deal with integers modulo # as labels. Taking various trees as
the host graph is associated with problems in data structures, and has a
special appeal of its own.
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