- e

r

Graphs and Combinatorics 2, 31-36 (1986)

Graphs and
Gomhinatorics

@ Springer-Verlag 1986

Monotone Subsequences in (0, 1)-Matrices

F.RK. Chung!, P.C. Fishburn? and V.K. Wei!

! Bell Communications Research, Morristown, NJ 07960, USA
* AT&T Bell Laboratories, Murray Hili, NJ 07974, USA

Abstract. A (0, 1)-matrix contains an So(k)if it has O-cells (i,j,), (i + 1,j5),....(i + k — 1,j,) for some
iandj, < ... <j,,and it contains an S, {k)ifit has L-cells {iy.f) (i) + Dh....(i,j + k — 1)for some
jandi, <... <i,. We prove that if M is an m x n rectangular (0, 1)-matrix with 1 < m < n whose
largest k for an S, (k) is ky < m, then M must have an Sy (k) with k > | m/(kq + 1) ). Similarly, if M is
an m x m lower-triangular matrix whose largest k for an 8,(k) {in the cells on or below the main
diagonal) is ky < m, then M has an S, (k) with k > Lmfke + 1)J. Moreover, these results are best-
possible.

1. Introduction

A basicresult [2, 3,4] in the theory of order within irregular patterns says that every
linear arrangement of the first N positive integers has either an increasing or a
decreasing subsequence of at least n + 1 terms if, and only if, N = n% + 1. For
example (n = 3), 7894 56 1 2 3 has no 4-term monotone subsequence, but every
list of {1, 2,..., 10} has such a subsequence.

The aim of this paper is to prove related but independent results for regular
patterns of 0's or of I’s in rectangular (0, 1}-matrices and in triangular (0, 1)-matrices.
We shall gonsider so-called monotone subsequences of 0°s and of 1’s in matrices
that place no restrictions on the relative proportions of ’s and 1's apart from those
dictated by the size of the matrix.

A length-k monotone subsequence of Os in a {0, 1)-matrix, denoted by Solk), is a
sequence of k Os in cells (i,j,), (i + 1,j,),..., (i + k — 1,j,) for some i and j, < j, <
-+ < Ji- A length-k monotone subsequence of 1’s in a (0, 1)}-matrix, denoted by S (),
is a subsequence of k 1’s in cells (iy,f), (i3,/ + 1), ..., (ixj + k — 1) for some j and
iy <ip <...<1i.Theseareillustrated in Fig, 1. When the matrix is lower-triangular,
it is to be understood that all cells used for an S;(k} lic within the matrix, i.e., on or
below the main diagonal.

Our two main results are similar to the basic result for linear arrangements of
{1, ..., N} in that they force the existence of suitably large monotone subsequences
in (0, I}-matrices. For any such matrix let

ko = max k for which there is an So(k)

ky = max k for which there is an S, (k).
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Fig. 1. Monotone subsequences

Clearly, neither k, nor k, can exceed the smaller dimension of the matrix.

Theorem 1. For every m x n rectangular (0, 1)-matrix with 1 <m < n, and for all

0<ky<m,
m
k, > ,
“'[ko+1J

with equality holding for some matrix for each (kq,m, n).

Theorem 2. For every m x m lower-triangular (0, 1)-matrix, and for all 0 < ko < m,

m
k1 2L’c0+ IJ’

with equality holding for some matrix for each (ko, m).

These theorems generalize the foliowing corollary from [1].

Corollary 1. For every m > 1 and every m*> x m* lower-triangular (0, 1)-matrix,
max{kg,k,} = m. Moreover, for everym > 2, thereis an(m* — 1) x (m* — 1)rectan-
gular (0, 1)-matrix with max {ko, k,} < m.

This implies that, when n = m in Theorem 1, its conclusions hold even when we
ignore all cells above the main diagonal. This will be reflected in our proof of
Theorem 2. . .

The equality assertions at the ends of the theorems follow from very simple
patterns of O's and I's. Given 1<m<nand O0<p<m,let M be the mxn
rectangular matrix with all I’s in row t(p + 1) for t = 1, ..., [m/{p + 1)], and O’s
everywhere else. Because an Sy(k) cannot jump over a row of 1's, ko = p. And,
because there are [m/(p + 1) rows of 1's and m < n, k, = | m/{(ko + 1)]. The same
construction applies to Theorem 2.

The proofs of the main inequalities are considerably more delicate, especially
for Theorem 2. Although the inequality of Theorem 2 cleariy implies that for
Theorem 1 (consider any m x mlower-triangular submatrix of the matrix in Theorem
1), we shall prove both since the proof for Theorem 2 makes refinements on the
simpler and more easily visualized proof of Theorem 1.

These proofs generalize the proof [1] of Corollary 1 in fairly straightforward
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ways. Because we believe that monotone subsequences, which were a secondary
theme in [1], are interesting in their own right, it is hoped that their primacy in the
present work will encourage further consideration of regularities in binary matrices.

2. Proof of Theorem 1

Given 1 <m <n, let M denote any m x m submatrix of a rectangular m x n
(0, 1)-matrix. The columns of M are labeled 1 to m.

Let M(i,j) denote entry (i,j) in M. A horizontal path in M is a left-to-right
sequence

M{iy, 1), M(i2,2), ..., M(i,,m)
with
<y <h+1 forj=1,...,m— L.

Such a path uses I = i,, ~ i, + 1 contiguous rows; two such paths are row-disjoint
if they have no row in common.

We say that a horizontal path is a leading monotone sequence of 0's of length !,
abbreviated LS,(1), if I = i,, — i, + 1 and, for alij > 1,

b=, =M(i,j)=1,
>0y = {M(i,j) = 0<=i; > i, }.

Each LS,(f) contains an Sy(f) if M(i;, 1) = 0, and an So(f — 1)if M(i,1) = 1. A row
of I’s is an LS,(1) and contains an §,(0).

Suppose M contains an Sy(k) but no So(k + 1), s0 ko = k. Let y = [ m/(k + 1)].
We show that M has an 5, (y), which completes the proof of Theorem 1.

With k, = k, construct a family & of y row-disjoint LS,’s in M, beginning in
the upper left corner. Since cach LS, (1)in # has! < k + 1, the construction requires
at most y(k + 1) rows, so such a construction exists.

For each t with 0 < t < m — y, let U, be the y-term sequence

M{x(L2).t + 1), M(x(2,£).t + 2), ..., M(x(y, t),t + y),

where x(i, t) denotes the row corresponding to column ¢ + i in the ith LS, {top-to-
bottom)in 2. If U, consists entirely of 1s, then it is an S, (v)and we are done. Indeed,
this must be true for some U,, else there would be at least {m—y + 1}Osin the Us
but no more than yk O's in all of %, hence m —~ y+ 1 < yk,orm + 1 < vk + 1),
which contradicts y = |m/(k + 1}]. O

3. Proof of Theorem 2

To prove the inequality in Theorem 2, assume that m > 1 with no loss in generality,
and let M denote a rectangular m x m (0, 1)-matrix with 1 in every cell above the
main diagonal. Given ky = k, let y = |m/(k + 1}]. We wish to show that there is an
S, (v) composed solely of entries on or below the main diagonal.

Several definitions in addition to those in the preceding section are needed. Let
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X, be the family of all LSy’s in M. Define s€ %, as canonical if it has the greatest
final row of all leading monotone sequences in %, which begin in the same row as
s. Let .9 be the family of canonical sequences in %,. It is easily seen that different
members of .%, nowhere coincide or cross. -

Let s = [M({iy, 1), ..., M(i,,m}] and s* = [M(i}, 1),..., M(i¥,m)] be adjacent
members of ¥ %, with s* above s, s0 i* < i, for all j. We define the distance between
the two as

d(s,s*) = i, — i¥ — 1.
A Qinsc¥.%, is soft if s is not the top-most member of €%, and the column cells

strictly between this 0 and the next s* e ¥.%; above s contain at least one 1; other-
wise, a 0 in s is hard: see Fig. 2.
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Fig. 2. Adjacent canonical sequences

The following lemma, which is proved at the end of the section, is needed for
our proof that M has an S, (y) on or below the main diagonal.

Lemma 1. If s and s* are adjacent in € ¥, with s* above s, then s has at least d(s,s*)
soft O’s.

Given M as before, with ky, = k and 1’s above the main diagonal, lets,, ..., s,
be the bottom-most members of ¥.%, in sequence from s; on up. Let

w; = number of 0’s in s, i=LL..,y¥y
dy = d(8;,8;+1) i=1,...,y-1

By hypothesis, w; < k for all i. Moreover, since it is easily checked that s, begins

(from the right) at cell {m, m), there are at least y members of ¥.%,: y(k + 1) <m.
The lowest row for s, is m + 1 —(y + Y37 *d,} =r,, and (r,,7,) is the first cell

(from the right) for s, that is on (or below) the main diagonal. The number of

columns from (r,,r,) to the left boundary of M, including column r, is simply r,.
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Foreach 0 <t <), let ¥, be the y-term sequence
M(x(1,8),t + 1), M(x(2,2),t + 2), ..., M(x(y,t),t + y),

where x(i, t) is the row corresponding to column t + i in Sy+1-¢- The r, V, are totally
disjoint and lie on or below the diagonal: see Fig: 3. If any V, consists entirely of 1’s
and soft s, then a modified construction from the bottom up for this ¥, shows that
it yields an §,(y) on or below the main diagonal. In particular, whenever a soft (¢ is
encountered, it is replaced by the 1 next above it in its column.

Sy

{ry, ry}

Sy

Vo
Vi

Vry-\

Fig. 3.

It follows that the desired result holds uniess every one of the t, ¥, has at least
one hard 0. In view of Lemma 1, the number of hard 0’s from s, through s, that
can be in the V, does not exceed

y—1
; (wi - df) + W,

which is bounded above by y(k + 1) —{m + 1)+ r, since w, < k for all i and
—2d;=r,+y— (m+ 1). Ifevery V, had a hard 0, then n<ylk+1)—(m+ 1)+
ry, 01 (m + 1) < y(k + 1), and this contradicts the definition of y. O

Proof of Lemma 1. Suppose s* is above and adjacent to s in 4.%,. Let z be the LS,
constructed right-to-left, beginning in the row immediately below the bottom row
of s* (whenever a 0 is encountered, jump northwest into the next row). Since s* is
canonical, z does not meet s*. Since for any LS, there is a unique canonical LS,
which shares its left-most cell, z must meet s, for s and s* are adjacent. Thus, going
right-to-left, there are exactly d(s,s*) columns at which s jumps northwest but z
stays horizontal, In each such column, s has a 0 and z has a 1, so the O for s is soft.
This means that s has at least d(s, s*) soft 0s. O
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