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We study the problem of orienting all the undirected edges of a mixed multigraph so as to
preserve reachability. Extending work by Robbins and by Boesch and Tindell, we develop a
linear-time algorithm to test whether there is an orientation that preserves strong connectivity
and to construct such an orientation whenever possible. This algorithm makes no attempt to
minimize distances in the resulting directed graph, and indeed the maximum distance, for
example, can blow up by a factor proportional to the number of vertices in the graph. Extending
work by Chvital and Thomassen, we then prove that, if a mixed multigraph of radius r has any
strongly connected orientation, it must have.an orientation of radius at most 47> + 4r. The
proof gives a polynomial-time algorithm for constructing such an orientation,

1. INTRODUCTION

Let G be a mixed multigraph, i.e., a graph, possibly with multiple edges, each of
which is either undirected or directed. We shall denote an edge with endpoints v and
w by {v,w} if it is undirected, [v,w] if it is directed fromt v to w, and (v,w) if it is
either undirected or directed from v to w. A path in G from vertex v, to vertex v, is
a sequence of edges (v,,v;), (v2,v3), . . ., (v, ,,v;). The length of the path is & — 1.

The path is a (simple) cycle if vi = v, and v,,v,, . . ., v,_, are distinct. G is strgngiy'

connected if there is a path from v to w for every pair of vertices v,w. A cut X, X is a
partition of the vertices of G into two nonempty parts, X and X. An edge crosses the
cut if it has one endpoint in each of X and X. An edge is a bridge if it is the unique
edge crossing some cut, An erientation of G is any multigraph formed by orienting
all the undirected edges of G, i.e., converting each undirected edge {v,w} into either
[v.w] or [w,v]. G is orientable if it has some orientation that is strongly connected.
We are interested in the problem of testing orientability and finding strongly connected
orientations.

Robbins [4] proved that an undirected graph is orientable if and only if it is connected
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and has no bridges. His proof yields a linear-time algorithm for constructing a strongly
connected orientation if one exists: we carry out a depth-first search of the graph and
orient every edge in the direction along which the search advances. (The same depth-
first search can be used to test Robbins’ condition; see [5].)

Boesch and Tindell [1] generalized Robbins’ result to mixed multigraphs, showing
that a mixed multigraph is orientable if and only if it is strongly connected and has no
bridges. They claim that depth-first search can be used to find an appropriate orientation
but provide no details. Our first result, presented in Section 2, is a linear-time algorithm
for testing whether a mixed multigraph has a strongly connected orientation and finding
one if it does. OQur algorithm is a variant of Tarjan’s algorithm [5] for finding strong
components in a digraph using depth-first search.

The results of Robbins and of Boesch and Tindell say nothing about how much the
distances between vertices can increase in the process of orienting edges while pre-
serving strong connectivity. The paper of Chvital and Thomassen [1] addresses this
question in the case of undirected graphs. They prove that if an undirected graph of
radius r is orientable, then it has an orientation of radius at most #* + r. Our second
result, presented in Section 3, generalizes Chvétal and Thomassen’s theorem to mixed
multigraphs: We show that if a mixed multigraph of radius # is orientable, then it has
an orientation of radius at most 47 + 4r. The proof is constructive and gives a
polynomial-time algorithm for constructing such an orientation. Chvétal and Thomassen
prove that their bound for radius blow-up of #? + r is tight to within a constant factor
in the worst case, which implies that our bound of 4r* + 4r is also tight to within a
constant factor in the worst case. They also show that the problem of determining
whether there is diameter-two orientation of an undirected graph is NP-complete, which
implies that minimizing the radius or diameter of an orientation is NP-hard. Johnson
and Pieroni [3] have proposed a linear programming approach to the related problem
of orienting the edges in a graph with edge lengths so as to minimize the sum of the
resulting distances between certain specified pairs of vertices.

2. FINDING A STRONGLY CONNECTED ORIENTATION
IN LINEAR TIME

In order to devise an orientability-testing algorithm, we begin with two easy lemmas.
Both follow from the orientability condition of Boesch and Tindell; we include proofs
for completeness.

Lemma 1. If G is orientable, ¢ is any cycle in G, and {v,w} is any undirected edge .
on ¢, then the mixed multigraph formed by orienting {v,w} in the direction consistent
with the cycle is orientable.

. Proof. Let G be a strongly connected orientation of G. Let G' be formed from
( by reorienting every originally undirected edge on ¢ in the‘direction consistent with
c. If (x,y) is an edge of ¢, there is a path of directed edges in G’ from x to _yl and another
such path from y to x. (The two paths together form c.} It follows that G' is strongly
connected, since for every path p in G there is a corresponding path p’ in G, formed
by substituting the appropriate path for each edge on p that is also on ¢. Since G’ is
an orientation of G, the lemma holds.
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Lemma 2. Suppose G is orientable and X X is any cut such that exactly one undirected
edge, say, e, crosses X,X, and all directed edges crossing the cut lead from X to X.
Then the graph G' formed by orienting e from X to X is orientable.

Proof. Immediate, since the only other choice, orienting e from X to 3(:'_ produces
a graph that is not strongly connected. (No vertex in X is reachable from X.)

Qur orientability algorithm consists of two passes. The first pass orients all the
undirected edges of G by applying Lemmas 1 and 2. The second pass checks that the
resulting multigraph is strongly connected. To carry out the first pass, we perform a
depth-first search of G, starting from an arbitrary start vertex, (In our discussion we
shall assume some familiarity with the properties of depth-first search; see [5, 6].) We
allow an advance to take place along an undirected edge in either direction, but along
a directed edge only in the direction consistent with its orientation. We number the
vertices from 1 to n as they are reached during the search; if not all vertices are reached,
G is not orientable. To simplify the exposition, we shall assume that vertices are
identified by number. The search partitions the edges of G into tree edges, those that
when traversed during the search lead to previously unreached vertices, and non-tree
edges, those that lead to previously reached vertices. The tree edges define a spanning
tree rooted at the start vertex, -

During the search, when we retreat along an undirected edge, we orient it. To guide
the orientation process, we maintain, for each vertex v, a number low(v) such that
1 < low(v) = v. The low numbers function like the LOWPT numbers used to compute
strong components by depth-first search [S]. It will always be the case that the current
mixed multigraph contains a path directed from v to low(v). We initialize low(v) = v
for each vertex v. We carry out the orientation process and the updating of low numbers
by applying the appropriate case below whenever we retreat along an edge (v,w),
backing up from w to v (see Fig. 1)

Case’l. (v,w)is a non-tree edge or low(w) < w. Replace low(v} by min{jow (v},
low(w)}. If (v,w) is undirected, orient it from v to w,

Case 2. (v,w) is a tree edge and low(w) = w. If {v,w) is directed, abort the
search: G is not orientable, If (v,w) is undirected, orient it from w to v, and replace
low(w) by low(v).

The entire first pass takes O(n + m) time on a mixed multigraph of n vertices and
m edges. The following lemmas summarize the important properties of this compu-
tation, Let G be the multidigraph formed from G by the first pass, if it does not abort.

I:emma 3. For any vertex v, low(v) = v, and there is a path from v to low(v} in
G. If v is not the start vertex, then once the search retreats from v, low(v) < v, Thus
if the search does not abort, there is path in G from any vertex v to 1, the start vertex.

Proof. All claims but the last in.the lemma follow by induction on the number of
retreats along edges performed during the search. the last claim follows immediately.
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FIG. 1. Orienting a mixed multigraph. (a) Graph. Vertex numbers correspond to depth-first
search order. (b) Spanning tree generated by depth-first search. Non-tree edges are dashed. Final
low numbers are in parentheses. Undirected edges are directed as indicated by double arrows.

Lemma 4. If not all vertices are reached during the search, or if the search aborts,
then G is not orientable. If G is orientable, then & is strongly connected.

Proof. Consider a retreat from a vertex w to a vertex v along a tree edge (v, w).
We claim that low(w) < w just before this retreat takes place if and only if there is
an edge (x,y) in the original graph G such that x but not y is a descendant of w in the
spanning tree generated by the search. (We regard w as a descendant of itself.) If there
is such an edge, then the depth-first nature of the search implies y < w =< x. After the

TN
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search retreats along the edge (x,y), it will be the case that low(x) = y. This value
will propagate back along the tree path from w to x, so that eventually low(w) = y < w.
Conversely, if low(w) < w, low(w) is not a descendant of w, and the path from w
to low(w) must contain an edge (x,y) such that x but not y is a descendant of w,

Suppose not all vertices are reached during the search. Then obviously G is not
orientable, since not all vertices are reachable from the start vertex however the undi-
rected edges are oriented. Suppose the search aborts in Case 2 while retreating along
an edge (v,w), i.e., low(w) = w just before the retreat. Let X contain the descendants
of w and X the remaining vertices. Then, by the claim above every edge crossing the
cut XX is directed in G from X to X, which means that G is not orientable. This gives
the first part of the lemma.

Suppose G is orientable. Consider a retreat along an undirected edge {(v,w). If Case
2 occurs, then Lemma 2 and an argument like the one above imply that directing (v,w)
from w to v preserves the orientability of &. Suppose Case 1 occurs. Lemma 3 implies
that there is a path not containing (v,w) from w to an ancestor of v. By combining
this with a path of tree edges we can form a cycle containing (v,w). By Lemma 1,
directing (v,w) from v to w preserves the orientability of G. The second part of the
lemma follows by induction on the number of edges oriented.

The second pass of the algorithm consists of a backward search from vertex 1 to
test whether in G vertex 1 is reachable from every other vertex. If so, Lemma 3 implies
that G is strongly connected and thus that G is orientable. If not, Lemma 4 implies
that G is not orientable. The second pass takes O(n + m) time.

Our algorithm gives an independent proof of Boesch and Tindell’s necessary and
sufficient condition for orientability, which we state here:

Theorem 1[1]. A mixed multigraph is orientable if and only if it is strongly connected
and has no bridges.

Proof. The necessity of the condition is obvious. To prove sufficiency, we consider
the ways in which the algorithm can fail. If not all vertices are reached during the
search of pass one, then G is not strongly connected. If the search aborts in Case 2,
the proof of Lemma 4 implies that there is a cut X,X such that every edge in G that
crosses the cut is directed from X to X, and hence G is not strongly connected.

Suppose G fails the test of the second pass. Let X be the set of vertices from which
there is a path in Gtol,andletX # 0 contain the remaining vertices. All edges, if
any, crossing the cut X, X are directed in G from X to X. If there are no such edges,
G is not strongly connected. If there is exactly one such edge, it is a bridge. Finally,
suppose there are two or more such edges. Then all such edges must be directed in
G, for neither Lemma 1 nor Lemma 2 permits orienting from X to X the last undirected
edge crossing the cut. Thus in this case also G is not strongly connected. (There is no
path from X to X.) '

3. FINDING AN ORIENTATION OF SMALL RADIUS

The radius of a mixed multigraph G is the smallest integer » for which there is some
vertex u (called a center) such that, for any vertex v, there are paths from u to v and
from v to u of length at most r. (If G is not strongly connected, its radius is infinity.)
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The orientation algorithm of Section 2 can cause a blow-up in radius from L ton — 1
if G has n vertices (consider a complete undirected graph). However, by choosing the
orientation carcfully, we can do much better. The following theorem generalizes a
result of Chvétal and Thomassen [2], which applies only to undirected graphs but restricts
the radius blow-up to r* + r:

Theorem 2. If G is a mixed multigraph of radius r, G has an orientation of radius
at most 4r2 + 4r.

Gur proof of Theorem 2 uses Chvital and Thomassen’s approach but is more com-
plicated. We need a lemma:

Lemma 5. Let G be a mixed multigraph of radins r with center u. Then any edge
incident to u is on a cycle of length at most 2» + 1.

Progf. Consider a directed edge [u,v]. A shortest path from v to u has length at
most ¥ and does not contain [w,v]. Thus this path and [u,v] form a cycle of length at
most # + 1. The same argument applies to a directed edge [v,u].

Consider an undirected edge {u,v}. Let X be the set of vertices w such that every
shortest path from u to w contains {x,v}, and let ¥ be the set of vertices w such that
every shortest path from w to u contains {u,v}. If v & X, there is another edge (i,v)
in G and hence a cycle of length 2 = » — 1 containing {u,v}. If there is any vertex
win X — Y, there is a cycle of length at most 2r containing {u,v}, consisting of
appropriate parts of a shortest path from u to w and a shortest path from w to u not
containing {w,v}. The same argument applies if ¥ — X # @. Thus we can assume
X=Y#0 _ _

Let X be the set of vertices not in X. X # 0 since # € X. Since G contains no
bridges, there must be an edge other than {u,v}, say, (x,y), crossing the cut X, X If
xEXandy € X, there is a simple cycle of length at most 2r + 1 containing {u,v},
formed from a shortest path from u to x, the edge (x,v), and a shortest path from y
to u not containing {u,v}. The same argument applies if x € X and y € X, since
X = Y. Thus the lemma is true in all cases.

We now proceed to prove Theorem 2 by induction on r. It holds trivially for » = 0.
(In this case G consists of a single isolated vertex.) Suppose it holds for radius r — 1,
and consider the case of radius r. Let u be a center of G. We shall show that there
exists a vertex-induced subgraph H of G, containing u and all its incident edges, such
that the undirected edges of H can be oriented to yield a multigraph H of radius at
most 8r. This will directly imply the theorem as follows: Form G” from G by condensing
all vertices of H into a single vertex and deleting any resulting loops (edges with both
endpoints the same). Since H contained « and all its incident edges, G’ must have
radius at most r — 1. Thus, by the induction hypothesis, G’ has an orientation G’ of
radius at most 4r — 1V + 4(r — 1) = 4r? — 4r, Expanding the condensed vertex
back into the subgraph H and orienting its undirected edges according to their directions
in H, we obtain an orientation G of G withradius at most 472 — 4r + 8r = 4r2 + 4r,
as desired. The theorem will then follow the induction.
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Therefore we need only show how to construct and orient an appropriate subgraph
H. We do this in two stages. First we orient all undirected edges of G incident to u in
such a way that each is contained in a cycle of length at most 4r in the resuiting mixed
multigraph. Then we construct and orient the remainder of H.

For the first stage, let C,.Cy, . . . , C, be a minimal collection of cycles, each of
length at most 2r + 1, containing every edge incident to 4. (By **minimal’’ we mean
that every cycle C; contains some edge incident to u that is in no other cycle C;.) We
shall process these cycles in order by index, orienting their edges incident to « as we
proceed and marking these edges as either short or long, so as to maintain the following
invariants:

(1) Each marked edge is directed and in the current mixed multigraph is contained
in a cycle of length at most 2r + 1 if short, at most 4r if long,

(ii) Each unmarked edge is on some cycle C; not yet processed (which need not be
a cycle in the current mixed multigraph); and

(iil) no edge labeled long is on a cycle not yet processed.

We begin with C,, simply orienting both of its edges incident to u in the direction
consistent with C, (if they are not already so directed) and marking both of them short.
Clearly (i)—(iii) hold, and the ‘‘short’’ cycle containing these edges will not be affected
by orienting other edges incident to .

In general, suppose C; is the next cycle to be processed. By the minimality of C,,
Cs, .. ., Ciy we know that C, contains at least one edge incident to u that is unmarked,
If C; is still a cycle in the current mixed graph, we process C, exactly as we did C;
by (iii), the marked edge, if any, on C; is already marked short, and remarking it short
does not affect (i)-(iii).

If C, is no longer a cycle, then exactly one of its two edges incident to u, say, edge
¢, is marked short and directed inconsistently with &;, and the other edge incident to
u, say, e¢', is unmarked and by minimality is on no cycle among Cyy, . . . , Ci. In
this case we orient e’ consistently with C, and mark it long; it is on a cycle of length
at most 4r consisting of part or all of C, not including e and part or all of the short
cycle containing e. :

It is straightforward to verify that the general step preserves (i)—(iii). Hence, once
all the cycles C;, Cs, . . ., C, have been processed, every edge incident to u will be
directed and marked as either short or long, and thus in the resulting mixed multigraph
each such edge is on a cycle of length at most 4r.

For the second stage of the construction, grow a breadth-first spanning tree T, out
from u, and another breadth-first spanning tree T, into 4. For every vertex v such that
{u,v] is an edge, there is a path p, in T;, from v to u of length at most 4r — 1 not
containing {#,v]. Similarly, for every vertex v such that [v,u] is an edge, there is a
path p; in T, from u to v of length at most 4r — 1 not containing {v,u]. Let X be
the set of all vertices on some path p,. For each vertex v & X such that {v,u] is an
edge, let p} be the final part of p, from the last vertex in X to v. Let H be the subgraph
of the current mixed multigraph induced by the set of vertices on some path p,
or py.

Form H from H as follows. Orient every edge on a path p, or p; in the direction
consistent with the path; this creates no conflicts since all paths p, are in T, and all
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paths p\ are in T, and edge-disjoint with all paths p,. Orient the remaining edges in -
H arbitrarily. Every edge {u,v] is on a cycle in H of length at most 4r consisting of
[u,v] and p,; every edge [v,u] is on a cycle in A of length at most 8r consisting of
{possibly) an edge [u,w] and an initial part of pw for some appropriate vertex w,
followed by py and [v,u]. (If p; consists of all of p;, the cycle consists only of p, and
(vu)ifv € X, the cycle consists only of [u,w], all of p,, but the last edge, and [v,u].)
The subgraph H has radius at most 8 since  is a potential center satisfying that radius,

and H includes all edges incident to u. Theorem 2 follows.

We close with two remarks. We can state Theorem 2 in terms of diameter instead
of radius by noting that if r and d are the radius and diameter of a mixed multigraph,
respectively, then r = d =< 2r. Thus the construction used to prove Theorem 2 blows
the diameter up from d to at most 84> + 8d. The proof of Theorem 2 leads to an
algorithm for constructing an appropriate orientation that has a running time of O(r?
(n + m)). This time bound is based on a naive implementation and may be improvable
to O(r (n + m)).
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