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ABSTRACT

The bandwidth of a graph G is the smallest integer m
for which the vertices in G can be labeled vy,v,,...,v, 80
that |i—j| = m whenever {v;,v;} is an edge of G. Essen-
tially, it gives the smallest edge length achievable when the
vertices of G are arranged at distinct integer-valued points
on the line, In this paper we study a Turdn-type extremal
graph problem: What is the maximum number ¢(n,m) of
cdges in a triangle-free graph having n vertices and
bandwidth at most m? We show that

5+vV3
11

.586 nm = (2—-V2) nm < t(n,m) = nm = .612 nm.

1. Introduction

Let G = (V,E) be a graph having n vertices. The bandwidth of G
is the smallest integer m for which the vertices of G can be labelled
V1sV2s...,V, 80 that |i—j| = m whenever {v;,v;} is an edge of G. In
this paper, we mvestlgatc the problem of determmmg the maximum
number #(n,m) of edges in a triangle-free graph having n vertices and
bandwidth at most m. When m is small, it may be possible to deter-
mine t(n,m) precisely. For example, it is ecasy to see that
t(n,1) = n—1 and ¢t(n,2) = |3n/2-5/2). On the other hand, the
well-known theorem of Turdn gives t(n,m) = |n/4] when m = n~—1,
However, it appears to be a difficult problem to determine t(n,m) for
all values of the parameters so we will be concerned primarily with
providing inequalities for ¢(n,m). We will prove
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5+V3

.586 nm = (2—-V2)nm =< t(n,m) = m

nm = 612 nm.

I1. Inequalities for t(n,m)

We begin with the following elementary result.
THEOREM 1: %nm < t(n,m) = (% + o(1)) nm
PROOF: Consider the graph H containing all edges of the form {i,j}
where {i—j| = m and i and j have opposite parity. H is triangle-free

and has 5 m edges, so 5 =< t(n,m).

On the other hand, let G be any triangle-free graph having t(n,m)
edges. Then let d; denote the number of edges {i,j} where

i<j=i+m, Then t(n,m) = Ed; For each i=1,2,...,n—m, let
=1
G; denote the restriction of G to the vertices {i,i+1,...,i+m}. Since
Gl is 1:r1anglt';-free1 it has at most m%/4 edges However, G; has at Jeast
2 dipy—k = (E ditz)—m %/2 edges. Therefore,
k=0
n=-m+l m-1

mtiam)< P Sdjtm’s 3am2+ L
=1 k=0 4 4

50 1(n,m) < (% + o(1))nm. ©

The remainder of the paper is devoted to improving these elemen-
tary inequalities. We begin with a construction for improving the
lower bound.

THEOREM 2: (2—V2)am = .586nm =< t{n,m).

PROOQOF: Let ¢ be a real number with l<¢:<1 Partition the set

{1,2,...,n} into s = n/mc blocks B{,B,...,B, cach consisting of mc
consecutive integers Then let G, be the graph containing all edges of
the form {i,j} where |i—~j| =m and i and j come from distinct con-
secutive blocks. Since G, is bipartite, it 1s triangle-free. A simple

computation shows that G, has (2 — ¢ — —) nm cdges, and that this
function is maximized when ¢ = V2/2. For this value, G, has

1. We remark that although n/mc or me may not be integers, such statements
are always made with the implicit understanding that the graphs (and quantities)
involved may have to be adjusted slightly by adding or deleting (asymptotically)
trivial subgraphs (and amounts) so as to make the stated inequalities true.
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(2-V?2)nm edges.0
It will take a bit Jmore work to improve the elementary uppcr
bound t(n,m) = (— + ﬂ(l))nm

THEOREM 3: t(n,m) =< +1;/—nm = _612nm.
PROOF: Let G be a triangle-frec graph with t(n,m) edges. Let A be
the adjacency matrix of G, i.e., A is the nXm matrix where a;; = 1
when {i,;} is an edge, and a; =0 otherwise. For convenience, we let
A denote the adjacency matrix of the complement of G, i.e.,
a;=1-a,;. For each i=1,2,...,n, wc let R; denote the vector of
length n formed by the entries in the i row of A. We then let ROR,
denote the inner product of the vectors. Note that R,OR, counts the
number of paths of the following form:

4

k

3

Figure 1

Next, let § = 3 3 R;OR;. In view of our previous comment on count-
jmijal
i} "
ing paths, it follows that § = 3 r? — r;, where r; is the degree of ver-
k=1
tex k. Note that ri is also the sum of the entries in R, so that

t(n,m) = 2 2’& We now proceed to obtain an upper bound on §.
k=1
First we note that R;OR; = O unless |i—j| =< 2m and a;=0. We
write § = §; + §, where

" t-m—1 i+im A itm
Sl_z [ E RioRj E RioRj] andS2=2 2 Rl-oRj.
wl | jmi-2m j=itm+1 tm] juimm

int

We observe that §; denotes the number of paths of the type shown in
7" Figure 1 where m < |i—j| = 2m. Therefore, we can provide an
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alternate expression for §;.

. ,
§; = 23, w, where w; denotes the number of pairs (i,j) with

k=1
k-msi<k<jsk+m,i+m<j, and ay=a,;=1. Hereafter,

we refer to the positions a;; and ay; as being separated in R, when
k-msi<k k<jsk+mandi+ m<j. We find it helpful to
view w, as counting the number of “separated ones“ in the vector R,.
We then let w;’ count the number of separated zeroes in R;.

Now leti be fixed. If i — m = j < {, then

R,OR; = S ayay

k=1
J+m
= aij 2 o
k=l-m
_ Itm
say 23 ay
k=i-m
I+m i+m
=ay L ey —a; 3 ay
kwi-m kef+rm+1
i+m
= auri - aij 2 (1‘“&)
k=f+m+1
+m
= aijq - aij|1—1| + z aijaik
k=j+m+1
Similarly, if i < j =< i + m, then
J-u—l
R; oRj = auri - aijll ]l + E aijaik_
kwi-m
Therefore,
I+m I+m _
3 ROR; =< (2m-r)r; — 3 ayli-jl
J=i-m J=i-m
el
i~1 I+m _
+ 2 2 ayay
J=i-m k=]+m+1
itm J-u-l._ _
+ 3 3 ayey
J=i+l k=i-m
-1 i+m +m ]---1
However, 3 3 @@= 2 X ;a3 =w; .
Jmi-m k=jtm+l J=itl kmi-m

Thus we have
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I+m

8y = gl(Zm—r,-)r, é S ayli-jl + 22w

i=1 J=i-m =1
It follows that

S= Sl + Sz
= ‘}:1(2m—r,-)ri E ,E aijll—;l + 22(\'vi+wl )
- im] jmjem
. |
i=1 J=i-m

In order to complete our argument we need to establish an upper
bound on the expression E; = 2(w;+w;") — "ij| i—j| for all vectors

J=i~m

R; with fixed row sum r;. The proof of thc following Lemma will be
given later.

1LEMMA
[ 2
Fi . 2V23+30
—-2-“ lfr,' = [ 101 ] m
1 39r? = 30mr; + 4m? i [2\/234.30]
3mr, - 2m? - 3r}4  ifr, = 8m/T

From the previous theorem, we know that
t=t(n,m) = EE r; = .58nm so that the average value of r; is at least

1.16m. It follows that we should expect to use the upper bound
E; < 3mr, — 2m? - 3r; 2/4 for most values of i. However, this inequal-
ity does not hold when r; is small so we will have to correct for these
terms To accomplish this, we define

= {iir; > 8m/T}, B = {j:(2V23+30)m/101 < r; < 8m/T} and
C = {k:r, s (2V23+30)m/101}. We thenleta = |A|, b = |B], and
c—ICI Note thata + b + ¢ = n.

Now we return to the inequality § < S‘émr, ~ rf + E;.\ We sub-
o=

stitute § = Z{ri ;,2 replace the expression E; by the uppér bounds.
i=
The resulting inequ
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21":'2 -ns ‘E‘(zmﬂ- - r,z + 3mr; — 2m? — 3r,;/4)
[ -

+ 3((39r} — 30mr; + 4m2)y46 — (3mr; — 2m® — 3r}/4)
in :

+ S((~r#8) — (Bmr, — 2m? = 3ri/4)).
keC
Simplifying, we obtain
2307 - 347} - 336mr, + 192m7y92
Jen

i=1
1
|2
At this point, we need to estalzlish the following inequality for real

nonnegative values r; satisfying 3,r; = constant,
i=1

rg - 3mr, + 2m2] = ﬁ((sm+ 1)r;—2m?).

i1

L} 2 L]
U | < 15,2 - 514772 — 336mr, + 192392
4n |y 43 jea
-2 %r} = 3mr, + 2m2] "
kEC

The standard method for proving inequalities of this type is to use
a “local exchange* to uniformize the r;’s. In order to establish (*), we
first show that it suffices to establish the inequality when r; = 8m/7 for
all j €B and r, = (2V23+30)m/101 for all k €C. To sce that this
statement is valid, let F denote the expression on the right hand side of
(*). Then suppose that r; < (2V23+30)m/101 for some k €C. Next
choose i €A with r; as large as possible. We know that r; = 1.16m.
Then let F’ denote the value of the expression on the right hand side of
(*) when we decrease r; by € and increase r; by e where ¢ is a positive
value. A simple calculation shows

2

Thus if (*) holds for F', it also holds for F. This exchange can be
applied as many times as required to increase cach r, to
(2V23+30)m/101 where k €C.

Next, we show that it suffices to prove that (*) is valid when C is
empty. For suppose C is nonempty but that r, = (2V23+30)m/101
for every k €C. We then let F denote the value of the expression on

F*F'>e[%r,-—2rk—3m]>0
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the right hand side of (*). We then choose i €A with 7; as large as
possible and let F' be the value of the right hand side of (*) when we
decrease r; by € and increase r; by e.  Note that this moves k from C to

B. Tt can be shown that F — F’ = -l-l—rf - %33"& - ;—‘;m] € which is

2
positive. We may then apply this exchange as many times as is
required to remove all elements of C.

Under the assumption that C = ¢, we may then show that it suf-
fices to show that (*) is valid when r; = 8m/7 for every j €B. To see
that this is true we observe that decreasing r; by € when i €A and
increasing r; by € when j €B and r; < 8m/7 produces a net change of

un s s
2717 237k 23
Sc we have reduced the problem of establishing (*) in the general
case to the problem of proving (*) is valid when C = ¢ and r; = 8m/7
7 for every j €B. But when r; = 8m/7, the term 2r, - 4mr + 2m? is
zero, so in this case, the inequality reduces to T
e " 2
11 [E’i] = TE"t '
i=-1

m| e which is positive.

This is now the well-known Cauchy-Schwarz inequality. With this
observation, our proof that the inequality (*) is valid is complete. We

may conclude that
11 s ]2 - 2
2ri|l =s3Gm+1)r; - 2m
1=y

i=1

We can then solve this quadratic inequality to obtain

irl = Mum and thus
i=1 22

.
t(n,m) = %Eln = s;fnm = .612nm.
jm

H

It remains to prove the Lemma.
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LEMMA

)

2
ri . 2V23+30
vy ifr; = [ 101 ] m

1 39r? — 30mr; + 4m? "V
ER)=E s | ——— if [2 53;30] < r; < 8m/T

{ 3mr; — 2m?2 — 3rlzl4 if r; = 8m/7

for a row vector R; with row sum r;.

PROOF: The proof here involves some calculation which is done by
the symbolic computation system VAXIMA. The details of manipula-
tions are sometimes omitted.

I.zt R; denote a vector with »; 1's such that (a} E; is maximized;
(b) 2 aijl i—j| is as small as possible among all R, satisfying (a).
J=i-m
We will prove a sequence of facts on R; from which the Lemma
will then follow. '

CLAIM 1: Ifa_ =1landay = 0fori < j<k=i+m, then we have
3(k—])<4 E a"

I=j~m

PROOF: Let R’ be the vector obtained from R; by exchanging the

vglues of the entx;:fs ay and G in R, Since
2 aijl"’]l = (k=)) + Z a'yli-jl > 2 a'yli-jl, we have
J=i~m

E(R,) > E(R;"), where a,j denotes the ]th entry of Ri This implies
E(R)) > E(R/) = ER,)) + (k—j) + 2 pA (au“’u)
{=j—m
k-m-1
= E(R;) + 3(k—j) - 4‘2 a;

-j—-m

Therefore
k-m-1

3(k-j)<4 3, 6y

i=j-m

CLATM 2: Ifa =0and ay = 1fori <j<k=i+m, then we have

k=) = 4 Y a.

fwj—m

PROOF: Let R, be the vector obtained from R; by exchanging the "~
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values of the entries a;; and gy in R;.
i+tm

i+m
Since 2 d_ijll—jl < E Ejj’li_.ill we have E(R‘) = E(R!'),
4

I=i-m -] —
which implies then
k-m—1
e~ =4 3 ay,
[ ad

Claims 3 and 4 can be proved in a similar way.
CLAIMB:Ifay=0andaik= lfori — m =< j < k <i, then we have

i
3(k—j)<4 2 a;.

I=j+m+1
CLAIM 4: Ifg,-‘= landg; = 0fori — m s j < k < i, then we have
-)H=4 3 &

J=j+m+1

Now we partition R; into “blocks” 8,,8,,...,8, where a block is

a set of consecutive entries a;, j < ! < k, all of value 0 or all of value
1. R; is chosen so that the number of (maximal) blocks in
{i=m,..,i+m} — {i} is minimized among all R, satisfying (a) and (b)
(see p. 182).
CLAIM 5: Suppose B is a block consisting of entries ay, i < ! < k for
fixedi < j < k < i+m+] and all a;; are 0’s. Then we have

0= af,j_m_l = au_m = oere = ai,j_,,,ﬂ_l for some s, (i)
andl=a;; pyis= " =g, p_;
ifi+1<j<ksi+mthen:=-x§—_l)- (i)

PROOF: (i) is an immediate consequence of Claim 1. We only have
to prove (ii).
Since B 51 = 1 and g; 4, —1=0 by Claim 1 we have
3(k-j)<4 I ay. Sinceq; ;= 0and a; x = 1, by Claim 2 we have
l=jum~1
t—--l_
3k-j) = 4‘Z ajg.
-f-m
This implics &; ;.p,—; = 0and &; ;_,,_; = 1 and
k-m-2
3(*-]) =4 E .ﬂ-".
{=j-m
Suppose a; v =1 and g; ;- =0 for k—m—1= j' <k’ < j—m—1,
Then by Claim 3 we have



184 CHUNG AND TROTTER, JR.

E+m
3k'—-jN=s4 3 ay;=0

I=f+m+1

which is impossible. Thus we have

3 ;
0= al’j_m_l = ai,j-m = ...ai,j+m+_,_1 where s = "I(k‘])

1=6j4m+s = G jim+s+1 ™ " " Gij-m—1

Similarly we can prove

CLAIM 6: Suppose B is a block consisting of entries
ay, i < j=1<k, for fixed j < k. If all a; are 1's, then for some s
we have

1=a)j-m-1=Gij-m = --= G jom+s—1,
0=a; m+s—1= 8 k-m-1.
i
Ifi+1<j<k=i+m, thens = —&J—.

CLAIM 7: Suppose B is a block consisting of entries ay, j < ! =< k, for
fixed j < k = i. If all a; are 0’s, then for some k we have

1= 81 j4m+1= = G jim+s
0=0; im+s+1= +-+= O k+m+1
. . , k—j
Ifi-m = j < k <i, thenwe have s = 3

CLAIM 8: Suppose B is a block consisting of entries a;, j < I = k, for
fixed j < k =< i. If all a; are 1’s then for some s we have

0=1a  1m+1=- = 8 jrm+s+1s
1= 6 jrmtstl+ =" T kam+1-
Ifi—msj<k<i,mens=ﬂ5;—’)—.

Now suppose the entries {a;:i<I=<i+m} are partitioned into
blocks B,,...,B, and entries {a;:i—m=I<i} are partitioned into blocks

By, ....B,.". Leteg be0if B; consists only of 0’s and be 1 other-
wise. €, is the corresponding value for B;’. Then the sequence
(¢1'.€3'. . . . . € ; €1,€5 . . . ,¢) is called the block pattern of R;.

B,.B,,B,',B,' are called boundary blocks and the rest are interior
blocks.

CLAIM 9: All interior 0-blocks are of the same size r. All interior a0
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blocks are of the size 3t.

PROOF: Suppose B, is an interior 1 block conslstmg of entries
{a;:j=<i<k}. The entnes B, = {a; - m:0,€B,} are in a 1- block B,
and a O-block B’ ;. Then 3|8, ‘NnB | = |B’,  NB,. is
an interior 0-block and the entries in B can be partxtloncd mto a 0-
block B, and a 1-block B’,, ., then

|B,’ NB,| =3|8’,.,NB,|.

Now suppose B, is an interior 1-block with B, C B’ U B’ 1.
If B’,, . is an interior block, then we have

18%41 N Bl = 218,]
|B'ysr N §u+l' = %|Bw+1l
Since B, 1 is also an interior block, we have
18"+ N B,| = %'B'wﬂl
1B’y 41 O Byl = %la'w+1|

Therefore 3|8, | = |B,.1} = |B’,,,| and Claim 9 will follow.

CLAIM 10: Suppose B, is interior in {i,...,i+m}). ¥
B,C B, UB’, ., then B, is not interior.

PROOF: Suppose B, = {a;:j<I<k} and B’ {ai 1rJ' =1 <k'} are
interior. We now oons:der R;' obtained from R, by exchanging the
entries a; ;_, with a; ;_, and the entries 4 ,j-—t With g, , for 1st=<p
where B',,_, consists of {a; g J = p=1<j"} Itis casy to verify
that E(R;’) = E(R;) and the umber of blocks in R;' is fewer than that
of R;, which is a contradiction.

It follows from Claim 10 and the symmetric version of Claim 10
that

CLAIM 11: r=<3 and r' = 3. If =3 and r’=3, then there is one
interior 0-block and one interior 1-block.

CLAIM 12: One of r and r' is less than 3.

PROOF: If r = r' = 3, we may assume without loss of generality that
the block pattern is (0 1,0:1,0,1) and B, C By’ U B5'. Now we con-
~sider R,’ with entries a’; such that
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a'u = a,’,_l ifl#i+land! # i—m; a'l,l'""l = 01'14.,”;
and a’; ;.. = @; ;1. It can be easily checked that E(R,") > E(R)),
which is impossible.
From now on, we may assume r < 2. From Claims 5, 6 and 11,
we conclude that the block pattern for R; is one of the following
(i) (0,1:1,0)
G) (1,0,1:1,0)
(iii) (0,1,0:0,1)
(iv) (1,0:0,1)
2
CLAIM 13: If the block pattern in (0,1:1,0), then E(R;) =< -%—.

PROOF: I ||B,| — |B,'|| = 2, we can adjust the size of By, B,' and
obtain an R;’ with larger E(R;") value, which is impossible. We may
then assume ||812| —~ |By’l| = 1. By straightforward calculation we . .
r

have E(R;) = —Ti.

CLAIM 14: If the block pattern is (1,0:0,1), then
E(R;) = 3mr; - 2m? — 3r{/a.

PROOF: It can be similarly shown that {|B,"| — |B,|| = 1. Thus we
can calculate E(R;) and obtain

E(R)) < 3mr; — 2m? - 3r;2/4.

The remaining two cases are more complicated.
CLAIM 15: If the block pattern is (1,0,1:1,0), then r; = m/2 and

39r7 — 30mr; + Tm? 31

E(Ri) = for = ﬁm and
17r} — 10mr + 2m?

E(R) = 18 otherwise.

PROOF: In this case the pattern is (1,0,1:1,0). Let b; denote |B;’|.
Then we have,

b
2b1+53+-31=r,(byczaim 7

b1+b2+b3=m

Therefore b1=-3-b2+ri—mz:0 and 53=2m“"i‘“%bzz°-

4(m—r)

4 —
—-$b257(2m—ri). Now by straightforward

This implies 3
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16m? — 32b,b; — 48b3 — 24bb, — 15b3
calculation E(Ryy = ~ 7 . Sub-

stituting for b, and by and setting b = b4, we obtain
12r} + (165 — 24m)r, + 8m2 — 8bm + b2

E(Ri) = f(b) = 8
. d¥ 1
Since F = Z > 0, there is no interior maximum, Usmg Claun 1,
we have b, < “‘|51| = —(b1 + ) and b3 = |82| b+b3)
1 b ?3m r:)
Thus b; =< 12b and b3 < e This lmphes 2
can be easily shown that in this case r; < 7).
We then have
Gm=r) | 397 - 30mr; + Tm? 31
= a8 7, = ogm
) =
E(R;) 4 —17r% + 10mry — 2m? .
f -3—(m—r,-) 13 otherwise
CLAIM 16: If the block pattern is (0,1,0:0,1), then r, ST"',
39’:‘2 ~ 30mr, + 4m? .
E(RI) = 46 if ?m = r; and
75r% + 174mr; — 100m>
ER)) = ) if r; < 7m

PROOF: Let b, denote |B,’| for i=1,2,3. Then we have

by
b2+T+b3=ri

b1+b2+b3=m

Therefore
b3 = r, - %bza 0
b,
bl =m- ’t' + T =0

%ri andr; = %m. Also
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3.0 31
by = 4|32| =2 [4b+b3]

and
3 3
bls 3 [b1+4b]
i.e.
3 9
b35 Ib,blsib
5 3 b 9
r,-?bsi'b,m—ri-F‘Z‘Szb
m—r,-
Therefore b = 2,b2 2

By straightforward computation we have

4r? + 16br; — 8mr; + 8bm — 23b°
2 = 1(b)

E(R)) =

d?
Since —5 f < 0, the maximum value of f(b) is achieved at ——(b) = 0,

. _ 8r + 4dm
ie.,b= —23 We have
2 2
8r+dm | _ 39rf — 30mr; + dm<
E(Ri)sf[ 23 ]— T3 1f77—m2rland
75r2 + 174mr; — 100m> 5 8
E(R}) = f(4(r;—m)) = if=mz=r>—-m
2 4 7
Now we can summarize the following
4
N I 2\/23+30] -
4 { 101
1 3977 — 30mr; + 4m? [2\/5§+30]
3mr; — 2m? — 3r4  ifr; = 8m/7
\

This completes the proof of our theorem.
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II1. Related problems

The function t(n,m} we studied in this paper came up in connec-
tion with the following problem. For an integer n = 2, let T(n) denote
the directed graph whose vertex set is {1,2,...,n} and whose edge set is
{({j): 1si<j=n}. Recall that a directed graph is said to be
unipathic when it contains at most one directed path between any two
vertices, We then let u(n,m) denote the maximum number of edges in
a subgraph of T'(n) so that the restriction to any m consecutive vertices
is unipathic. Since a unipathic directed graph is triangle-free, it follows

n—m+1
that u(n,m) < t{n,m—1)+( 7 ). Unlike the situation with
t(n,m), it is possible to provide an explicit formula for u(s,m).
This formula was provided by Maurer, Rabinovitch, and Trotter

[2] who showed that the problem of determining u(n,m) was equivalent
to determining the rank of a certain class of partially ordered sets.

THEOREM 4: Jet n and m be izntegers with n =2 m = 2. Then
u(n,m) = (g)(m—1)2+q(m—1)r+ [rT] where n = ¢(m—1)+r and
[3m=D1=r < [2(m-1)1. o

We refer the reader to [2] for the argument for this theorem and
to [1] for a discussion of the combinatorial theory of rank for partially
ordered sets,

Here we studied a Turdn type problem with restrictions imposed
on the bandwidth. There are numerous variations that can be formu-
lated in the following framework.

Let H denote a family of graphs and F denote another family of
graphs. Define t(n,H,F) to be the maximum number of edges in a
graph G in F on n vertices which does not contain any graph in H. If
we take H to contain only one graph K, and F to be the family of all
graphs, then #(n,H,F) is just the Turdn number, The problem of
determining ¢(n,H,F) is of interest for various families H and F. Here
we mention a few:

(i) H={K}and F = {all graphs with bandwidth = m};

- (ii) H = {all graphs with chromatic number k} and F = {all graphs
. with bandwidth m};

(iii) H = {all graphs with chromatic number k} and F = {all graphs
with chromatic number 7},

(iv) H = {cycles of length =< k} and F = {all graphs with chromatic
number k}.

In this paper we studied the case that H consists of one graph X 3
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and F = B,, is the set of all graphs with bandwidth < m. We proved
that

2-V2)m = t(n,{K3},B,) < S-'-l;@ nm

Probably the lower bound is closer to the “truth“ here. However,
the likely candidate for an extremal graph (see Theorem 2) does not
have constant degree and cannot achieve the upper bound obtained here
by using averaging arguments. Some new idea is need to close up the

gap.
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