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ABSTRACT

This paper is a survey of the methods used far determining exact values and
bounds for the classical Ramsey numbers in the case that the sets being
colored are two-element sets, Results concerning the asymptotic behavior of
the Ramsey functions R{k./) and A,,(k) are alsc given.

1. INTRODUCTION AND NOTATION

In this paper, we give the main methods which have been used to calculate
bounds and exact values for classical Ramsey numbers. We shall concen-
trate our attention on the case where the sets being colored are the edges of
K,, the complete graph on » vertices, since very little is known about the
other cases.

We define R(k,, k;,..., k,) to be the smallest integer » such that no
matter how the edges of K|, are colored with m colors, there exists some {
such that there is a complete subgraph of size &;, all of whose edges are of
colori, Inthe case k), =k, = - - + =k, =k, we will write R,,(k) instead of
R(ky ks, . .., ky). Ramsey’s theorem [39] states that all of these numbers
exist.

2. TWO COLORS

In most cases, the problem of determining a Ramsey number splits into two
problems, these being the problems of finding upper and lower bounds for the
Ramsey number. A new Ramsey number is found in the unlikely event that
the upper and lower bounds can be shown to be equal. Table I gives all
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known values for R(k, [}, where 3 < k <[, together with the best khown
upper and lower bounds for a few of the other Ramsey numbers, Obviously,
R(kD=R(LE), R(1,)=1, and R(2,))= L

In the case of two colors, a coloring of the edges of K, is usually thought of
as a subgraph of K, where the edges of the first color represent the edges of
the subgraph, and those of the second color represent the nonedges. We
define a (k[ n e)-graph to be a graph on n vertices which has ¢ edges and
which has no complete subgraphs on &k vertices and no independent
subgraphs of ! vertices. If e is unspecified, the graph will be called a (&, { n)-
graph, and if n is also unspecified, then the graph will be called a (k,/)-graph.
It is easy to see that R(k, /) = n if and only if the largest (X, [)-graph hasn — 1
vertices.

Let G be a(k,I)-graph, and let v be any vertex in G. It is easy to check that
the subgraphs of G generated by the neighbors and non-neighbors of v are
(k — 1,l} and (k,I — 1)-graphs, respectively. We denote these two subgraphs
by H, (v) and H,(v), respectively. In such a partition of G, the vertex v is said
to be preferred. This idea immediately gives the following recursive upper
bound for Rk, 7).

Rk, D)< R(k—1,1) + R(k,1— 1) (1.1)

A close examination reveals a slight improvement. Suppose there is a
(k,!)-graph G with R(k — 1,I) + R(k,i — 1) — 1 vertices. Then each vertex v
of G must have exactly R(k — 1,/) — 1 neighbors. Hence the number of
edges of G is (R(k — 1,I) + R(k,i — 1) — 1} R(k — 1,I) — 1)/2, which must
be an integer. This is impossible if both R(k — 1,{) and R(k,/ — 1) are even.
Thus, in this case, we have strict inequality in (1.1).

A method which generally gives much better upper bounds when k= 3
was developed by Graver and Yackel [22]. In a(3,/)- graph G, if a vertex v is
preferred, then H,(v) is an independent set; hence every vertex has degree at
most (I — 1). Furthermore, each edge of G is either in Hy(v) or else is
adjacent to exactly one neighbor of v. These ideas prompt the following
definitions.

Definition 1. In a graph G, let|| G|| be the number of edges of G. Also if v
is any vertex of G, let d(v) denote the degree of v, and let Z(v) denote the
sum of the degrees of the neighbors of v,

Thus, in any (3,/)-graph G with preferred vertex v, we have| G|| = Z(v) +
|| Hy(v)||. Since Hy(v) is a (3,] —1)-graph, if we knew a lower bound on the
number of edges in such graphs, then we would have a lower bound on the
difference|| G || — Z(v).
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Definition 2. Let e(k,/n) be the least number of edges in any (k/n)-
graph.

Definition 3. Let v be a vertex of degree d in a (k/n)-graph G. If
|Hy(v)|| = e(k,! — 1,n — d — 1), then v is said to be a full vertex.

Definition 4. In a(3,/)-graph, letd; =1~ 1 — i, and let m; be the number of
vertices of degree d,.

Since in a (3,/)-graph, no vertex can have degree greater than [ — 1, the
subscript on the term d; denotes “how far” a vertex of degree d; is from
maximum degree.

Theorem 2.1 [22]. Let G be a (3,,ne)-praph. Let

A= ne— ;0 le(3,1— 1,n—d;,— 1) + d¥}m,.

Then A = 0, and there are at least # — A full vertices in G.
We now give an example to show how this theorem can be used.

Theorem 2.2, If & is a (3,6,16,32)-graph, then either G has a full vertex or
G is regular of degree 4.

Proof. 1t can easily be shown that G has no 2-vertices (vertices of degree
2), and so in order to apply the Theorem 2.1, we need to know the values of
€(3,5,n), where n=10,11,12. These have been calculated (see [22]), and
are 10,15, and 20, respectively., Applying the theorem we obtain:

A=512-=351,—31n, — 29,2 0.
We also know that

64=5my+ 4m, + 3m,, and
16=my+m +m,.

These equations are obtained by counting edges and vertices. If we solve this
system, we obtain m, = m,, and A =16 — 2m;,. So either my =m, = 0, in
which case G is regular of degree 4, or A < 16, in which case there is a full
vertex.

If G is a(3,6,16,34)-graph with a full 5-vertex d,, for example, then H,(v)
is a (3,5,10)-graph with ¢(3,5,10) edges. There is only one such graph,
namely the disjoint union of two pentagons. (In fact, it is generally the case
that there are very few (3,/,n)-graphs with e(3,/,n) edges.) This knowledge of
the structure of G makes a computer search feasible. For a description of the
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algorithms used in such a search, the reader should consuit [23]. We note
that if G is regular of degree 4, then H,(v) is a (3,5,11,16)-graph for any
vertex v. These graphs are not hard to find (there are six of them), However,
as a general rule, if H,(v) is a (k[ n)-graph, then as the difference
| Hx(v)|| — e(k,l,n} increases, the number of such graphs increases very
rapidly,

In 1968, Walker [41] produced a method which allowed him to improve
the upper bound for R(4,5), and to prove a general upper bound for R(k, k) in
terms of R(k — 2,k). The method uses a theorem first proved by Goodman
[20].

Theorem 2.3. Let G be a graph with n vertices. Let n; be the number of
vertices of degreej, 0 <j < n — 1. Let #(G) be the number of triangles in G.
Then

n-1

f(G)+t((_?)=(z) (7)) (n — 1 —J). (2.1)

1
2 =0

If G is a (k[ n)-graph, and if v is preferred, with v of degree/, then H,(v) is a
(k — 1,4/)-graph and Hy(v) is a (k,] — 1,n — 1 — j)-graph, If we let E(k, L n)
be the maximum number of edges in a (k, /, n)-graph (and define it to be 0 if no
such graph exists), then v can be in no more than E(k — 1,/) triangles. The
triangles in G which contain v are the independent 3-sets of G which contain
v, and these come from independent 2-sets in Hy(v). Since H,(v) must
contain at least e(k,/ — 1,n — 1 —j) edges, there are at most ("3 7) —
e(k,l — 1,n — 1 — j) independent 3-sets in &' containing v. Furthermore, we
have n —R(k{—1)<j<R(k—1,)— 1 by considering the number of
vertices in H,(v) and Hy(v). Hence, we obtain the following upper bound for
HG) + D).

R(k—1,0)—1
«Gyuun<l p (n)[E(k — 1,1,7)

J’—i’!“‘R(k,I‘*l)

(2.2)

+(" ; J)—dhl—hn—l—ﬂL
This inequality, combined with the equality (2.1), gives a method for
eliminating some integers as candidates for R(%,7). We illustrate by showing
{as Walker did) that R(4,5) < 28.

Assume that G is a (4,5,28)-graph. Then the relevent E- and e-values are:
E(3,5100=20, E(3,511)=22, F(3,512)=24, E(3,513)=26
e(4,4,14) = 50, e(4,4,15) = 55, e(4,4,16) = 60, and ¢(4,4,17) = 68. As the
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reader can check, the statements (2.1) and (2.2), together with the obvious
fact that X; n; = 28, are not simultaneously satisfiable. (In 1968, Walter
[41] showed that R(4,5) < 29. In 1972, he showed that R(4,5) < 28 by
improving his estimates of e(4,4,n) forn = 14,15, and 16 (see [42]). We use
the exact values of these numbers, which were calculated in [13].)

The above method can also be used to prove the following theorem (see

[41]).
Theorem 2.4. R(k k) <4R(k—2,k) + 2.

Very few constructive methods are known which yield good lower bounds
for R(k ). Most methods rely on some assumption of symmetry, and the
methods are useful only in specific cages. We will now give some of these
methods.

The first constructive method is due to Greenwood and Gleason [23].
Their method allowed them to evaluate R(3,5), R(4,4), and R(3,3,3). Since
R(3,4)=9, we know that R(4,4) < R(3,4) + R(4,3)= 18. To show that
R(4,4)= 18, we must exhibit a (4,4,17)-graph G. This is done by labeling
the vertices of G with the integers 1 through 17, and then joining two vertices
with an edge if the absolute value of their difference is in the set
D={1,2,4,8.9,13,15,16). We shall call such a graph a cyclic graph, and the
set D will be called the determining set of the graph. Cyclic graphs may be
used to obtain sharp lower bounds for some of the small Ramsey numbers
{see Table II).

We note that the (3,3,5)-, (3,5,13)-, and (4,4,17)-graphs are unique. There
are two other (3,4,8)-graphs (both are subgraphs of the cyclic one), and it is
not known whether the (3,9,35)-graph is unique.

For certain other values of the parameters k and /, the largest cyclic
{k,,n)-graph is known. These values were calculated by Kalbfleisch [32],
Graver and Yackel [22], Hanson [27], and others. They are given in Table
III. We denote the largest # such that a cyclic (k7 n)-graph exists by C(k,1).
It is easily seen that R(k,/) = C(k,/) + 1. In most cases, the number C(k, /)
is so far below the best known upper bound that it is unlikely that the cyclic

(k,1)-graph on C(k,) vertices is the largest (k,/)-graph. Cyclic graphs and

their variations can be used to generate lower bounds for Ramsey numbers of
more than two colors. We will discuss this in Section 4.

TABLE Il. Determining sets of the cyclic Ramsey graphs,

k / n Ak 1) D

3 3 5 6 {14}

3 4 8 9 (147

3 5 13 14 {1,5.8.12)

3 9 35 36 {1,7.11,16,19,24,28,34)
4 4 17 18 {1,2,4,8,9,13,15,16}
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TABLE I}
Best Known Bounds for Afk,

k / Crk { Lower Upper
3 6 16 18 i8
3 7 21 23 23
3 8 26 28 29
3 10 38 39 44
3 1" 45 46 54
3 12 48 49 63
4 5 24 25 28
4 6 .33 34 44
5 5 41 42 55
5 6 56 57 105
6 6 101 102 178

3. ASYMPTOTICS FOR TWO COLORS
In Section 2, we showed that
R(kD) = R(k - 1,1) + R(k,I— 1),

which immediately gives

R(k,l)s(k—H_z).

k=1
This implies that
+ R(kk)<c4t k2
for some constant ¢. From now on, ¢ denotes some appropriate constant,
Graver and Yackel [22] proved that
k* loglog k
R(3,k) < c——E0BF
log k&

This result can be extended to the Ramsey number R(Lk) for fixed [ and
large k such that

k™1 log log k
R(Lk) < c— 2 0BK (3.1)
log &

where the constant ¢ depends on /.
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We remark that for the case that / and & both are large, in particular { = &,
it is not known that (3.1) holds. (The widely quoted result of Yackel [44]
seems now in question [36].)

Recently, Ajtai, Komlds, and Szemerédi {3] proved that any triangle-free
graph on n vertices with degree ¢ contains an independent set of size c(n log ¢/
t). Now suppose G is a graph on n vertices having no triangle and no
independent set of size k. Every vertex is of degree at most k& since the
neighbors of a vertex form an independent set. Thus we haven = ¢ k*flogk,
which gives

R(3,k) < c k*/log k. (3.2)

Griggs [24] shows that 5/12 is an acceptable value for ¢ in (3.2).

There are two ways to obtain asymptotic lower bounds—the constructive
method and the probabilistic method. The latter method, which proves the
existence of finite structures having certain properties without actually
constructing them, often yields better lower bounds. This leads to
an intriguing situation. For » sufficiently large, a “good configuration™ is
assured by probabilistic arguments (in fact almost all the configurations are
“good”), but no one can find a procedure which can produce cne “good
configuration.”

P. Erdés, who played a predominant role in the development of the
probabilistic method, first proved the following (see [9]):

Theorem 3.3.
/2
NG

Spencer [40] improved the lower bound by a factor of 2 using the Lovasz
Eocal Theorem [11], which is a powerful tool in probabilistic methods.

It is not known whether lim, ... R(k, k)"* exists. The results stated above
imply that

R(k,k)> (3.3)

V2 < lim inf R(kk)" < lim sup R(k k) <4,

The determination of the value of lim R(k,k)"*, if it exists, is one of the
major open problems in this area of Ramsey theory. For fixed /> 3, it is
conjectured [12,40] that R(k,[) = k'~ asympotically in k. Note that this
is true for = 3.

As was stated earlier, constructive methods give weaker results than the
probabilistic method. Abbott [1] has given a recursive construction which
shows that R(k, k) = ck€, where C' = log 41/log 4 = 2.679 .. .. Nagy [38]
has given a construction which shows that R(k,k) > ck®. Frank! [14] has
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shown by construction that R(k,k) = ck™ for any m and some constant ¢
depending on m. Chung [7] improved Frankl's construction by showing that
R(k k) = exp (c(log k)*”/(log log k)'/?). Recently, Frankl and Wilson [16]
proved that R(k, k) = exp ((1 + o(1))(log k)*/(4 log log k)) by construction
using set intersection theorems. Namely, they consider a graph with vertices
v; represented by subsets §; of a set, so that the color of an edge {v;, v}
depends solely upon the cardinality of .S; N S;. The problem of finding a 2-
coloring of K, containing no monochromatic K, where n=(1 + &) for
some positive g, remains open,

When & and [ are distinct, the following result of Spencer [21,40]
generalized Erdos’ argument of (3.3):

Theorem 3.4. If for some p, 0 < p < 1,

(z)p(a) + (’;) (-l < 1,

then
R(k,D)>n.

In the case that /=3, Erdos [10] proved by the probabilistic method
that

2

RGBk) Z e s

This can also be obtained immediately by an application of the Lovasz Local
Theorem [40]. We note that this bound is very close to the best upper bound
(see (3.2)).

4. MORE THAN TWO COLORS

The only known exact value for m-colored Ramsey numbers, m = 3, is
R;(3) = 17, determined by Greenwood and Gleason [23]. Known nontrivial
bounds are also scarce. In fact, the only ones are:

S51<R(3)< 65][6,14],
159 < Ry(3) < 322 [17,43],
128 < Ry(4) < 254 [29,19].

A general upper bound was obtained in [23].
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H

Rkir, ..., k) S 24 Z (Rlkr, ooy by, ki = b Kisyyeny k) — 1),
" (4.1)

Although it is suspected that this upper bound is never tight for m = 4 and
k; = 3, this was shown only in the case m=4, k, =k, = k;=k;= 3, by
Folkman [14]). Folkman’s result can be used to get better upper bounds. For
example, it can be shown that R,(3) < kl(e — ), wheree=2.7....

The lower bound R;(3) > 16 was obtained in [23] by considering the
Galois field of 2* elements. The triangle-free coloring is determined by cosets
of cubic residues in the multiplicative group of the non-xero field elements
(i.e., an edge {%,#} is in color / if # — v is in the ith coset).

For general k, a triangle-tree k-coloring can be constructed recursively
from a triangle-free (k — 1)-coloring and a triangle-free (k — 3)-coloring [6].
It can be shown that

R(3) Z 3Ry-1(3) + R,—5(3) — 3.

Another technique used in obtaining lower bounds is to consider sum-free
partitions of integers. A set § of positive integers is said to be sum-free if
whenever  and j are elements of S the i + j is not an element of S. Suppose s;
is the largest integer such that the integers from 1 to s, can be partitioned into
k sum-free sets. We can then color an edge {u, ¢} of K, + 1 in the ith color if
|u— v| is in the ith sum-free set. This k-coloring does not contain any
monochromatic triangle since, for three integers a < b < ¢, the values ¢ — b,
b — a ¢ — a cannot all be in a sum-free set. Thus we have

Ri(3) = s, + 2.

This method does not give very tight bounds for the Ramsey numbers since
it only considers cyclic colorings. It is known [4] that s, = 1,5, = 4, 53 = 13,
and s, = 44. Both the constructions for R;(3) > 16 and Ry(3) > 50 are not
cyclic colorings. However, in order to make computer search for triangle-free
colorings computationally feasible, additional conditions are required
together with clever back-track methods [4]. Fredrickson [17] found by
computer that s5 > 157. Large sum-free sets can be constructed recursively
from small ones. In particular, (see [2])

Sk-H‘Z 23,@5‘] + Si + S
Thus we have, for a fixed I,

Ry(3) 2 5, = C(25,+ 1)
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for an appropriate constant C and k > /. Using 55 = 157, we have

Ri(3) = C(315)%5 = C(3.16 ... )~ (4.2)
Unlike (R(%, k))", the limit of (Ry(3))"/* is guaranteed to exist by

Ry 11,(3) 2 Ry, (3)Riy(3),

which can be obtained by constructing a triangle-free (k1 + ky)-coloring of
K, using a triangle-free ;-coloring of K, and a triangle-free k;-coloring of
K,,. From (4.1) and (4.2) the value of limy_.... (Ry(3))* is between 3.16 and
. Note that any new lower bounds for s, might improve the lower bound of
limy . (R 3))*. This could be an interesting task for those who have access
to large amounts of free computer time,

We now give three generalizations of the sum-free partitions and the
residue partitions which could be used to improve lower bounds for Ramsey
numbers. .

(G1) Whitehead [43] successfully partitioned Z, X Z, into three sum-free
sets and Z; X Z; into four sum-free sets. Using these sum-free sets, we can,
for example, construct a triangle-free 4-coloring of Ky by labeling the
vertices by elements of Z; X Z;. Note that 49 > 55 = 44, and we are now
considering a larger class of triangle-free colorings. Still, the Ramsey bound
obtained here is Ry(3) = 50, one less than the best known lower bound,

(G2) A set A of positive integers is said to be i-difference-free, if, for any
subset of i elements in 4, there is some pair of these elements whose
absolute difference is not contained in 4. Suppose the integers from 1 to »
can be partitioned into & i-difference-free subsets. We can then obtain a Ky~
free k-coloring of K., since, for any i + 1 numbers x,, ..., x;,, the set of
pairwise differences for the i numbers x, =X;..., X4 —X; cannot lie
entirely in an idifference-free set § if S contains X=X, 2<j<i+1.
Partitions of the integers from 1 to 40 into 4-difference-free sets were found
independently by Lin [37], Burling [5], Irving [ 30), Garcia [18], and Hanson
[27]. Thus Ry(5) = 42. Hanson and Hanson [28] partitioned 1 to 55 into
one 4-difference-free set and one 5-difference-free set to obtain R(5,6)=>
57. .

(G3) Instead of partitioning integers 1, . . ., ¢, we can consider partitions
of residue classes into i-difference-free sets where g is a prime power and
x, —x are in the same class. In this way substantial computer search time can
be saved at the expense of imposing further restrictions on the coloring
scheme. Hill and Irving [29] used this method to obtain the lower bounds
Ry(7) > 125 and R4(4) > 127. Also, Guldan and Tomasta [26] obtained the
bounds Ry(10) > 457 and Ry(11) > 521.
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