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ABSTRACT

The main question addressed in this article is the following: If t edges
are removed from a (t + 1) edge-connected graph G having diameter
D, how large can the diameter of the resuiting graph be? (The diameter
of a graph is the maximum, over all pairs of vertices, of the length of
the shortest path joining those vertices.) We provide bounds on this
value that imply that the maximum possible diameter of the resulting
graph, for large D and fixed ¢, is essentially (t + 1) - D. The bulk of the
proof consists of showing that, if t edges are added to an n-vertex path
P,. then the diameter of the resulting graph is at least (n/{t + 1)} — 1.
Using a similar proof, we also show that if t edges are added to an n-
vertex cycle C,, then the least possible diameter of the resulting graph
is (for large n) essentially n/{t + 2} when tis even and n/{t + 1) when
tis odd. Examples are given in all these cases to show that there exist
graphs for which the bounds are achieved. We also give results for the
corresponding vertex deletion problem for general graphs. Such results
are of interest, for example, when studying the potential effects of node
or link failures on the performance of a communication network, especially
for networks in which the maximum time-delay or signal degradation is
directly related to the diameter of the network.

1. INTRODUCTION

For an undirected graph (in general, we follow the graph-theoretic ter-
minology of [1]) G, let V(G) denote the vertex set of G and let E(G)
denote the edge set of G. The distance d;(u,v) between two vertices u,
v € V(G) is the length (in number of edges) of a shortest path in G
Jjoining u and v; if no such path exists, we set d;(u,v) = «. The diameter
D(G) of G is the maximum value of dg;(u,v) taken over all pairs of
vertices u, v € V(G). Thus a graph has finite diameter if and only if it
is connected.
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The main question studied in this paper is the following: Suppose that
G is a graph with diameter D and that G’ is obtained from G by removing
t of its edges. How large can the diameter of G' be? To avoid the
relatively uninteresting case in which G’ can be disconnected, we shall
require that G be ¢ + I edge-connected, i.e., that every pair of vertices
be joined by at least ¢ + 1 edge-disjoint paths. Our results, however, do
not use this requirement in any essential way, and they all continue to
hold under the weaker requirement that G’ simply be connected.

In addition to considering this edge-deletion question, we also address
the analogous vertex-deletion question, which turns out to be substantially
easier to resolve.

These questions are of interest, for example, when graphs are used
to model the linkage structure of communication networks. Here the
vertices and edges of the graph represent the nodes and links of the
network, and the diameter of the graph corresponds to the maximum
number of links over which a message between two nodes must travel.
In cases where the number of links in a path is roughly proportional to
the time delay or signal degradation encountered by messages sent along
the path, one would therefore like to have the diameter of the network
be relatively small. The particular questions discussed in this paper thus
pertain to the performance of communication networks under the oc-
currence of link or node failures.

Notice that these questions are also related to the corresponding ‘‘aug-
mentation” questions: Given a connected graph G', if we add 7 edges
to G’ to form a graph G, how small can we make the diameter of G?
This version is of interest when considering adding facilities to a network
to upgrade its performance.

Both the edge-deletion and vertex-deletion questions are closely related
to an extremal graph problem, originally posed by Vijayan and Murty
[17], of minimizing the number f(n,D,D',#) of edges in a graph with »
vertices and given diameter D having the property that, if any ¢ edges
(vertices) are deleted, the remaining graph has diameter no more than
a given value D'. Although this problem has received quite a bit of
attention in the literature [2-18], it seems to be quite difficult in general,
and relatively little is known beyond cases with small values of ¢ and
D (primarily ¢t = 1 and D =< 5). A recent survey of work in this area
appears in [6,9]. The questions we are concerned with can be viewed
as asking about the extreme values of the parameter I, in terms of ¢
and D, beyond which the optimal graphs do not change.

In Section 2 we deal with the edge-augmentation problem for two
fundamental classes of graphs, the n-vertex paths P, and the n-vertex
cycles C,. For the path case, we show that the least possible diameter
of a graph obtained by adding ¢ edges to the path P, is (n/(t + 1)) +
O(1). This is the main result needed for proving our edge-deletion bound
for general graphs, and its proof is fairly difficult. We include the cycle
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case, which is interesting in its own right, primarily because its proof is
similar to that for the path case. The result itself is perhaps surprising,
since it says that the least possible diameter of a graph obtained by
adding ¢ edges to the cycle C, is (n/(t+ + 2)) + O(1) if ¢ is even and
(n/(t + 1) + O} if ris odd.

In Section 3 we consider the edge-deletion problem for general graphs.
Here we use the edge-augmentation result for paths from Section 2 to
show that the maximum possible diameter for a graph obtained by deleting
t edges from a ¢ + 1 edge-connected graph G is (t + 1) - D(G) + O(1).
For ¢t = 1, we then strengthen this result to exactly 2 - D(G).

In Section 4 we deal with the analogous vertex-deletion problem for
general graphs, which is much simpler than the edge-deletion problem.
In the vertex-deletion case, however, the corresponding maximum diameter
is unbounded in terms of t+ and D(G), but it can be bounded in terms
of t, D(G), |V(G)|, and the vertex-connectivity of G.

Finally, Section 5 concludes the paper with several open problems.

2. ADDING EDGES TO A PATH OR A CYCLE

In this section we address the following question: If ¢ edges are added
to an n-vertex path P, or an n-vertex cycle C,, how small can the
diameter of the resulting graph be? Let P(n,f) denote this least possible
diameter for the path case, and let C(n,f) denote the corresponding value
for the cycle case.

Theorem 1. For all ¢t = 1,

n n
. .,_<_ < — .
p ] 1 P(ﬂ,f) p ] + 3

Proof. We prove the lower bound first. Fix » and ¢, and let G be a
graph formed by adding ¢ edges to P, satisfying

P(n,ty = D(G) = D.

Without loss of generality, we may assume that none of the ¢ additional
edges forms a loop, i.e., joins two identical vertices.

Let X denote the subgraph of G formed by the r extra edges, and let
C1,C2s ey €, With r < ¢, denote the connected components of X. The
vertices of X determine a partition of the path P, into subpaths, called
segments, as shown in Figure 1. Each segment is a maximal subpath of
P, containing no endpoint of an edge in X in its interior. Thus every
segment includes only two vertices from X, as the end vertices of the
segment, and there are two special fail segments ¢, and t, that include



514 JOURNAL OF GRAPH THEORY

[ [ NN N N LN U N G .
t : t
: 2

FIGURE 1. Partition of P, into segments determined by the endpoints of edges
in X, with tail segments ¢ and t,.

only one vertex each from X (either or both of these may be empty,
i.e., may be a one-vertex path P,}. We shall refer to the non-tail segments
as regular segments

Lemma 1. There are at most ¢+ + r — I regular segments.

Proof. The number of regular segments is one less than the number
of vertices in the vertex set V(X) for X. We can bound the size of V(X)
by first noting that, for each component c;, the fact that ¢, is connected
implies that |E(c;)| = |V(¢;)| — 1. Therefore,

IVX)| = 2|Vl

i=1

2(|E(c )+ 1)

i=1

=|Ex)|+r=t+r 1

Our proof will ignore the interior structure of the components c¢;,
concentrating instead on the segments and how they are interconnected
through common components, Using bounds on the lengths of certain
collections of segments and the fact that the sum of the lengths of all
the segments is exactly n — 1 (the length of P,), we will obtain our
desired bound on D.

To this end, we define G* to be the graph obtained from G by merging
the vertices of each component ¢, into a single component vertex labeled
by ¢; and removing the ¢ edges in X, See Figure 2. The edges from G
that remain in G* are exactly those edges in the original path P,, so the
segments all retain their identities in G*, and they act much like edges
Jjoining the condensed vertices. Notice that in general G* may contain
loops and multiple edges, so, strictly speaking, it is actually a multigraph.
More importantly, observe that any two vertices of G* must still be
connected by a path of length D or less.

By the degree of a component vertex in G*, we will mean the number
of time it occurs as an end vertex of a segment. This differs from the
usual notion of degree only in that any empry tail segment contributes
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FIGURE 2. The condensed graph G* obtained from the graph G of Figure 1
by shrinking each connected component of X to a single vertex.

1 to the degree of its single component vertex, a convention we use .
merely to simplify the presentation.

Lemma 2. The degree of each component vertex in G* is even and at
least four. :

Proof. In G, each component ¢; of X includes at least two vertices of
the path P,. Each such vertex is an-end vertex of exactly two segments
and hence contributes exactly two to the degree of ¢; in G*.

Let s, denote a regular segment in G* of maximum length, and let v,
be a vertex on s, with distance at least z = L|E(s,)|/2) to both end
vertices of s, i.e., vy Is in the center of s,. We will use s, and v, as
focal points for computing bounds on the lengths of the segments in G*.
In order to do this, we now define a tree T that contains, for each
component vertex c;, a shortest path in G* from ¢; to the segment s,.
We also will require that this **shortest path tree’’ T include the segment
5o, unless both end vertices of s, are the same in G*, in which case we
exclude s, from T. (These two possibilities will in fact be treated separately
at a later point in the proof.) Specifically, we let T be any subgraph of
G* such that (1) T is a tree, (2) for each component vertex c;, T contains
a shortest path in G* from c; to s, (3) all leaves (vertices of degree 1)
in T are component vertices, and (4) s, is contained in 7 if and only if
the two end vertices of s, in G* are distinct. It is straightforward to
show by standard techniques that such a T exists. Figure 3 illustrate
the two possible forms for T. :

For each component vertex c;, let p; denote the path in T from c; to
the segment s,. The key bound on segment lengths that we will be using
is the following:

Lemma 3. For any regular segment s # s, joining component vertices
c; and ¢,

|E(s)| + |E(p,)| + |E(p))| + |E(sy)| <2D + 2.
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FIGURE 3. Two cases for the "shortest path tree” T. If the two end vertices
of sy in G* are distingt, then s, is included in T. If they are the same, then s
is excluded from T.

Proof. If 5 is contained in T, let ¢; be the further of ¢; and c; from s,.
Then z + |E(p;)| < D, so we have

|E(s)| + |ECp)| + |E(p)| + |E(s0)l <2 |E(p)| + 22 + 1
=2D + 1.

If s is not contained in T, let {&,v} be an edge in 5 such that there is
a shortest path in G* from v, to « that includes ¢, and there is a shortest
path in G* from v, to v that includes ¢;. If ¢; = ¢;, we require in addition
that the distance in s from « to ¢; be L|E(s)|/2d and the distance in s
from v to ¢; = ¢; be L(E(s)i — 1)/24. The existence of such an edge
{u,v} follows from the fact that s is not contained in 7, since then each
of the vertices ¢; and ¢; has a shortest path to s, that does not contain
any edge of 5. The length of the shortest path from v, to u satisfies

d(u,c;) + |E(p)| + z < D.
The length of the shortest path from v, to v satisfies

d(v,c;) + |E(p)| + z < D.
Hence

2D + 2= (1 + dJfu,c;) + dv,c;)) + |E(p)| + |[E(p)| + 2z + 1)
= |E(s)] + |E(p)| + |E(p)| + |E(so). |

Lemma 4. For i € {1,2}, let ¢; denote the single component vertex in
the tail segment ;. Then

2- |E(ti)k + 2 |E(Pi)l + |E(So)| =2D + 1.
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Proof. Since the shortest path from v, to the far end of ¢; must be no
more than D, we have

|Bt)| + [Ep)| + 2 < D.
Hence
2D + 1= 2(E(t)| + |E(p)) + 2 + 1
=2 |E()| + 2 |E(p)| + [E(sy). 8

Lemma 5. Suppose that s, is contained in 7, and let T, and 7, be the
two subtrees obtained when s, is deleted from T. Let s, denote a shortest
segment joining a vertex in 7 to a vertex in T», with s, = s, if and only
if it is the only such segment. Then for i € {I,2}, the tai! segment ¢,
satisfies

2+ |E(@)| + |E(p))| + |EGs)| + |E(so)| < 2D + 1.

Proof. Let ¢ and ¢’ denote the two end vertices of s,. Without loss
of generality, assume that ¢ and c, belong to T;. Then p, is a shortest
path joining ¢ and the segment ¢,. Let p! denote a shortest path in G*
from ¢’ to the segment ¢,. Then, by the same argument used for proving
Lemma 3, with the far end of ¢, playing the role of v, (note that the proof
of Lemma 3 did not depend on s, being a longest segment), we have

2 - [E@) + |Ep)| + |E(pi)| + |E(so)| < 2D + 1.

Moreover, p; must contain some regular segment that crosses from T,
to T;, and hence |E(p))| = |E(s,)|, from which the result follows. 1

We now use the bounds in Lemmas 3, 4, and 5 to bound the total
length of all the segments in G*. Let S denote the set of all segments
(including the tail segments), let L denote the set of leaves of T other
than the endpoints of sy, and let R denote the set of all regular segments
not included in 7. Note that, since T includes exactly r — 1 segments,
it follows from Lemma 1 that |R| < ¢. We now divide the proof into
cases according to whether or not s, is contained in 7.

Case 1. 5, is not contained in 7.

2 DEs)| = 2 Z|ES)| + 2 X |E(s)] + 2| E()] + |E(t,))

SES sCT SER

<2 X |E(p)| + 2 D |EG)| + 2(Ew)| + |E¢))

€L SER
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< > (E)| + |Ep)} + |Ep)D) + |E(p)| + |E(p,)|
SER —{so}

S B+ 20Eso)| + [E@)| + B

SER — {50}

since every leaf in L has degree at least 2 (in fact, at least 3) in G* —
T; the paths p; and p; in the summation over s € R — {s,} are those to
the end vertices of 5. By Lemmas 3 and 4, we then have

2 JIE@| < (R - D@D + 2 ~ |E(s)) + (Rl = D - |ECso)

&S
+2-2D+ 1)
= (R| + D2D + 2) - 2.

Thus

n—1=DIE|<(R + DD+ 1D -1

SES
s+ DD+t
and ' ’ —.

D;n—l—t
t+1

Case 2. sy is contained in 7. Let 7; and 7, denote the two subtrees
of T obtained when s, is removed, and let s, be a shortest segment
joining a vertex in T, to a vertex in T; as in Lemma 5. We have two
subcases depending on whether or not 5, = s,:

Subcase 2.1. 5, # 5.

2- JE(s) = 2 Z|EW)| + 2 Z|EGS)| + 20E)] + |Etn)

eS8 sCT SER
<2 X |E(p)l + 2Eso)| + 2 X 1E(s)
€L SER

+ 2(E()| + |E@)D
< 2 (E®|+ |Ep)| + |E@)D + |Ep)l + [E(p2)

SER — {51}

+ 2|E(s)| + 2|EGs)| + 3 |E(s)]

sER—{s1}

+ 2(E(t)] + ‘E(tz)

),
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since evefy leaf in L has degree at least 2 in (G* — T) — 5,. By Lemmas
3 and 5, we then have

2- DHE)| = (Rl - D@D + 2 - |E(s,)]) + (R| — 1) - |E(so)|

SES
+2-2D+1)
= (R| + D2D + 2) - 1,

so again we have
n—1=DEs)| <+ DD+t

SES
and
Dz(n-1 —t)/(t+ 1.

Subcase 2.2. 5, = 5. We first claim that there exists a segment s, €
R such that every leaf in L has degree at least two in (G¥ — T) — s,.
Since every leaf in L has degree at least three in G* — T, we are done
if any segment in R has two distinct end vertices or has an end vertex
not in L. So suppose that each segment in R is a “loop’” ending at a
vertex in L. Because both end vertices of s, have degree four in G* and
neither belongs to L, each of those end vertices must have degree at
least four in T U #, U t,. Thus there are at least four leaves in L, and
at least one of them is not an end vertex for any tail segment ¢, Since
that leaf has degree at least three in G* — T and has only “‘loops’* from
R incident on it in G* — T, it must in fact have at least two such “loops”’
incident on it. Either of them suffices as s,. The claim follows.

Let s, be such a segment. As in the previous subcase, we then have

2-Y0Esl< 3 z}(lE(s)l + |E(p)] + E(p)))

SES SER-{s
+ |E(p))| + |E(p,)| + 2E(s,)]
+ 2E(s) + D z}lE(s)l + 2E@)| + |E(n)),

SER—{s

since every leaf in L has degree at least 2 in (G* — T) — 5,. By Lemmas
3 and 5, with 5; = s, in the latter, we obtain

2- J|E)| < (R - D@D + 2 — |E(s)) + (R| - 1) - |E(so)|

sE8
+ 2|E(sy)| + 22D + 1 — [E(s,)))
= (R| + D2D + 2) ~ 2 + 2E(s,)| — |E(s,)])
< (R + D@D +2) -2,
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since s, is the longest regular segment. Therefore, in this final case we
also have

n—1= 2|ES|<(¢+ DD +1¢

SES
and

p=nr=1-1¢
t+1

so the proof for the lower bound is complete.
The following construction achieves the upper bound: Given » and ¢,
choose ‘

=T(n — 1t — 1)/2(t +

Let the vertices ug,uy, ..., ¥ in P, be such that the distance from u, to
one end vertex of P, is no greater than x, the distance from 4, to the
other end vertex of P, is no greater than x, and, for I < i < ¢, the
distance from u;_, to u, is at most 2x + 1. The choice of x ensures that
this can be done. The ¢ additional edges we add to form G are simply
the edges {uo,u;} for 1 < i < ¢, i.e., they make up a star with center
#y. See Figure 4 for an example. To obtain an upper bound on the
diameter D of G, observe that every vertex is within distance x of some
vertex u; and every pair of vertices & and u; are within distance two of
one another. Hence,

Pn)<D<2x+2
<{(n—-t—-1/a+1)+4
= (nf(r + 1)) + 3

as required. The proof of Theorem 1 is complete. 1

FIGURE 4. An example of the upper bound construcnon for Pint}, with t = 4
and n = 25. This graph has diameter 6.
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Corollary 1, For all ¢ = 1, P(n,H) = n/(z + 1) + O(1).

We use similar arguments for bounding C(n,t). Perhaps surprisingly,
the result depends in a significant way on whether ¢ is even or odd.

Theorem 2. If r is even,

H n
- 1= < — 4+ 3,
t+ 2 =) t+ 2 3

Proof. Since one way of adding 7z + 1 edges to a path P, is to first
add one edge joining the two end vertices of P, and then to add ¢
additional edges in the optimal way for the resulting cycle C,, we im-
mediately have the lower bound

n
Cln,t)= P(n,t + N = —— — 1
(n,0) (n ) 13

The following construction achieves the upper bound: Given » and f,
choose

x="Tn/(t + 201

Choose vertices wug,u,,u,, ..., #,,, on the cycle €, such that the distance
from u; to ;. ,, 0 =< i < t, and from u,_., to u, is at most x. The choice
of x ensures that this can be done. The ¢ additional edges added to form
G are simply the edges joining u, to each of u;,u,, ..., , and joining
uy to each of u3,us, ..., u,, 4, i.e., they make up two disjoint stars whose
vertices are interlaced on the cycle C,. See Figure 5 for an example.

FIGURE 5. An example of the upper bound construction for Cin.t) when t is
even. Here t = 6, n = 32, and the resulting diameter is 6.
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To bound the diameter of G, consider any two vertices v, and v, on
the cycle C,. Let T, denote the tree consisting of the #/2 additional
edges incident on u,, and let T; denote the corresponding tree containing
;. The sum of the distances from v, to T; and to T, is at most x, since
v, belongs to a segment of length at most x that has one end vertex in
each tree. Similarly, the sum of the distances from v, to T, and to T, is
at most x. Thus,

d,To} + dv,, 1)) + dvy, Ty) + dv,,T)) = 2x,
and it must be the case that either d(v,,T;) + d(v,,Ty) =< x or d(v,,Ty)
+ d(v,,T,) = x. Without loss of generality, assume the former. Then
the corresponding vertices of T, that are closest to v, and to v, are at

most distance two apart in G, since Ty is a star, so we have a path of
length at most x + 2 joining v, and v,. Therefore, '

n
= + 2 —— +
DGY=sx+2 P 3

as required. 1

Theorem 3. If 7 is odd,

n n
—_ = = — + .
t+1 <y r+1 3

Proof. The upper bound follows immediately from the construction
for P(n,f). To prove the lower bound we shall use many of the ideas
used in the proof of Theorem 1, although the proof in this situation is
slightly more complicated.

Observe that now there are no tail segments, so all segments are regular
segments. Furthermore, the number of such segments in this case is at
most ¢ + r, rather than ¢+ + r — 1. We construct the condensed graph
G* and the ‘‘shortest path tree’” T exactly as in the proof of Theorem
1. Then Lemmas 2 and 3 also continue to hold. Let § denote the set of
all segments, let L denote the set of all leaves of T other than the end
vertices of sy, and let R denote the set of all segments that are not
contained in 7. Since T contains exactly r ~ 1 segments, |R| < ¢ + 1.
We now divide into cases along somewhat different lines than done in
the proof of Theorem 1.

Case 1. s, is not contained in T or |R| =< t. Let s* be any segment in
R other than s;, with ¢, and ¢, denoting the end vertices of s* and with
s* empty if there is no such segment in R. Then
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2- DIES =2 J|EGs) + 2 3 |Es)]

SES SCT SER
<2 DIEE) +2- 3 |E(s) + 2 |E(so)
ciEL ‘ SER — {50}
< 2{) }(IE(s)l + |E(p)| + |E(p)) + |E(py)| + |E(p,)|
SER — {50, 5% :
+ > |Es)] + 20 |E(so)| + 2 - |E(s%)
SER —{sp,5*}

since every leaf in L has degree at least 2 in G* — T. Observe that, by
the properties defining this case, the number of segments in R — {s,,5*}
is at most £ — 1. Applying Lemma 3, we obtain

2- JE(s)| < (t = D@D + 2 — |E(sy)) + (¢ — 1) - |E(so)| -

SES
+2-12D + 2)
=({t+1)-2D+2)

and hence

n= YIES|<(t+ 1D+ 1)

SES
from which the desired inequality is immediate.

Case 2. s, is contained in T and [R| = ¢ + 1. Let T, and 7, denote
the subtrees of T formed when s, is deleted. We first claim that there
exists at least one segment in R that has both its end vertices in the
same subtree (either T, or T,) of 7. To see this, consider a path in G*
that traverses every segment exactly once and in the same sequence that
they occur in the cycle C,, say starting with some component vertex in
T,. Since this path starts and ends at the same component vertex, it
must cross between T, and T, an even number of times, and hence G*
contains an even number of segments joining a vertex in 7, to a vertex
in 7. Since all such segments belong to R U {s,} and since |[R U {s,}|
must be odd, it follows that some segment in R does not join a vertex
in T, to a vertex in T3, and hence that segment satisfies the claim.

Lemma 6. Let s* be any segment in R that joins two vertices in the
same subtree of T (say 7,), and let ¢, and ¢, denote its end vertices,
where ¢, is the closer of the two to so. Let p* be a shortest path from
s* to the end of s, that is in T,, let s} be the segment on this path that
joins a vertex in T, and a vertex in T,, and let ¢, denote the end vertex
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of s¥ in T,. Then
|E(s*)| + |E(py)| + |EGHI + |E(pa)| + |Elso)l < 2D + 2.

Proof. Applying the same proof as for Lemma 3, with s* now playing
the role of s,, we obtain :

™)+ [E)] = |Ep®] + [Blso)] < 2D + 2.
Since |[E(p*)| = |E(sP| + |E(p;)|, the lemma follows immédiately. |

Let s* be any segment in R that joins two vertices in the same subtree
of T, where s* is chosen to be a loop if there are any loops in R. Without
loss of generality, we may assume that both end vertices of s* belong
to T,. Let ¢,, ¢z, §¥, and ¢; be as stated in Lemma 6, We now complete
the proof of the lower bound by considering three subcases. '

Subcase 2.1. s¥ # s, and either s* is a loop or ¢, is not an end vertex
for sf. '

2- JIEG)| <2 Z|Ep) + 2+ D |Es)] + 2 |Es,)

SES oL sER

< > (E)| + |E(p)| + EpID + 2 - |E(py)

SER - {s*, 51}

+ > |Es)| + 2 |Es®) + 2 |EGH] + 2 |E(so)

SER —~{s*,51}

since every leaf in L — {c,;} has degree at least 2 in G* — (T U
{s*.s%}). Using the fact that |[R — {s*,s{}| = ¢ — 1 and applying L.emmas
3 and 6, we obtain

2 DIEGS < (t — D@D + 2 — |E(so)]) + (¢ — 1)+ |E(so)|

SES
+2-0Q2D +2)
=+ DRD + 2),

from which the desire inequality follows as before,

Subcase 2.2. s¥ = s,. We first claim that in this case there exists a
segment 5, € R — {s*} such that every leaf in L — {c,} has degree at
least two in G* — (T U {s*,5;}). We know from Lemma 2 that every
leaf in L has degree at least three in G* — T. If s* is a loop, then any
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segment in B — {s*} suffices as s, (and R — {s*} is nonempty because
|R| = ¢ + 1and ¢ = 1). If s* is not a loop, then, by the choice of s*,
all segments in R join two distinct component verticeés. Consider any
leaf of T that belongs to 7, (including possibly the end of s, in T3, even
though it was excluded from L). That leaf must be an end vertex for at
least three segments in R, none of which is s*. If any one of those
segments does not have ¢, as its other end vertex, it suffices as s, and
we are done. On the other hand, if all three of those segments have c,
as their other end vertex, we can choose any one of them as s,, since
¢, will still have two segments incident on it in G* — (T U {s*,s,}). The
claim follows.
Letting s, denote any such segment, we have

2- DIES)| <2 D E(p) + 2 DIES)] + 2 - |E(so)]

SES o EL SER
< 2 (|E + |E(p)| + |ECp)D + 2+ |E(py)
SER—{s*, 53}
+ > |E(s)] + 2 |E(sy)| + 2 |E(so)l,
SER —{s*,52}

since every leaf in L, except possibly ¢, has degree at least two in
G* — (T U {s*,5;}D). Using the fact that |R — {s*,s,}| = £ — 1 and apply-
ing Lemmas 3 and 6 (the latter with s¥ = 5y), we obtain

2- JIEG)| < (1 = DD + 2 = |EGso)}y + (2 = 1) - ECso)

=AY
+ 202D + 2 — |E(sy)) + 2|E(sy)|
= (¢t + D2D + 2) + 2(|E(s;)| — |E(s0)))
=(t+ 2D + 2),

from which the desired inequality follows as before.

Subcase 2.3. s # s,, s* is not a loop, and ¢, is an end vertex for
s¥. (Note that in this case there can be no loops in R, by choice of s*.)

Let L' = L — {e,¢3}, and let M, be a maximum-sized collection of
vertex-disjoint segments joining pairs of vertices in L', i.e., a *‘maximum
matching’® on L’. For each vertex in L' — V(M)), choose a single
segment from R — {s*,s}} that is incident on that vertex, and let M,
denote the collection of all such chosen segments. Notice that we can
always choose such a segment, since every vertex in L' has degree at
least one in G* — (T U {s*,s¥}) and, by the maximality of M,, no segment
in R — {s*,s¥} can join two vertices in L' — V(M,). Let M = M, U M,.
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We now claim that there are at least |M| segments in R — (M U
{s*,stD. First, consider the degrees of the vertices in L' in the graph
formed by the segments in R — M. Every vertex in L' — V(M,) has
degree at least two in this graph. Furthermore, at least one end vertex
of each segment in M, has no segment from M, incident on it, for

- otherwise we could replace this segment in M, by two segments from

M, (one incident on each of its end vertices), contradicting the maximality
of M;. Such an end vertex of a segment in M, has degree at least two
in the subgraph formed by R — M. Thus, adding up these degrees for
vertices in L', subtracting two for the contributions of s* and s*, and
dividing by two, we have at least

F2- My +2 M| —2)/21= M| -1

segments in R — (M U {s*,s{}). In addition, if any segment in M, does
not have two or more segments from M, incident on one of its end
vertices, we can add one to the degree sum, thereby obtaining |M| segments
as required. Thus we may assume that every segment in M, has at least
two segments from M, incident with one of its end vertices, and therefore
its other end vertex has at least two segments from R — M incident on

- it that are not also incident on vertices in L' — V(M) (again by the

maximality of M,). This implies that there are at least |M,| segments in
R — M that do not involve vertices in L' — V(M,). Each vertex in
L' — V(M,) is an end vertex for at least two segments in R ~ M, and
these are all distinct since no segment joins to vertices in L' — V(M)
It follows that there are at least |M,| + 2 - |M,| — 2 segments in R —
(M U{s*,stD. If [M,| = 2, we are done. If |M,| = 1, our assumption
that every segment in M, has two segments from M, incident on one of
its end vertices implies that we must have |M,| = 0. Consider any leaf
on T (possibly an end vertex of so) that is different from c,. It has degree
at least four in G* and is an end vertex for one segment in 7, at most
one of s* and s¥, and possibly the single segment in M. Therefore it
must be an end vertex for some segment in R — (M U {s*,5*}) so

IR — (MU {s*sthl=1= M|
If |M,| = 0, then |M;| = 1, and both end vertices of each segment in

M, have degree at least two in R — M. This implies that there are at .
least

M4 - M| -2/ =2-M] - 1= M| = M|

segments in R — (M U {s*,s7}), and the claim is proved.
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Therefore, we have

SIEG| < X |E(p)| + X EGS)| + |Eso)

SES o EL sER

< X (Es)| + |E(p)| + |E(p)D) + |E(p))| + |E(p3)]

sEM

+ D |E9)| + |E(so),

JER-M

since every vertex in L' = L — {c;,c3} has degree at least one in the
graph formed by the segments in M. Applying Lemmas 3 and 6 and
using the facts that |[E(s)) < D + 1| for s # s, (which follows from
Lemma 3) and

IR — (M U {s*,stD| = |M|
we obtain

S|E(s)| < M|+ 2D + 2 — |E(s))) + (¢t — 1 — |M)) - min{|E(s,)|,D + 1}

SES
+ |E(py)| + |E(ps)| + |E(s¥)| + |E(s)| + |E(so)|
<|M- 2D+ +(@—-1-2-|M}D+ 1) +Q2D+2)
<@+ 1D+ 1), :

from which the desired inequality follows, completing the proof of the .
lower bound. |

Corollary 2. If ¢ is even, C(n,f) = n/(t + 2} + O(1), and if ¢ is odd,
Cln,t) = n/(t + 1) + O(1).

3. REMOVING EDGES FROM A GRAPH

We now use Theorem 1 to bound the maximum increase in the diameter
of a graph caused by deleting ¢ of its edges. Let f(t,D) denote the
maximum possible diameter of a graph G' obtained by deleting ¢ edges
from a ¢+ + 1 edge-connected graph G satisfying D((G) = D.

Theorem 4. For t = 1, f(:,D) = (t + 1) - D + O(p).

Proof. We first show that fe, D) < (¢t + 1) - D + O(f). Let G be any
"t + 1 edge-connected graph, and let G’ be obtained by deleting any ¢
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edges from G. Since G’ is still connected, D(G') = D’ is finite. Let v
and v’ be two vertices of G’ such that dg(v,v’) = D'.

Partition the vertices in V(G') = V(G) into sets V,, i = 0,1, ..., D',
by setting V;, = {w:ds(v,u}) = i}. Notice that, by the choice of v, each
of these sets is nonempty. Let H and H’ be the graphs obtained from
G and G', respectively, by contracting each set V, to a single vertex v,
and removing any loops and duplicate edges. Then we have D(H) <
D(G) = D, since every path in G remains a path in its contracted version,
and the deletion of loops and duplicate edges has no effect on the length
of the shortest path joining any two vertices. Moreover, H' consists
simply of the D’ + 1 vertex path vy,vy, ..., Up, and H differs from H'
only in that it has at most ¢ additional edges, namely those of the ¢ edges
in E(G) — E(G') that did not become loops or duplicate edges when
the sets v; were contracted. Thus H is the union of a path on D' +
1 vertices and at most ¢ additional edges, so its diameter is at least
P(D’ + 1,5. By Theorem 1, we then have

D +1
t+ 1

D=DH)=PD + 1,n= - 1.

It follows that

D=s@+1})D+rt=0@+1D-D+ 0

and hence f(z,D) satisfies the required upper bound.

The following construction shows that f(r,D) = (¢t + 1) - D + O(1):
Choose x = LD/21 — 1. By the form of the desired result, we may
assume that D is large and hence that x is positive. The vertices of G
are partitioned into (¢+ + 1)2x + 1) levels, numbered from 0 up to
(t + 1)2x + 1) — 1. Each level contains ¢ + 1 vertices, and each vertex
in the level is joined by an edge to every vertex in the preceding level
and to every vertex in the succeeding level. Notice that this already
ensures that G is ¢+ + 1 edge-connected. Finally, for 0 = k = ¢, choose
a designated vertex u, from level x + k(2x + 1), and add the edges
{tg, 1}, 1 = k <1, t0 G.

To see that D(G) = D, we need only observe that every vertex is
within distance x of some designated vertex u, (this requires x = 1) and
that every pair of designated vertices is joined by a path of length at
most two. Furthermore, when the ¢ edges joining the designated vertices
are deleted, the diameter of the resulting graph G’ is

(t+D2x+ D - 1=+ (D - 2)
=(+1)-D+ 00

as required. 1
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Since ¢ + 1 edge-connectivity was used in the upper bound proof only
to ensure the connectivity of G’, we have also proved

Corollary 3. Suppose that ¢ edges are removed from a graph G. If the
resulting graph G’ is still connected, then it must satlsfy DG) = (¢t +
- D(G) + ¢

With respect to the extremal graph problem of Vijayan and Murty
[18], we can immediately conclude that

Corollary 4. If D" = (¢ + 1) D + 1, then f(n,D,D',0) = f(n,.D,D’ + L,0).

The bound of Theorem 4 can be made exact in the case of + = 1.

Theorem 5. f(1,D) = 2D.

Proof. By considering the cycle Cyp,q on 2D + 1 vertices, we im-
mediately have that f(1,D) = 2D. We use a proof by contradiction to
show that f(1,D) =< 2D,

Suppose that G is a two edge-connected graph with diameter D and
that {u,u'} is an edge of G whose removal results in a graph G’ with
diameter greater than 2D. Let v and v’ be two vertices of G such that
de(v,v’) = 2D + 1, and let ag,ay, ..., a;, with g, = v, g, = v’ and
k = 2D + 1, be the sequence of vertices on a shortest path p from v
to v’ in G'. Such a path exists since G’ must still be connected.

Consider first the pair of vertices v and ap.;. By the choice of p as
a shortest path in G, it must be the case that de(v.ap,y) = D + 1,
and hence any shortest path in G from v to ap,,; must use the edge
{u,u'}. Consider such a shortest path in G, and suppose without loss of
generality that it encounters u before u'. Since I(G) = D, it follows
that

dG(U,H) + 1 + dg(u',apy) = D

and that the shortest paths in G from v to « and from #' to ap,, do not
use the edge {u,u’}. Therefore, we have

de(v,u) + de(u'yap) =D — 1.

Now consider the pair of vertices v’ and ap. Since & = 2D + 1,.
de{ap,v’} = D + 1, and hence any shortest path in G from ap to v'
must use the edge {u,u’}. Applying the same argument used for v and
dp.; (with no assumption on which of « and #’ is encountered first by
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the shortest path), we have that either

delap,u') + dg(u,v)< D — 1
or

delap,u) + de(’' v'y<s D — 1,

If the first of these two inequalities holds, we then have d;(v,u) <
D — 1 and dg(u,v') = D — 1, which implies dg(v,v') < 2(D ~ 1), a
contradiction. Thus we may assume the second holds. Consider the path
from v to v’ in G’ that first goes from v to u, then from u to a,, then
along the edge {a;,a5.,}, then from ap., to «’', and finally from u' to
v’ (see Fig. 6). The length of this path is

de(v,u) + deu,ap) + 1 + dglap,,,u'") + de(u'v)
=1 + (delv,u) + do(u',ap, 1))

+ (delap,u) + dg(u'v')

<1 +2D-1)<2D+ 1,

which is again a contradiction. It follows that f(1,D) can be no larger
than 2D. 1

Thus the diameter of a two edge-connected graph can at most double
when a single edge is removed, and this bound is tight. In fact, once
again two edge-connectivity was used only to ensure that G’ remains
connected, so we have also proved:

Corollary 5. Suppose that a single edge is removed from a graph G. If
the resulting graph G’ is still connected, then it must satisfy D(G") =
2 - D(G). ' '

FIGURE 6. [n the proof of Theorem 4, the sum of the lengths of the paths of
pi and ps is at most D — 1 and the sum of the lengths of the paths p, and Da
is at most O — 1, from which we obtain a path joining v and v’ that has a
length of at most 2 - (D — 1} + 1.
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We have recently been informed that the factor of two result for
removing a single edge has also been obtained independently by Plesnik
[171.

4. REMOVING VERTICES FROM A GRAPH

In this section we deal with the analogous vertex removal problem, which
turns out to be much simpler.

Theorem 6. Suppose G’ is obtained by deleting ¢ vertices from a A vertex-
connected graph G having r vertices, where A > ¢. Then

D(G) < [—"—;i—:—%J + 1.

Proof. Since Gis A vertex-connected, G' must be at least A — ¢ vertex-con-
nected. Consider a pair of vertices v and v in G’ such that dg(u,v) =
D(G") = D’. Since u and v are joined by A — ¢ vertex-disjoint paths,
al! of which have length at least D' and hence contain at least D' — 1
vertices in addition to «# and v, we then have

n-t=A-0D -1)+ 2,
from which the desired inequality follows directly. 1§

Theorem 7. Suppose G’ is obtained by deleting ¢ vertices from a A vertex-
connected graph G having n vertices, where A > ¢. Then

wore[{[£5552]+ ] m

and this bound is achievable.

Proof. If D(G) = 1, then G is the complete graph K, and G’ is the
complete graph K,_,, so D{(G’} = 1. Thus we may assume IXG) = 2,
and the upper bound follows immediately from Theorem 6.

To see that this bound is achievable, consider the following graph G:
Its vertex set consists of ¢ vertices u;, 1 < { < [, two vertices w, and
w,, and n — ¢t — 2 additional vertices. These additional vertices are
divided into L{n — ¢ — 2)/(A — 5] levels, each of which contains at
least A — t vertices. Each vertex in a particular level is joined by an
edge to every vertex in the preceding level and to every vertex in the
succeeding level. The vertex w, is joined by an edge to every vertex in
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the first level, and the vertex w, is joined by an edge to every vertex
in the last level. Finally, each vertex u; is joined to every other vertex
" in the graph by an edge.

It is straightforward to see that G is A vertex-connected and has diameter
D(G) = 2, since every pair of vertices is connected by a path of length
two through «,. Furthermore, when the vertices {i;} are removed from
G, the resulting graph G’ has diameter

D(G) = [”;—i:zJ +1

as required. 1

The key point to note here is that, unlike in the edge deletion case,
the diameter of the graph G’ obtained by deleting ¢ vertices from G is
in general unbounded in terms of ¢ and D(G).

5. SOME OPEN PROBLEMS

It is not difficult to see that many of our bounds, particularly those
obtained by graph constructions, can be improved slightly, even though
these improvements do not change the asymptotic behavior of the bounds.
More ideas (or perhaps a large number of cases} would seem to be
necessary to achieve significant improvements. In particular, it would
be of great interest to determine the exact values of P(n,f), C(a,t), and
f(t,D} for general values of », ¢, and D.

Beyond such obvious directions for improvement, there are two natural
extensions of the problems we have considered that deserve attention.
The first of these is to ask the same sorts of questions for directed graphs
instead of undirected graphs; our techniques do not readily generalize
to this situation, and it appears that the directed version of determining
Sf(¢,D) may be more difficult. The second possible extension is to add a

© constraint on the maximum degree of any vertex in the graph, and then
to ask similar questions to the ones in this paper with the degree bound
being an additional parameter. This is particularly relevant for potential
applications to network problems, since practical networks commonly
satisfy such a degree constraint. More generally, one might seek refinements
of our bounds that take into consideration a variety of additional graph
parameters.

Finally, there are a number of related algorithmic questions that are
of interest: Given ¢, D, and G, determine whether there exists a subgraph
of G obtained by deleting ¢ edges (vertices) that has diameter no more
than D, and, if so, find such a subgraph. Given ¢, D, and G, determine
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whether there exists a supergraph of G obtained by adding r edges that
has diameter no more than D, and, if so, find such a supergraph. What
is the computational complexity of these problems? Are they NP-complete?
Do good heuristics exist? There is much room here for further work.
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