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ON UNAVOIDABLE GRAPHS
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How many edges can be in a graph which is forced to becontained in every graph on # verti-
ces and e edges? In this paper we obtain bounds which are in many cases asymptotically best possible,

I, Introduction

A well-known theorem of Turan [10,11] asserts that every graph on # vertices
and e edges must contain a complete subgraph on m vertices if

where r satisfies r=n (mod m—1) and l=r=m—1,

In this paper we consider a related extremal problem. A graph which is forced
to be contained in every graph on n vertices and e edges is called an (#, ¢)-unavoidable
graph, or in short, an unavoidable graph. Let f(, ¢) denote the largest integer m with
the property that there exists an (n, €)-unavoidable graph on m edges. In this paper
we prove the following:

0 fe=1 if e= lé’-]
(i) f ey =2 if [-;’-J <e=n.
e)? e?
(i) fn,e)= (?] +0[.;i7373-] if n=e=n¥s
(O(X) denotes a quantity within a constant ratio of X.)
(iv) cl_'/—e_lﬂgi"_ < f(n, ) < cz_ﬁloﬂ_
og ()¢
og ( 5 e

tos (3 )/¢)
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f , .
for some constants ¢, and ¢, where cn4/3<e<[2]—n1+c and ¢ is between 0 and |.

In particular, we have the following:
a/3

v) fn,e) =(1+0(1)¥2e if e n¥e (i.e., "
(vi)

= 0(1)].

e

S, e) = (1+0(1)) }2e log n/log[[;]/e]—ko(]@) if '3 <« e = o(n?).

The unavoidable graphs we use for proving (i), (ii) and (iii) are forests which
are disjoint unions of stars. In proving (iv), (v) and (vi), we use unavoidable graphs
which are disjoint unions of bipartite subgraphs.

IT. Preliminaries

We first prove several auxiliary facts:

Lemma 1. If H is a graph on p vertices and q edges with the property that H is con-
tained in every graph on n points and e edges, then we have

logn

i

Proof. There are at most n” ways to map V' (H) into {1, 2, ..., n}. Therefore there

e—4g
4]
graphs on r vertices and e edges which contain H. Since there are ({2)| graphs
e

on » vertices and ¢ edges each of which contains H, we have
(3)-e - |(5)

nr\2) 79 2

e —q e

4
| This implies that »? > [;] /et and plog njlog [[;]/e] =q |}

I

The next lemma is an immediate consequence of Lemma 1.
Lemma 2. If H is a graph on p vertices and q edges with the property that H is contained

in every graph on n points and n*~* edges, then we have q<%. [ |
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The following two lemmas can be found in [9].

Lemma 3. Suppose G is a bipartite graph on e edges such that V(G)=V,UV, where
|Vil=m, |Vo|=n and E(G)E ¥, X ¥,. Then G contains a complete bipartite subgraph

K, , withvertex set UyUU,, |Uy|=a, [Uy=b, U;SV,,i=1,2, if m [ /”‘]>a[’;’). 1
Lemma 4. G contains a subgraph isomorphic fo e Iif n[ze/ n]“‘t(?]. 1

Lemma 5. Suppose a graph G has n vertices and e edges, with n*®<<e. Suppose t
satisfies nfYe<<t<e/n. Then G contains at least sz(1+o())V2e/t vertex-disjoint
copies of stars S,.

Proof. Suppose s is the maximum number of S, embedded in G. Suppose ¢ is an
arbitrary positive value and s<(1—z)V2¢/r. Let X, denote the set of vertices in G

that the i-th copy of S, is mapped onto. Let Z denote V(G)— U X;. There is at

most one vertex in X;, for each /, adjacent to 2¢ vertices (or more) of Z because of
the maximality of s. Therefore the number of edges between X, and Z is at most
n+2t% The number of edges in the induced subgraph of G on Z is at most /2.

There are at most [S(t; )] edges in the induced subgraph on U X;.
i=1

We then have
2t 411 1R+ 1)
S GG

t
e= s(n+212)+—2£+

since s=(1—&)¥2e/t <<% and t<<%. This implies s¢=(1—&)}2¢ which contradicts
s=(1—8)¥2e/t. |}

IIL On f(n, e) for e < n'/®

The value of f(n, €), for e<n, can be easily found by the following obser-
vations;

Observation 1. f(n, e)=1 it e=1.
Observation 2. For eS[i] the largest common subgraph of S, (a star with ¢
leaves) and eP, (e independent edges) is a single edge.

Observation 3. If e>[ 5 J , a graph on n points and e edges contains P;.

Observation 4. For lEJ<e<n, the largest common subgraph of S, and P, ,

(a path on e edges) contains two edges.
Therefore we have

Theorem 1. f(n, &)=1 if eglgl and f(n, e)=2 if l%]<e<n.

The unavoidable graphs in both cases are paths.
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Theorem 2. Let & denote a small positive value. Suppose e<en*. Then any graph on
n vertices and e edges contains a disjoint union F of stars, 8,, 8, _a, ..., Si—ai» -+ where

t= [(1 —¢) %f-]

Proof. Let F, , denote the forest consisting of S, S,—s, ..., Sp—a- We will prove by
induction on k that F, , can be embedded in any graph G with n vertices and e edges.
It is easily seen that F, , is contained in G. Suppose F, ;_, can be embedded in G. Let
V(S,-y), 1=j=k—1, denote the set of vertices in G onto which S,_,; of Fy;_, is
embedded. Lét U denote the union of V(S,_,) for 1=j=k—1 and U'=V(G)-U.
If there are two vertices in ¥ (S;..y;) each of which is adjacent to more than 2¢ vertices
in U”, then F,, can be embedded in G. We may assume there is at most one vertex
in ¥ (S,_,;) being adjacent to =2¢ vertices in U". The number of edges in the induced
subgraph of G on U is at most k2(t—k+1)%/2, since W= |V(F D=t —k+1)k.
The number of edges incident to vertices in U is at most

-;—k*(t—k+1)2+kn+2tk(t—k+1).
Thus the number of edges in the induced subgraph G’ of G on U’ is at least
e—% k2(t—k+1)2—kn—2tk(t—k+1) = (1 —e)e—kn,

since le—kz(t—k+1)2+2tk(t—k+l)éae. Thercfore there exists a vertex in ('

having degree at least 2((1 —g)e—kn)/n=t—2k. This implies that F, is contained
in G.

Ty haw (e} &
Theorem 3. If e=n"3, we have f(n,e)= - +0 o7 )
Proof. Suppose H is an (n, ¢)-unavoidable graph. For a subset § of vertices in H,
we define N(S) to be the number of edges of H incident to vertices in S.
Claim 1. For all § with |S!"—*i<%~3, we have N{(S)= Z[%?-—Zj+6].

J=i

Proof of Claim 1. Suppose the contrary. Let k denote the smallest integer so that
N(&)= Z’[%;—Zj+6] for all § with |S|=i<k<-§——3 and there exists a set

FED
S'CV(H) with [S'|=k and N(S)= 3 [Z_:L—zj+6].
j=k
We now consider a graph G sati;fying the following conditions.
() G has n vertices and e edges.

§:)] V(G) can be partitioned into two parts ¥; and V, where ¥3 has k—1 vertices
for k<%w3.
()  Every vertex in ¥, is adjacent to every vertex in Fj.

() The induced subgraph on ¥, has maximum degree at most z—niw2k+3.
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The existence of such G can easily be seen by noting that

He—(k—D(n—k+1)) 2e
n—k+1 PR

for » large and k<-:——3.

Since H is an unavoidable graph, H can be embedded in G. Let ¥, denote the
sct of vertices in A which are ¢embedded in V. Define X=V,NS’, X'=V,—§"
and Y=5"—V,. Also we define N(Y,V,) to be the number of edges in H which
are incident to vertices in Y and not incident to vertices in V. Let G’ be the induced
subgraph of Hon X' Y. G’ has at most 2(k—x) vertices. From Lemma | we know
that G’ has at most 3(k—x) edges since e<n%?,

We then have

N(S) = N(XO+IEG) |+ N, 7

= {%Ii—zj+6]+3(k_x)+(k—x)(27‘*—2k+3]
=3 (%—2j+6]+(k—x)[%§*2k+6].

On the other hand, we have N(S")=> ¥ [278—21' +6]. This implies

J=k
(k—x)(2—8—2k+6] = [2—'?-—2j+6],
n x<jsk\ 1N
which is impossible since x=k—1. |
2
Claim 2. |E(H)}§[-—§-] +7[%].
Proof of Claim 2. We now consider the graph G satisfying the following properties:
(#) G has n vertices and at least e edges.

B V(G) can be partitioned into two parts V; and V, where V, has [—f!—] +1

vertices.
16)) Every vertex in V, is adjacent to every vertex in V.
() No edge is contained in the induced graph of G on Vyor V,.

G has [[%|+ 1] (n—[-:i-]—l] = e+n—[[—:—]+ 1]a =e edges.

Note that all edges in G are incident to vertices in V;. Since H is an unavoidable
graph, H can be embedded in G. Thus |E(H)i=N(Y) where ¥ is the set of vertices
in ¥, that H is mapped onto. Thus |¥ |§l%]+2=s+2. From Claim 1 we have

- 2e ., ] [ e ]2 [ e ]

@)= > [n 2+6)=(2) +7(2). u

Jf=s+2
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We note that Claims 1 and 2 imply
2
- | £ £
fln. &) = [n] +O[n]'

On the other hand, the graph F as mentioned in Theorem 2 is an unavoidable

e e

2
graph and F contains at least [n) +0(n1“"3] edges. We then conclude that

2 3
fn, e)=(-z—) +O{£—w—a] and Theorem 3 is proved. K
We note that Theorem 3 is an improved version of a result in [8] which says
that for e<n*? the disjoint union of l-;;l—] copies of stars S|, is an unavoidable

graph. In Theorem 3 we obtain the best asymptotical value for f(n, e}, e-=n3,

IV, On f(n, e), for n'® <e = o(n?

We want to show the following:

Theorem 4. For n'3<ce=—o0(n* we have

fin, &) = (1+0(1)) V2e—B" 1 0(¥e).

oe((3)/¢)

We remark that the first term is relevant only if e>n2-°) where o(1) denotes a
quantity which approaches 0 as n tends to infinity.

Proof. Since the complete graph on [V2e ] vertices has at least e edges, the unavoid-
able graph H has at most[}2e] (nontrivial) vertices. From Lemma 1, we have

logn

og((5)/¢)

Now we want to establish a lower bound of f(n, €) by finding suitable unavoid-

able graphs. From Lemma 5 we know that Theorem 4 is true if k=log n/iog ((g] / e]

\E(H)| = [V2e]

is bounded. We only have to consider the situation that & is large.

Suppose ¢ is an arbitrary positive value. Let x denote the maximum number
with the property that G contains x disjoint copies of K, , where s=(1-e)k, t=
=kn?je. Let V, denote the set of vertices in G onto which the i copy of K., is

embedded. Let U denote V(G) - CJ V,. Because of the maximality of x, the induced
i1

subgraph of G on U does not contain K, ,. If x=V2e/(s+1), then, by s=o(?), we
have

fin, &) = xst = (1+0(1)) V2es = (1+0(1)) logn/flog [[;)/e]

Q’\
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Therefore, the induced subgraph of G on U has at most ¢’ <ee edges for any &={,
since, by Lemma 4, we have

) (r)

¢ = [;]n‘(l‘”)"" - ge

for any £=0 and e<s”ﬂ[3].

For each i, the bipartite graph B; on V; and U does not contain two disjoint
copies of K, ,. Let e; denote the number of edges between B; and U. If B; does not

contain K, 5, then by Lemma 3 we have m {Ze:;/ m]<2t [2;), where m={U|=n—

—x(s+£)=n—Y2e. This implics that e;=10kn. Suppose B; contains one copy
of K, 5, then by deleting the s vertices in ¥, the remaining graph does not contain

K, o, and has no more than 10kn edges. Thus, B, contains at most 11kn edges. There-
3/2

X .
fore, the number of edges between | ) ¥, and U is at most d «11kn<ze, since

i=1 nik
x=)2eft.
The induced subgraph on |} ¥; must contain at least (I—2¢)e edges. Thus
i=1

V; contains at least (]/5—35)]/5 vertices. We then have

. (Y2—-3e)Ve _ (Vi—ss)esfz'

- kn®e kn?
Thus, we have proved that
fin, ) = xst = (I/E—Gs)ﬁ-k

for any &>0 and n sufficiently large. |

P

V. On f(n,e) for [;]—e=o(n2)

When e is close to (g] , Le. (g) ~e=0(n%), our results on f(n, €) are somewhat
less precise.
Theorem 5. Let ¢ and ¢’ denote values satisfying O=c,c’<1. If cnt<e< [g] —nptFe
then we have

Velogn Velogn
GO—F——~ < f(n,€) = cg———
og (3 og 3/

Jor some constants ¢, and cy.

3‘
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Proof. The upper bound follows from Lemma 1. Let G denote a graph on » vertices
and e edges. Suppose e=dn?, ¢<=d=1/2. It can be easily checked from Lemma 4
that any G'SG of /2 edges contains a complete bipartite graph on two sets of
d’ log n vertices where d’=1/21og (1/¢). Now, consider a maximal number of x
disjoint copies of K, ,, f=(d’/2) log n, which can be embedded in G. By removing
dnf2 vertices, there are at least e/2 edges left, therefore we have xd’ log nz=dn/2.
Thus dn/(2d" log n) copies of K, , form an unavoidable graph which has (dd’n log n)/8
edges, and we establish (iv) for e=dn? where c<d<1/2.
Suppose e:[g]—e’ and o(@¥=¢ =nlt". We have
[ " ] logn
1 2
log [[2 )/ ")
Then G contains K|, with s=¢"k/2 since
n[Ze/n] ’ N
$ e . e
= 1
s[ n ] nlogn [ n)
3 2
£
() e |
SR AN vY il
= logn P [n] 2¢
2
el

D mamscer——————
T a7 ogn -

It is easy to see that G contains n/10s copies of K, since deleting n/5 vertices in G
there are still at least e/2 edges left. This proves that f(n, €)=c, kn for some constant
¢, and the proof of Theorem 5 is completed. §

Corollary. Suppose e=(g]—n1+‘. Then
o,n®Clogn < fi(n, e) < cyn?“slogn,

Now by combining Theorems 4 and 5 together with the fact that [8] any graph

. , - n
on n vertices and e edges, where e=n%?, contains the forest consisting of l3 l/-]
e

disjoint copies of stars S,,,;. we conclude the following:
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. n
Theorem 6. If ¢ is a value between 0 and 1, and n¥*< e<[2]—n1+°, then

Velogn

toe (/e

]/E]ogn

I BY

Jor some constants ¢, and c,.

=fn e) < e

V1. Concluding remarks

The unavoidable graph problems are in fact the complementary problem of
the universal graphs. For a given calss H of graphs, a graph G is said to be H-universal
if G contains every graph in H as a subgraph. Univegsal graphs are investigated in
[2—7). Now suppose G is an (n, e}-unavoidable graph. Then the complement G’

of G must contain all graphs on (; ] — e edges. Furthermore, the complement of a
maximum (#, e)-unavoidable graph must be 2 minimum universal graph on n vertices

which contains all graphs on n vertices and [n) —e edges. Thus we have

2

(vii) fn, &) = [;)—g[n,[;]—e]

where g(n, ') denotes the minimum number of edges in a graph on n vertices which
contains all graphs on n vertices and ¢’ edges. It is proved in [1] that

nt _. . ntloglogn
Cli@-n— = g(n, an) = Cg—l'ogn—

for some constant ¢,, ¢, and ¢;. Therefore we have
n)  ntloglogn [n]_ [n]__ n?
[2] “aTogn <f[n, 7) e =) a logZn’

For large e’=n, g(n, ¢} approaches {g] rapidly. For example, g{n, nlogn)
is at least en® for some constant ¢ (see [1]). Therefore, the relation (vii) does not give

interesting bounds for f(n, ¢) for e<(;]—cn log n.

For (g]>e>(1 -e)[;], ¢ small, the value of f(n, ¢) is still not determined, Tt
would also be of interest to tighten the bound in the case of n*3<e<nt—t,
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In another direction, one can ask the same questions for r-uniform hyper-

graphs. Here, the answers are harder to obtain and are known with less precision.
This topic will be treated in a later paper.
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