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ABSTRACT

3 relatlion graph is a graph where each pair of
vertices 1s connected by an edge of one of the three
types, "»", """ and "e++e" gatisfying the three conditlons:
(1) A+ B and B~ C imply A ~ C,

(#11) A+ B and A - C imply B - C,

(111) A -~ B and Bee+C 1mply A-+-C,

where A, B and C are any three vertlces in the graph. In

this paper we prove that the number of labeled relation

(E).

graphs are assoclated with the concept of focal propositions

graphs 1s asymptotically less than (2.,783) Relation

in assessing the patterns of a body of evidence.
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1. Introduction

We consider four possible relations between two
given sets A and B: A contalns B, B contalns A, neoncontain-
ment but nonempty Iintersectlon, and empty intersection.

We can represent the pairwise relations between n given

sets by a graph, called a relation'graph wlth esach vertex

representing a set, a directed edge A - B representing the
relation A is contalned in B, an undirected edge A - B
representing the relation of noncontainment but nonempty
intersection, and a broken edge A-+*B representing the
relation of empty intersection. Note that a relation
graph must satisfy the followling three canditions
(1) A+ B and B~ C imply A - C,

(11) A -+ B and A - C imply B - C.

(111) A ~ B and BeeeC imply Av*=C,

Furthermore, these three conditiong are also sufficient for

a graph, where any two vertices are connected by an edge,

either directed, undlirected, or broken, to be a relatiocon

Zraph.



& graph 1z labeled if each vertex 1s labeled
by a distinct number. Let F(n) and f(n) denote the numbers
of labeled and unlabeled relétion graphs an n vertices,

respectively. Clearly,
F({n) > £(n).

We also have

n L4
3 &P

4 > F(n) > 2

since each pair of nodes can assume only one of four posslble
relations while a graph with only undirected edges is
always a relatlion graph. Flnally, since each unlabeled

graph can Induce at most n! labeled graphs,

(g) - n log, n
f(n) > F(n)/n! > 2 .

In this paper we prove a new asymptotic upperbound on F(n), 1l.e.,

2
2.7837 /23 p(n).

2. The General Strategy
In this sectlion we wlll indicate the general

strategy of an inductive (on n) proof of
. n2/2
F(n) < (2.783) . (0)

We consider an arbltrary relation graph G on

n vertices. Let v* be a fixed vertex in G. We define



from the
have (i)
(111) no

possible

-3 -

Xe = {wv

4]

V(G) : v > v*}

X, = {v V(G} : v + v#}

m

A, = {ve V(G) : v = v}

tH

:{“ = {V V(G) M v.‘. ._v*} .

"

1 denote an arbltrary vertex in Xi' Then
three conditions of a relation graph, we must
Ve Vo, (11) either Vy * Vg Or v, = Vg, and

edge between vy and V- FPigure 1 lllustrates all

relations between vertices in the Xi’s.

.
- - -
bl AN

Flgure 1. Possible relations between X, 's.

n points

1

Let P = {{w},xl,xa,XB,xu} be a partition of the

into five subsets satlsfying the relations as specified

in Fig. 1. Let g(x1,x2,x3,xu) be the number of relation



graphs given of type P = (xl,xg,x3,x3) where Xi contains

X, points. Then we have

F(n) < ZE An=l)l g(xl,xz,x3,xq).

By the definiticn of the F function, we have
g(xl,xz,x3,xu) < F(n-1).

On the other hand, we also have

X

X, XX +X X, +X.X
g(Kl:XE,XB,Xu) hd F(xl)F(xz)F(x3)F(xu)2 273,713 270 3y

3

since there are only two possible relationg between

X, and X3 and so on. We will use both (2) and (3) to

2
establish F(n} < cn /2 where ¢ = 2.783, Since there

are at most (n§2) choices for x 1= 1,2,3,4, with

i’
%y = n-1, 1t 1s sufficient to prove

2
RERE n-/2
(n-1)! s(xi,xz,x3,xu) i E—g——

4 n
T—T(xi!)
i=1

for any partitiocn P.

Let Gy = ng. For n sufficiently large, (4) is

equlvalent %o

TR e W

-{n=-1)
5 i

1 n%/2

(X sXy,%q,%y) < Z -

a, log o
1 1

(1)

(2)

(3)

(%)

(5)
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for any Gy s d <a, <1, a, = 1l and Xy = ai(n-l).
i=1

(We note that all logarithms are to base 2.)

i
1

In order to prove (5), we consider the following

twe cases:

.. _ 3 logn
Case 1: ziai log oy < log ¢ -]
Then

n
—(n-l)izlui log oy
2 g(xl,xz,XB,x“)

< 2(n—l) log ¢ = 3 leog n

F(n=1)

2(n—l) log ¢ C(n-l}E/Z/HS

<

cna/z/n3.

<

Thus (5) holds in this case.

Case 2: - Zzai log ay > log ¢ - i_%:%_ﬁ .

We note that from (3) we have

4

*(n-l)izlai leog ai
2 g(Xy5%55X35%y)

4

_(n"l)iflai log ay KyXgy XqXgtXoX)+XaX)

<2 . P(x)F(x,)F(x3)Flxy)-2 3
. 2—(n—l)i£lai log dic(x§+x§+xg+xﬁ)/22x2x33x1x3+x2x4+x3xu,

—

by the inductive assumption.



Therefore, it is sufficlent to prove that

4 2,.2,..2,.2
(xT+xo+x5+xT) Xx_X
(n=1) X 17277377 273 log 3
" Iog ¢ 2 o log oy + 2 * Tog o T Tog ol X1¥3tEo%
i=1
< n%/2. - (
4
Set N = n=1. Since x, = o,N and a, =1, (6) is

1=1

equivalent to the following:

2
(log 3 ~ log c)(ala3+a2a,‘t+a3au)l\l + <- Z a, log a, - log c)rxr
i=1

< (ajaytaqe))(log ¢ + (log e - 1)a2a3)N2 + (log c)/2.
4
Since - :E @y log ay < 2 <1+ logec, 1t 1s esnough
i=1

to prove the following in order to establish (5);:

(log 3 - log c)(alu3+a2au+a3au) + 1/N

< (ala2+alau) log ¢ + (log ¢ =~ l)a2a3.

Furthermore, since we are looking for asymptotic results,

we can drop the 1/N term, Define
h(al,ag,QB,au) = (ala2+dla4) log ¢
+ (log ¢ -~ l)a2a3 - (log 3 = log c)(a1a3+a23u+a33u).

We will show that h(ml,aa,aB,aq) is pesitive for

all a o o o

10 %pr %as %y satisfying

6)

(7

(8)
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g < o

<o, for 1= 1,2,3,4 (9)

- zgv.i log a, 2 leog ¢

We accomplish this by minimizing h over the variables one at z time.

3. Details of the Proof

First we will show the following.
Claim: The minimum value of h on the set of points

satisfying (9) is achleved when a; = 0.
Proof: Defilne
hl(al,az,au) = h(al,aa,l-al—az—au,au).

Clearly, 1if h, 1s monotone increasing in a,, the Claim

follows immediately. We have

ahl

—— = l + log 3 - log ¢
8al(ul,a2,au) = =« (log 3 - log c)(l—2u1 - =1

log 3 - 1log ¢ %2

_ 2 log 3 - log e e, )
log 3 - log ¢ y-s-

Suppose to the contrary that hl 13 net monotone
3h

1 - - =
increasing in %p, Say, gaz < 0 at the point (al,a2,au), i.e.,

= _ 1+ log 3 - logc = _21log 3 - logec = .
. 2% log 3 - log ¢ %2 Tog 3 - log o 4 2 0. (10)

Let ag = 1l - =0y = ooy By noting

log 3 - log c
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and

log 3
Tog 3 - iog ¢ 14,

we obtaln from (10):

Ay = Oy —_9&2 - li-lcm}_l > 0.

Define & = 62 + &Q, then the above equation implies & < .1.

1 + 2y = 1-8 > .9.

It 1s easy to verify by elementary calculus

Therefore o

that for a fixed, 0 < a < 1 and 0 < b < a, the function

-b i1og b=-(a-b) log (a-b) is concave and attains its

maxlmum at b = a/2. Consequently

- 52 log a, - o, log ay

- &l log 51 - 53 log 53 < = (1-8) log (1-8) + (1-4).

It follows that
il

i

A

%, log d; <1 + [-d& log & - (1-4) log (1-&)]
1

al

1+ [-(.1) Zog (.1) - (.9) log (.9)]
= 1.468
< log ¢,

a contradiction to our assumption for case (1i)., Therefaore

hl is mconotone increasing in %y and the proof of the claim

ls complete.



Define
he(aa,GB,au) = h(O,ag,aa,au)
= (log ¢ - 1)a2a3 - (log 3 - log c)(a2+a3)au,

where @5, a3, &), satisfy

Oiai’ a2+a3+aq=l, (ll)
and

4
- :E @y log %y 2 log e.
=2

From the Claim, the positiveness of h2 will imply the positiveness
of hl. Purthermore, gsince G5 and a3 are symmetric in hg, we

may assume a2 < a3. Define H(x) to be the entropy function,

il.e.,
H(x} = -x log x~(l-x) log (l-x).

Then it ls straightforward to show that

4 o,
- 2 9y legay = (l-a) H(l—au) * Hlay). (12)
1=2

Thus the condition of Case (11) implies

%2

l"au

(1-o)H(7=—) + H(ay) > log e. (13)
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Define
h3(u2’u'q,) = h2(a2:l"a2"ausaq) = (log ¢ - l)ag(l-aé-au)
- (log 3 -~ log c)au(l-au).

Then

= (log ¢ - 1)(1 =~ 20, - a,l) >0,

Hence h2 is monotone decreasing in o Note that

2.
@
H( 2 ) is also monotone decreasing in a

5 for o £ T

Furthermore, the condition of Case (11} implies that

for n large
(1-xy) + H(zy) 2 log c (hence ay < a, = .522). (14)
On the other hand
H(au) < 1 < log c.

Therefore there exists a unique ag such that

ag
(l'ah) H(l-au) + HCau) = log ¢, _ (15)
and hy(ag,ay) is minimized at a, = ag. Define a = a, and
“

. From (15), we have
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L=t
%=H(3) - log =—
da 1B

(l-a) log ===
Furthermore, define
hu(a> = hB(B’C‘:}'
Then 1t suffices to prove hu(a) > 0 for all « satisfying

(14),

From straightforward calculations, we have
¢ hy a8
T (@) = (log ¢ - 1)(-B(1l~B) + (l-a)(l-ZSJaE) - log 3 + log c.

We note that

& log 8 ~ (1-8)° log (1-8) - (log 12)(1-29)

_ dB
-8(1-8) + (l—a)(l—2l3)aa-=

ana 8% log 8 - (1-8)2 log (1-8) < 0 for all B8 i %.
d h
i

Therefors —=X < 0 for a ¢ 3. For .5 < a < .522, by (15)
' 1 1-8
we have 8 > .37 and 1 - 28 < 7 log ==

d h
4 1-0.522, _ 1 -
5o (a) < = log (W) 5 log 3 + log ¢

_<_ -0.04 < Oo

The minimum value of hy 1is achieved at ay where

%y 18 as large as possible, i.e., dy Satlsfies

(1-ay) + H(ay) = log ¢ (hence 8 = 3). (17)



- 12 -

It is easy to see that hy(a) > 0 for all C < a < a,. (Note

that oy, and ¢ are joint solutlons of (17) and hyl{a) = 0.)

We have proved that H(al,ag,a3,au) i3 positive
for any (a;,a,,a5,q,) satisfying (9). Thus (6) and (0)

are proved for sufficlently large n.

4, Some Concluding Remarks

Shafer [1] introduced the concept of a
proposition which is focal with respect to .an item of
evidence: the propbsition is exactly what the evidence
tends te support. TFor example, suppose that a man has
been murdered. It is learned that, a2 few days earlier,
he had an.angry meeting with three ¢of the seven people
that he supervised at work, during which he berated and
threatened them. In 1sclation, this fact supports (though
of course it does not prove) a proposition something akin
to the folleowing: ™"One or more of these three people was
involved in the murder."” Propositiqns which are more
general (such as "One of the seven people he supervised
at work was involved in the murder") or more specific
propositions (such as "One of the three pecple he met
with was solely responsible for the murder") are not
focal propositions for that particular item of evidence;
whereas the first mentloned proposition 1s the focal
vroposition.

A more complex body of evidence may not have
any single focal proposition, yet it may be possible to

subdlvide the evidence into conceptually independent items,
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each of which does have a single focus. When this is
possible, the degree of belief in any particular proposition
A wlll depend positively on the strengths of those 1tems
which support 4 -- 1.e., whose focal propositions logically
imply A -- and willl depend negatively on the strengths of

those ltems which contradict A -- i.e., whose focal

propositions logically imply not-A.

We are thus led to the idea of different sbstract
patterns of argumentation, depending on the logical
relations among various focal propositions. If we have
focal propositions A,B,C,..., then the abstract pattern
of argumentation will depend on the logical relations.
among these propeositions. .

A partial characterization of the above abstract
pattern, which may be useful, is obtained by graphing the
pairwise logical relations among the propositions. Any
pair of nonegulvalent propositions, A and B, stands in
one of four possible relations : A contains B; B contains
Aj; noncontainmeht with nonempty intersection; and empty
intersecticn. For three propositions, 4, B, C, eabh-of
3 palrs could glve rise to 4 possibilitlies; but not all
of the resulting HB patterns are possible, since cbviously,
two of the pairwise relations may dilctate or constrain

the third one. Enumeration shows that there are in fact

only 41 possible patterns; for example, there are & different

fully nested patterns AD B D2 C, B 242 C,...,1 fully

disjoint patfern, etc.
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The pairwlise relations do not fully characterize
the logical patfern of argumentation (triple intersections,
gtc. are alsoc relevant), but they do provide a lower bound
cn the number of distinct patterns; and in view of limited
human capaclty for grasping complex structures quickly,

they may correspond well to subjectively distinct patterns.

The purpcse of this nete is to preovide upper
and lower bounds for the number of such distinct palrwise

patterns.
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