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ABSTRACT

Suppose a graph G has the property that if one colors the sdges of G in r
colors, there always exists a monochromatic triangle, Is it true that if one
colors the edges of G inr + 1 colors so that every vertex is incident to at most r
colors then there must be a monochromatic triangle? This problem, which was
first raised by P. Erdds, is answered in the negative here.

1. INTRODUCTION

Suppose G is a graph* satisfying the property that if one colors the edges of G
in r colors there always is a monochromatic triangle, Is it true that if one
colors the edges of G in r+ 1 colors so that every vertex is incident to at
most r colors then there must be a monochromatic triangle?

In this paper, we solve the above problem, which was raised by Erdos, by
showing that there is a graph ¢ so that any 2-coloring of G contains a
monochromatic triangle but there is a 3-coloring of G without a mono-
chromatic triangle so that every vertex is incident to at most two colors. A
similar solution was independently obtained by H. Enomoto [3].

This problem came up in connection with some work of Erdds, Hajnal,
Szemerédi, and So6s [see 4]. In particular, the following interesting problem
still remains unsolved: _

Let 1, be the smallest integer for which if one colors the edges of K(n,) by r
colors, there always is 4 monochromatic triangle. Is it true that if one colors
the edges of K(n,) by r + 1 colors so that every vertex is incident to at most r
colors then there must be a monochromatic triangle?

Note that this is true for r = 2 since it is easy to check that any 3-coloring
of K without a monochromatic triangle must contain a vertex incident to 3
colors,

*In general, we follow the terminology of [6].
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2, THE CONSTRUCTION OF G

First we construct several special subgraphs which will be used subsequently
as parts of G.

(1) Graph F as shown in Figure 1.

F has the vertex set {v:i=1,...,7) and is such that the induced
subgraphs on {s;; 1 <7< 5} and {: 3 <i <7} are Ky’s. F is called a signal
sender by Burr [1] who proved the following:

Eemma 1. {z|,»,} and {v,7,} in F always have the same color if F is 2-
colored without a monochromatic triangle.

Proof. 1t is easy to see that if two of the three edges in the triangle V3U0s
are colored by color a then so are {v;,7,} and {v5,2;). B

(2} Graph H as shown in Figure 2.

Roughly speaking, H contains two copies of F in such a way that if H is
colored in two colors without a monochromatic triangle, then {r,,v,} and
{#,,u3} have the same color. Also {r,,,} and {u,,u;) have the same color.
Thus we conclude:

FIGURE 2
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FIGURE 3

Lemma 2. If H is 2-colored without a monochromatic triangle, then {v;,,}
and {u, ,u,} have different colors.

(3) Graph J as shown in Figure 3.

The vertex set V(J) can be partitioned into X; and ¥, in such a way that
the induced subgraphs on X; and ¥, are 5-cycles and there is a complete
bipartite subgraph K s between X; and Y.

Lemma 3. Suppose J is 2-colored. If the edges of the induced subgraph on
X; have color a and the edges of the induced subgraph on Y, have color b,
@ # b, then there is a monochromatic triangle.

Proof. Of the 25 edges joining vertices in X to vertices in Y, at least 13
edges are of one color, say a. There must be a vertex y in ¥} incident to three
edges in color a connecting y to x;,X;x;, where x; € X,;. Since the
independence number of Cs is 2, there exists one edge in the induced
subgraph on {x, ,x;x;}. This forces a monochromatic triangle in color a. Wl

Now we are ready to construct & by putting together 3 copies of J, 3 copies
of H and 30 copies of F appropriately as follows (see Fig. 4, where copies of
F are used to join copies of H to copies of X, and ¥; as specified in (i), (ii)
below):

(i) The edge {#;,7,} of H; is joined to every edge {y;.y,} in E(J;), where

FIGURE 4
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YpYi € ¥y, by acopy of F, i.e., {v,,v,} of H, is identified with {v, ;) of F and
{t5,04) of F is identified with Uy} of .. We note that ¢ ranges from 1 to
3

(ii) The edge {u,,u,) of H; is joined to every edge be;,x, } in E(J_,), where
X%, € X;_ by acopy of F, i=1,2,3 (mod 3).

We want to show that G can be 3-colored without monochromatic
triangles so that every vertex is incident to at most two colors, Now, we
consider the following 3-coloring:

Fori=1,2,3 (mod 3), {x,y} € E(J;) is in color i; x.x,} € E(J;) is in color
i+ 1; yel € E(J;) is in color i — 1 where x’s are in X;, and y’s are in
Yn’i.

Also edges of H; are in either color 7 or color 7 — 1 such that {1y 45} is in
color i and {v,,,} is in color /i — 1.

It is easy to see that all other edges can be colored in such a way that there
does not exist 2 monochromatic triangle and every vertex is incident to two
colors.

Theorem. There exists a graph G satisfying the following properties:

(i) If one colors the edges of G in two colors, there exists a monochromatic
triangle.

{ii) G can be 3-colored so that there is no monochromatic triangle and
every vertex is incident to two colors.

Proof. 1t suffices to prove (i) for the graph G constructed in this section,
Suppose we 2-color the edges of G without forming a monochromatic
triangle. From Lemma 1 we know that all edges within each X s; and within
each Y, are of the same color. Furthermore, from Lemma 3 we know that the
edges of X, ;; have the same color as the edges of Y;. Lemma 2 guarantees
that the color of the edges of X;, differs from that of the edges of Y, + for
i=1,2,3 (mod 3). Since only two colors are available, this leads to a
contradiction, and the theorem is proved. l

3. CONCLUDING REMARKS

There are many interesting related problems, several of which we now
mention.

(1) Let f(H) be the smallest integer » for which if one colors the edges of
K, by r colors, there always is a monochromatic subgraph isomorphic to H.
Is it true that if one colors the edges of K, by r+ 1 colors, where n = S(HD),
such that every vertex is incident to at most r colors, then there always exists
a monochromatic subgraph isomorphic to H? If so, let us say that H is r-
admissible. Some graph H are not r~admissible; for example, let H= P, a
path on five vertices. It is known [5] that f;(P;) = 6. However, K; can be 3-
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FIGURE 5

colored such that every vertex is incident to two colors and there is no
monochromatic P; (see Fig. 5).

The problem of Erdds, Hajnal, and Sés, mentioned in Sec. 1, is just
determining whether X, is 7-admissible. It would be of interest to character-
ize the class of all ~admissible graphs.

(2) A graph § is said to be a signal sender of type (r, H) if there exists a pair
of edges in S, both of which have the same color when one colors edges of §
in » colors without a monochromatic H. The graph in Figure 1 is a signal
sender of the type (2,K;). It'is not hard to construct a signal sender S of type
(3.K;) as follows: Let V(S)={1,2, ... ,18) and the induced subgraph S, on
(1,2 V1{5,6,...,18} is K4, as is the induced subgraph S, on {3,4,...,18]}.
Also every edge of S is either in S or S,. It is easy to check that {1,2} has the
same color as the color which occurs in more than a third of the edges of the
induced subgraph on {5,6, ...,18}. The edge {3,4} also has this property.
Does there exist a signal sender of the type (#,Kj) for arbitrary #? In general,
does there exist a signal sender of any type (r, H)? Burr et al. {2] have proved
the existence of signal senders of type (2,H) for all 3-connected graphs H.
We remark that these signal senders, if they exist, can then be used to
generalize our main theorem,
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