# On a Ramsey-Type Problem

F. R. K. Chung

BELL LABORATORIES, MURRAY HILL, NJ 07974

### **ABSTRACT**

Suppose a graph G has the property that if one colors the edges of G in r colors, there always exists a monochromatic triangle. Is it true that if one colors the edges of G in r+1 colors so that every vertex is incident to at most r colors then there must be a monochromatic triangle? This problem, which was first raised by P. Erdős, is answered in the negative here.

# 1. INTRODUCTION

Suppose G is a graph\* satisfying the property that if one colors the edges of G in r colors there always is a monochromatic triangle. Is it true that if one colors the edges of G in r+1 colors so that every vertex is incident to at most r colors then there must be a monochromatic triangle?

In this paper, we solve the above problem, which was raised by Erdös, by showing that there is a graph G so that any 2-coloring of G contains a monochromatic triangle but there is a 3-coloring of G without a monochromatic triangle so that every vertex is incident to at most two colors. A similar solution was independently obtained by H. Enomoto [3].

This problem came up in connection with some work of Erdös, Hajnal, Szemerédi, and Sós [see 4]. In particular, the following interesting problem still remains unsolved:

Let  $n_r$  be the smallest integer for which if one colors the edges of  $K(n_r)$  by r colors, there always is a monochromatic triangle. Is it true that if one colors the edges of  $K(n_r)$  by r+1 colors so that every vertex is incident to at most r colors then there must be a monochromatic triangle?

Note that this is true for r=2 since it is easy to check that any 3-coloring of  $K_6$  without a monochromatic triangle must contain a vertex incident to 3 colors.

<sup>\*</sup>In general, we follow the terminology of [6].

Journal of Graph Theory, Vol. 7 (1983) 79-83 © 1983 by John Wiley & Sons, Inc. CCC 0364-9024/83/010079-05\$01.50

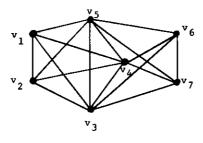


FIGURE 1

### 2. THE CONSTRUCTION OF G

First we construct several special subgraphs which will be used subsequently as parts of G.

(1) Graph F as shown in Figure 1.

F has the vertex set  $\{v_i: i=1,\ldots,7\}$  and is such that the induced subgraphs on  $\{v_i: 1 \le i \le 5\}$  and  $\{v_i: 3 \le i \le 7\}$  are  $K_5$ 's. F is called a signal sender by Burr [1] who proved the following:

**Lemma 1.**  $\{v_1, v_2\}$  and  $\{v_6, v_7\}$  in F always have the same color if F is 2-colored without a monochromatic triangle.

**Proof.** It is easy to see that if two of the three edges in the triangle  $v_3v_4v_5$  are colored by color a then so are  $\{v_1, v_2\}$  and  $\{v_6, v_7\}$ .

(2) Graph H as shown in Figure 2.

Roughly speaking, H contains two copies of F in such a way that if H is colored in two colors without a monochromatic triangle, then  $\{v_1, v_2\}$  and  $\{u_1, u_3\}$  have the same color. Also  $\{v_1, v_2\}$  and  $\{u_2, u_3\}$  have the same color. Thus we conclude:

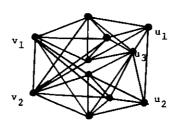


FIGURE 2

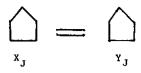


FIGURE 3

**Lemma 2.** If H is 2-colored without a monochromatic triangle, then  $\{v_1, v_2\}$  and  $\{u_1, u_2\}$  have different colors.

(3) Graph J as shown in Figure 3.

The vertex set V(J) can be partitioned into  $X_J$  and  $Y_J$  in such a way that the induced subgraphs on  $X_J$  and  $Y_J$  are 5-cycles and there is a complete bipartite subgraph  $K_{5.5}$  between  $X_J$  and  $Y_J$ .

**Lemma 3.** Suppose J is 2-colored. If the edges of the induced subgraph on  $X_J$  have color a and the edges of the induced subgraph on  $Y_J$  have color b,  $a \neq b$ , then there is a monochromatic triangle.

**Proof.** Of the 25 edges joining vertices in  $X_J$  to vertices in  $Y_J$  at least 13 edges are of one color, say a. There must be a vertex y in  $Y_J$  incident to three edges in color a connecting y to  $x_1, x_2, x_3$ , where  $x_i \in X_J$ . Since the independence number of  $C_5$  is 2, there exists one edge in the induced subgraph on  $\{x_1, x_2, x_3\}$ . This forces a monochromatic triangle in color a.

Now we are ready to construct G by putting together 3 copies of J, 3 copies of H and 30 copies of F appropriately as follows (see Fig. 4, where copies of F are used to join copies of H to copies of  $X_J$  and  $Y_J$  as specified in (i), (ii) below):

(i) The edge  $\{v_1, v_2\}$  of  $H_i$  is joined to every edge  $\{y_j, y_k\}$  in  $E(J_i)$ , where

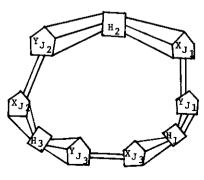


FIGURE 4

 $y_i, y_k \in Y_{J_i}$  by a copy of F, i.e.,  $\{v_1, v_2\}$  of  $H_i$  is identified with  $\{v_1, v_2\}$  of F and  $\{v_6, v_7\}$  of F is identified with  $\{y_j, y_k\}$  of  $J_i$ . We note that i ranges from 1 to 3.

(ii) The edge  $\{u_2, u_2\}$  of  $H_i$  is joined to every edge  $\{x_j, x_k\}$  in  $E(J_{i-1})$ , where  $x_j, x_k \in X_{J_{i-1}}$  by a copy of F,  $i = 1, 2, 3 \pmod{3}$ .

We want to show that G can be 3-colored without monochromatic triangles so that every vertex is incident to at most two colors. Now, we consider the following 3-coloring:

For  $i = 1, 2, 3 \pmod{3}$ ,  $\{x, y\} \in E(J_i)$  is in color i;  $\{x_j, x_j\} \in E(J_i)$  is in color i + 1;  $\{y_k y_k\} \in E(J_i)$  is in color i - 1 where x's are in  $X_{J_i}$  and y's are in  $Y_{J_i}$ .

Also edges of  $H_i$  are in either color i or color i-1 such that  $\{u_1, u_2\}$  is in color i and  $\{v_1, v_2\}$  is in color i-1.

It is easy to see that all other edges can be colored in such a way that there does not exist a monochromatic triangle and every vertex is incident to two colors.

**Theorem.** There exists a graph G satisfying the following properties:

- (i) If one colors the edges of G in two colors, there exists a monochromatic triangle.
- (ii) G can be 3-colored so that there is no monochromatic triangle and every vertex is incident to two colors.

**Proof.** It suffices to prove (i) for the graph G constructed in this section. Suppose we 2-color the edges of G without forming a monochromatic triangle. From Lemma 1 we know that all edges within each  $X_{J_i}$  and within each  $Y_{J_i}$  are of the same color. Furthermore, from Lemma 3 we know that the edges of  $X_{J_i}$  have the same color as the edges of  $Y_{J_i}$ . Lemma 2 guarantees that the color of the edges of  $X_{J_i}$  differs from that of the edges of  $Y_{J_{i+1}}$  for  $i=1,2,3 \pmod{3}$ . Since only two colors are available, this leads to a contradiction, and the theorem is proved.

## 3. CONCLUDING REMARKS

There are many interesting related problems, several of which we now mention.

(1) Let  $f_r(H)$  be the smallest integer n for which if one colors the edges of  $K_n$  by r colors, there always is a monochromatic subgraph isomorphic to H. Is it true that if one colors the edges of  $K_n$  by r+1 colors, where  $n=f_r(H)$ , such that every vertex is incident to at most r colors, then there always exists a monochromatic subgraph isomorphic to H? If so, let us say that H is r-admissible. Some graph H are not r-admissible; for example, let  $H=P_5$ , a path on five vertices. It is known [5] that  $f_2(P_5)=6$ . However,  $K_6$  can be 3-



FIGURE 5

colored such that every vertex is incident to two colors and there is no monochromatic  $P_5$  (see Fig. 5).

The problem of Erdös, Hajnal, and Sós, mentioned in Sec. 1, is just determining whether  $K_3$  is r-admissible. It would be of interest to characterize the class of all r-admissible graphs.

(2) A graph S is said to be a signal sender of type (r, H) if there exists a pair of edges in S, both of which have the same color when one colors edges of S in r colors without a monochromatic H. The graph in Figure 1 is a signal sender of the type  $(2,K_3)$ . It is not hard to construct a signal sender S of type  $(3,K_3)$  as follows: Let  $V(S) = \{1,2,\ldots,18\}$  and the induced subgraph  $S_1$  on  $\{1,2\} \cup \{5,6,\ldots,18\}$  is  $K_{16}$ , as is the induced subgraph  $S_2$  on  $\{3,4,\ldots,18\}$ . Also every edge of S is either in  $S_1$  or  $S_2$ . It is easy to check that  $\{1,2\}$  has the same color as the color which occurs in more than a third of the edges of the induced subgraph on  $\{5,6,\ldots,18\}$ . The edge  $\{3,4\}$  also has this property. Does there exist a signal sender of the type  $(r,K_3)$  for arbitrary r? In general, does there exist a signal sender of any type (r,H)? Burr et al. [2] have proved the existence of signal senders of type (2,H) for all 3-connected graphs H. We remark that these signal senders, if they exist, can then be used to generalize our main theorem.

#### References

- [1] S. A. Burr, private communication.
- [2] S. A. Burr, J. Nešetil and V. Rödl, On the use of senders in generalized ramsey theory for graphs. Preprint.
- [3] H. Enomoto, private communication.
- [4] P. Erdös and V. T. Sós, Problems and results in Ramsey-Turán type theorems. *Proceeding of the West Coast Conference on Combinatorics, Graph Theory and Computing*, pp. 17-23 (1979).
- [5] L. Gerencsér and A. Gyárfas, On Ramsey-type problems. Ann. Univ. Sci. Budapest, Eötvös Sect. Math 10, (1967) 167-170.
- [6] F. Harary, Graph Theory. Addison Wesley, Reading, MA, 1972.