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UNIVERSAL GRAPHS FOR BOUNDED-DEGREE TREES
AND PLANAR GRAPHS*
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AND ARNOLD L. ROSENBERGT

Abstract. How small can a graph be that contains as subgraphs all trees on # vertices with maximum
degree d? In this paper, this question is answered by constructing such universal graphs that have n vertices
and bounded degree (depending only on d). Universal graphs with n vertices and O(n log n) edges are also
constructed that contain all bounded-degree planar graphs on n vertices as subgraphs. In general, it is shown
that the minimum universal graph containing all bounded-degree graphs on n vertices with separators of size
n* has O(n) edges if & < §; O(n log n) edges if a = §; O(n**) edges if @ > 1.
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1. Introduction. Given a family F of graphs, a graph G is said to be F-universal if
G contains every graph in F as a subgraph. A fundamental problem of interest
is to determine how few edges a universal graph can have. Such problems are of inter-
est in circuit design [V], data representation [CRS], [RSS], and parallel computing
[BLe], [BCLR].

Let f(F) denote the minimum number of edges in a graph that contains all graphs
in F as subgraphs. There is a large literature on universal graphs for various families of
graphs. In the early 1960s, Rado first investigated universal graphs for infinite graphs
[Ra]. Since then many results on this subject have been published. Here we give a list
of some of the known results about universal graphs for various families of graphs.

(1) Moon [M] considered the universal graphs that contain all graphs on 7 vertices
as induced subgraphs. He established upper and lower bounds for the number of vertices
in such universal graphs.

(2) Bondy [Bo] investigated universal graphs for the class C, of all cycles of
length = »; such universal graphs are called pancyclic and he showed that

n+log (n—1)—1<f(C))<n+logy (n—1)+log* n+ 0O(1)
where log* n denotes

k
——N—
min {k:loglog:--logn<2}.

(3) Let T, denote the class of all trees on 7 vertices. A lower bound of i log n for
f(T,) can be obtained by considering degree sequences of the universal graph. The upper
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bound was improved by a series of papers [CG1], [CG2], [CG3], [CGP] and the best
known upper bound is only a constant multiple of the lower bound [CG3]

1 7
-nl sf(T)=s— .
Snlogn f(T,) log4n log n+ O(n)

(4) One variation on universal graph problems is to require the universal graph to
satisfy specified properties. In [CCG], it was shown that a minimum tree that contains
all trees on # vertices must have '+ otDleen/log4 yertices and that this is the best possible.

(5) A caterpillar is a tree with the property that its vertices of degree greater than
one induce a path. Kimble and Schwenk [ KS] first considered the problem of determining
minimum caterpillars that contains all caterpillars on n vertices, and they gave some
estimates of the size of the universal caterpillar. In [CGS], it was shown that the minimum
number of edges in such a universal caterpillar is within a constant factor of n2/log n.

(6) Let E, denote the class of all graphs with 7 edges. It turns out that E,-universal
graphs contain many more edges than T,-universal graphs. In fact, it was shown in
[BCEGS] that

cn?

n?loglogn
n 1+o(1))————
Tog? 1 <f(E;)<(1+0(1)) log 1

In this paper, we consider universal graphs for the family 7, ; of all trees on 7 vertices
with maximum degree d. We construct T, s-universal graphs on »n vertices with bounded
degree (depending only on d). In related independent work, Friedman and Pippenger
[FP] recently proved that an expander graph on c¢n vertices with constant degree contains
all trees on n vertices with maximum degree d. (The constant ¢, which depends on d,
is quite large.)

We will also consider universal graphs for the family P, , of all planar graphs on
n vertices with maximum degree d. The P, -universal graphs have n vertices and
O(n log n) edges, improving the previous bound of O(n*/?) in [BCEGS].

In § 2, we use graph separators to construct universal graphs with O(n) edges for
the family of binary trees on n vertices. Using similar techniques, we derive universal
graphs for families of graphs of bounded degree with small separators. In particular, we
obtain universal graphs with O(n log »n) edges for bounded-degree planar graphs on n
vertices and universal graphs with O(n) edges for bounded-degree outerplanar graphs
on n vertices. We also obtain 7, s-universal graphs on n vertices and O(n) edges, but the
maximum degree of these graphs is of order O(log n). To reduce the maximum degree,
we modify our construction using expander graphs in § 3 and the resulting T, ,-universal
graphs have bounded degree. Section 4 concludes with further problems and remarks.

2. Universal graphs for families of graphs with small bisectors. In a graph G on n
vertices, a set .S of vertices is called a bisector if, by removing vertices in S from G, the
remaining graph can be partitioned into two exactly equal parts so that there is no edge
joining a vertex from one part to the other.

Here we need a stronger notion of bisectors, called k-bisectors. When the vertices
of a graph G are colored in k colors, a set .S of vertices is said to be a k-bisector if, by
removing vertices in S from G, the remaining graph can be partitioned into two exactly
equal parts so that each part contains exactly equal numbers of vertices of each color,
and there is no edge joining a vertex from one part to the other. Any tree on »n vertices
has a bisector of size ¢ log n and a k-bisector of size ck log n for some constant ¢ [C],
[LT], [BL]. For binary trees, ¢ = (log 3)™! < 1.
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We first consider a simpler version of our problem, namely, for binary trees, that
are trees with maximum degree three.

LEMMA 1. The n vertices of a binary tree T can be mapped into a complete bi-
nary tree C on no more than 24 — 1 vertices (29— 1 = n < 29! — 1) so that at most 6
log (n/2'~3) vertices' of T are mapped into a vertex of C at distance t from the root,
and so that any two vertices adjacent in T are mapped to vertices at most three apart
inC.

Proof. The idea is to recursively bisect T, placing the successive sets of bisector
vertices within successively lower levels of C, until T is decomposed into single vertices.
For example, the vertices placed at the root of C bisect T into two subgraphs 7; and 7.
Similarly, vertices mapped to the left child of the root bisect T, and vertices mapped
onto the right child bisect 7. In addition, at level i of C we map vertices of T (that have
not already been mapped within levels i — 1, i — 2) that are adjacent to vertices mapped
at level i — 3 of C. This ensures that vertices adjacent in 7 will be mapped to vertices of
C distance three apart.

To keep the number of vertices of T mapped to a level i vertex in C within the
required bounds, we use 3-bisectors. The following procedure describes how this is done.

Step 0. Initialize every vertex of T to color A4, bisect T, and place the bisector
vertices at the root (level 0) of C.

Step 1. For each subgraph created in the previous step, recolor every vertex adja-
cent to the bisector in the previous step with color 0, and place a 2-color bisector for
the subgraph at the corresponding level-1 vertex of C.

Step 2. For each subgraph created in the previous step, recolor every vertex of color
A adjacent to the bisector in the previous step with color 1, and place a 3-color bisector
for the subgraph at the corresponding level-2 vertex of C.

Step t (log |T) = ¢t = 3). For each subgraph created in the previous step, place
every vertex of color ¢ — 1(mod 2) at the corresponding level ¢ of C, recolor every vertex
of color A that is adjacent to a vertex mapped at the previous level with color  — 1 (mod 2)

and place a 3-color bisector for the remaining subgraph at the corresponding level 7 vertex
of C.

To ensure the accuracy of Step ¢, it suffices to show n, = 6 log (n/2°) + 18 for 3 =
t <log | T|. Since we have

n 1
—t-n.3

n,é3log21 >

§610g5"7+18,

Lemma 1 is proved.

The analogous version for higher-degree trees and planar graphs can be proved in
a very similar way, and the proofs are left to the reader. The main difference in proving
these results is that vertices adjacent to previously mapped vertices are themselves only
mapped at every 6(log d) level instead of at every level. This way, only two or three
colors are needed, and the bisector at every level stays small.

! Strictly speaking, we should use |6 log (n/2°~?)] instead of 6 log (n/2°~*). However, we will usually
not bother with this type of detail since it has no significant effect on the arguments or results. Also, all logarithms
henceforth are of base two.
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LEMMA 2. The vertices of a tree T with maximum degree d can be mapped into a
complete binary tree C on no more than 29 — 1 vertices (29— 1 = n < 29! — 1) so that
O(log (n/2")) vertices of T are mapped to a vertex of C at distance t from the root, and
so that any two vertices adjacent in T are mapped to vertices at most distance O(log d)
2logd+ 2 apart in C.

LEMMA 3. The vertices of a planar graph G of maximum degree d can be mapped
into complete binary tree C on 29 — | vertices (29 — 1 £ n < 29" — 1) so that
O(Vn/2") vertices of G are mapped to a vertex of C at distance t from the root, and so
that any two vertices adjacent in G are mapped to vertices at most distance O(log d)
apart in C.

A graph G is said to have a k-bisector function f if any subgraph of G on m vertices
has a k-bisector of size no more than f(m). The preceding lemmas are all special cases
of the following.

LEMMA 4. Suppose G on n vertices with maximum degree d has a k-bisector function
f. The vertices of G can be mapped into a complete binary tree C on no more than
29— 1 vertices where 29— 1 2= n<29%! — 1 so that O( f(n/2")) vertices of G are mapped
to a vertex of C at distance t from the root, and so that any two vertices adjacent in G are
mapped to vertices at most distance O(klog d) apart in C if k is large enough that

2f(xd*Y=d*~4f(x) forallx.

Although Lemma 4 looks somewhat complicated, it is a natural generalization of
Lemmas 1-3, and we omit the proof. We can now construct universal graphs using the
decomposition lemmas.

THEOREM 1. The minimum universal graph for the family of all bounded degree
trees on n vertices has n vertices and O(n) edges.

Proof. Using Lemma 2, we consider the graph with vertices grouped into clusters
corresponding to the vertices in the complete binary tree C. A cluster corresponding to
a vertex of level ¢ contains O(log (n/2')) vertices. We connect all pairs of vertices in
clusters with corresponding vertices within distance O(logd) = O(1) apart in C. By
Lemma 2 the resulting graph is universal for the family of all trees with maximum degree
d. The number A(n) of edges in this graph is O(n), since h(n) satisfies the following
recurrence inequality:

h(n)é2h(’2—1)+c(log n)?

where ¢ is an appropriate constant depending on 4.

The construction just described has O(n) vertices. To obtain a universal graph with
precisely » vertices, we modify the embedding of Lemma 1 so that the same number of
nodes of T are wrapped to nodes in the same level of C. This is easy to do since we can
always arbitrarily expand the bisector of any subtree to be within one of its maximum
allowed value (which is the lesser of the number of nodes remaining and O(log (n/2'))
for nodes on level ¢ of C. The exact value of the maximum bisector is the same for all
nodes on a level and depends on the parity of the number of nodes in the subgraphs at
that level. Hence, the size of the bisectors at each level depends only on n, and the
universal graph can be assumed to have precisely n nodes.

THEOREM 2. The minimum universal graph for the family of all bounded-degree
planar graphs on n vertices has n vertices and O{(n log n) edges.
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Proof. The construction is obtained by using Lemma 3 in similar fashion as in the
proof of Theorem 1. The number of edges /() satisfies

h(n)éZh(%)-*—cn

and, therefore, the minimum universal graph has O(# log n) edges.

THEOREM 3. The minimum universal graph for a family of bounded-degree graphs
on n vertices with bisector function f(x) = x* has n vertices with O(n) edges if a < };
O(nlog n) edges if « = §; O(n**) edges if a > 4.

Proof. The construction follows from Lemma 4 together with the fact that the
number A(#n) of edges satisfies

h(n)ézh(’—z’)+c(f(n))2.

THEOREM 4. The minimum universal graph for the family of all bounded-degree
outer-planar graphs on n vertices has n vertices and O(n) edges.

Proof. Since an outerplanar graph on # vertices has a bisector of size O(log n), the
result follows from Theorem 3.

3. A bounded-degree universal graph for bounded-degree trees. For the family of
bounded-degree trees, the minimum universal graph has »n vertices and O(»n) edges as
indicated in Theorem 2; however, the maximum degree is of order log n. Although the
number of the edges in this universal graph is within a constant factor of the optimum,
its vertices have unbounded degree.

In this section we describe a construction for graphs on » vertices with bounded-
degree that are universal for all bounded degree trees on n vertices. First we need a few
definitions.

DEFINITION. A graph G(V, E) is said to be full if for every V'V, |V'| =
| V'|/2, the number of edges between V' and V' — V'is at least | V’].

We observe that there is a constant 4 such that for every m, there is a full graph on
m vertices with maximum degree 8. Any expander graph can be used for constructing
full graphs [AC], [LPS]. It was shown in [ AC] that in any é-regular graph G(V, E) with
second largest eigenvalue A, for every V' < Vwith | V'| = an, the number e(V"') of edges
contained in V' satisfies

le(V')—48a’n| = Aa(l — a)n.

Therefore, there are at least (6 — 2A)a(l — a)n edges between V' and ¥V — V. As long
as (6 — 2A)/2 = 1, the graph G is full. For large enough 6, this is usually the case.

The universal graph H on 7 vertices is obtained as follows. For simplicity, we will
assume that n = 29— 1.

Start the construction with a complete binary tree on n vertices. Then, add edges
so that the vertices at level k (a constant specified later) form a full graph on 2* vertices.
Repeat this for vertices at levels 2k, 3k, - - - . Call the resulting graph H,.

Next, add extra edges so that the vertices at levels k, 2k, --- , log n — s (k divides
log n — s and s is a constant specified later) collectively form a full graph. Call the
resulting graph H;.

Finally, insert an edge between any pair of vertices within distance ¢ of each other,
where ¢ is a constant specified later. The resulting graph, denoted by H, is our universal
graph. Observe that the maximum degree of any vertex in H is no greater than
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(26 + 3)" which, of course, is a constant because & and ¢ are. We will show that H is uni-
versal for the family of bounded-degree trees on n vertices if k, s, and ¢ are properly
chosen.

THEOREM 5. For the family of trees on n vertices with maximum degree d, we can
construct universal graphs on n vertices with bounded degree (that depends only on d).

The proof of Theorem 5 is somewhat involved, and requires a few combinatorial
facts concerning full graphs and trees. The intuition captured in the following lemmas
may be understood as follows. Suppose that we have mapped a subset of the vertices of
a tree 7 within a graph G, and we next wish to map a vertex v of T onto a vertex of G
in such a way that it remains “close to” its neighbors that have already been embedded.
If there is no place readily available, we can still find a suitable place for » by “perturbing”
the existing mapping slightly to make room for ». The “flow lemmas” establish conditions
under which this can be done without dilating edges significantly.

LEMMA 5. Let G be a full graph with maximum degree d, and consider any as-
signment of packets to vertices of G such that every vertex of G is assigned at least1d /2]
packets. Then, for any disjoint subsets S and T of vertices such that |S| = |T|, it is
possible to redistribute the packets so that we have the following:

(i) Every packet either stays stationary or moves to a neighbor in G;
(ii) The number of packets in each vertex in S decreases by one;

(iii) The number of packets in each vertex in T increases by one; and

(iv) The number of packets in each vertex in V — (T U S) remains the same.

Proof. The lemma is proved with a simple max-flow/min-cut argument. Set up a
flow problem with a supersource connected to each vertex in .S and a supersink connected
to each vertex in 7. Assign unit capacity to each edge. Because G is full, there is a 0-1
flow with value | S| between the source and sink. The flow determines a one-to-one
correspondence (along with edge-disjoint paths) from the vertices in S to the vertices in
T. By moving one packet forward along each edge that has unit flow we can effect a
reassignment of packets that satisfies conditions (ii)-(iv).

Since every vertex in the flow graph (with the supersource and supersink ) has degree
at most d + 1, at most | (d + 1)/2] = Td/2] packets will be removed from any vertex of
G during the reassignment process. Since every vertex of G initially has [ d/217 packets,
no packet need ever move more than one step. Hence, the reassignment also satisfies the
first condition.

LEMMA 6. Let G be a full graph on n vertices with maximum degree d, and consider
any assignment of packets to vertices of G so that vertex v; has a; packets, where a; =
[d/21 for 1 £ i = m. Then for any set of numbers {a|1 = i = m} for which a},
[d/2] for 1 = i = m, it is possible to redistribute the packets so that we have the fol-
lowing:

(i) Every packet is reassigned to a vertex that is at distance at most
max, <<, |@; — ai| from its original location in G, and

(ii) The number of packets assigned to v; changes from a; to a}, forall 1 £ i £ m.

Proof. Apply Lemma 5 for max; <;=, |a; — a}| iterations, each iteration decreasing
the maximum value of |a; — a}|, 1 =i = m, by one.

To establish Theorem 5 we use a decomposition strategy different from that in § 2.
The following lemma is a simple extension of the { :  separator theorem for binary trees
and was observed previously in [BLe]. This can be generalized to arbitrary maximum
degree d via the (1/(d + 1), d/(d + 1)) separator theorem (see [C]).

LEMMA 7. For every constant p < 4, there exists a constant q such that any n-vertex
two-colored binary forest with w vertices of color A can be partitioned into two sets by the
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removal of q edges so that each set has at least [ pn) vertices and at least | pwl vertices of
color A.

We also require an additional, final lemma.

LEMMA 8. Every binary tree T on n vertices can be embedded within Hy so that we
have the following:

(i) Vertices of T are assigned to vertices in levels 0, k, 2k, - - - ,log n — 5 of Hy;
(ii) Every vertex in levels 0, k, 2k, - -+ , log n — s of Hy is assigned at leastTd/21
and at most ¢, vertices of T, where ¢, is some constant;

(iii) Vertices adjacent in T are assigned to vertices in Hy separated by distance at
most ¢,, for some constant c,.

Once Lemma 8 is established, it is easy to complete the proof of Theorem 5 as
follows.

Proof of Theorem 5. First obtain the embedding of Lemma 8. Next, by Lemma 6
we can use the edges of H; — H, to reassign the vertices of 7 within H, so that we have
the following:

(i) Every vertex in levels 0, k, 2k, -+, log n — s — k of H, is assigned 2% — 1
vertices of T
(ii) Every vertex in level log n — s of H, is assigned 2° — 1 vertices of T; and

(iii) Vertices adjacent in T are assigned to vertices in H separated by distance at
most c3, where ¢3 £ ¢; + 2 max (|2° — 1 —Td/21], |2 — 1 —Td/21)).

At this point, we need only require that s = k and that 2% — 1 = [d/21 so that the
conditions of Lemma 6 are satisfied. Since k, s, d, ¢|, and ¢, are all constants, we know
that ¢; also is constant. We now reassign vertices one more time so that the mapping
from T to H becomes one-to-one and onto. This is done by arbitrarily assigning the
vertices of T on levels 0, k, 2k, - -+, log n — s of H; to their immediate descendants.
Once this is done, the maximum distance in H, between any two nodes adjacent in T
will be at most ¢; + 2s, which is constant. By setting ¢ = ¢; + 25 in the construction of
H, this will mean that 7 is a subgraph of H, thereby completing the proof of Theo-
rem 5.

Proof of Lemma 8. We follow an approach similar to that in § 2. However, since
we are allowed to place only O(1) vertices of T at any one vertex of Hy, we cannot afford
to bisect the tree at each step because that may require placing ¢ log n vertices of T at
the root of H, for some constant ¢. Therefore, instead of bisecting the tree at each step,
we separate it into proportional size components using Lemma 7, and continually balance
the sizes of components as the embedding proceeds towards lower levels of Hj.

Initially, color all the vertices of T white. Then, pick any [ d/2] vertices of T and
map them to the root (level 0) of Hy. Color red those vertices of T that are adjacent to
one or more of the vertices placed at the root of H,. Next, fix p with { = p < {, and use
Lemma 7 to partition the (as yet unmapped) vertices of T into two sets, each with at
least the fraction p of the total number of unmapped vertices, and each with at least the
fraction p of the total number of red vertices (always rounded up to the nearest integer,
of course). One of the sets is distributed to the left subtree of the root of Hy and the
other set to the right subtree. By Lemma 7, no more than g edges connect vertices in the
two sets.

No vertices of T will be assigned to the next k — 1 levels of Hy, but we continue to
partition T into smaller and smaller sets. In particular, we first color vertices in the “left
set” of T (those unmapped vertices of T assigned to the left subtree of Hy) that are
adjacent to vertices in the right set. We then use Lemma 7 to partition the left and right
sets each into two smaller subsets, one for each grandchild of the root. Continue in this
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fashion, coloring vertices red as they become adjacent to vertices in the opposite set and
splitting the forests (sets) into smaller forests until we have distributed a forest to each
vertex on the kth level of Hy.

Although the vertices are split into roughly equal proportions (p : 1 — p) at each
level, the sizes of forests at the kth level could vary substantially (in fact, anywhere
between p* and (1 — p)*). Therefore, at this stage we balance the sizes of the forests
assigned to each vertex by redistributing forests among vertices at level k. To achieve
this balance, first use Lemma 7 to partition each forest into [ d/21 subforests (but we do
not distribute the subforests further down the tree). Next, we partition each subforest
whose size is greater than 1/p times the size of the smallest subforest. Observe that this
does not affect the size of the smallest subforest.

We are now ready to apply Lemma 6, with each subforest represented as a packet.
In particular, we use Lemma 6 to redistribute subforests on the level so that every vertex
ends up with an equal number of subforests (to within one). We then map all the red
vertices of T (i.e., those adjacent to vertices in different subforests) to the corresponding
vertex of H, where the enclosing subforest is currently located, making sure to map at
least [d/21 vertices of T to each vertex on level k in Hy. (If there are not enough red
vertices, then we use some of the white vertices in the same subforest to make up the
total. We show later that there are always enough vertices overall so that this is possible.)

After the mapping is completed for level k, we recolor red all white vertices of T
that are adjacent to vertices already mapped, and we henceforth regard the collection of
subforests assembled at a single vertex of H, as a single forest. Next, we repeat the process
usedonlevels 1,2, -+« ,kforlevelsk+ 1,k+2,+--,2k,--- ,logn—s,where sisa
constant yet to be specified. At every kth level, we rebalance and coalesce forests as on
level k, and map all red vertices of T to the corresponding vertices of Hy. At level
log n — s all the unmapped vertices of T (both red and white) are mapped directly to the
corresponding vertices of Hy. Several details remain to be ironed out; however, it should
be clear that vertices adjacent in 7" are mapped to vertices which are at most k levels
apart in H,.

The analysis needed to complete the proof is tedious, but not difficult. We start by
letting r; be the maximum number of red vertices in any forest after all partitioning,
balancing, coalescing, mapping, and recoloring is done at level ik of H,. Similarly, let
z; be the number of vertices (both red and white) in the smallest forest at level ik.

We will prove by induction that, for ik <logn — s, zx = 2 *n/6,and ry S r' =
96(1 + q)z—kp—(k+f]ogfd/2ﬂ+ I).

Observing that r' 2 dld/2] for k sufficiently large (in terms of p and d), we note
that both statements are trivially true for i = 0 and » sufficiently large. We next calculate
bounds for r; . and z; ., to proceed with the inductive step.

By Lemma 7, we know that

rics 1 =(1—p)ry+1+g;

therefore, each forest at level ik + k of Hy has at most (1 — p)*r;. + (1 + q)/p red vertices
initially. The process of partitioning forests into subforests at level ik + k cannot increase
this value, but redistributing, coalescing, and recoloring certainly can. To measure their
effect, we need to bound the number of subforests that are located at any vertex following
redistribution. This of course depends on the overall number of subforests, which in turn
depends on the size of the smallest subforest.

The size of the smallest subforest at level ik is z;. Hence, the size of the smallest
forest at level ik + 1 is at least pz;, — 1. Applying the argument recursively, we find that
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the size of the smallest subforest at level ik + k (after all the subdividing at this level is
complete) is, for p = 1, at least

Zikpk+rl°grd/2“ _(1 __p)—l gpk+l'log|'d/2112—ikn/6__ 2.

For sufficiently large s (i.e., small enough i), this is at least p* *"1°6"@/2113 =y ;12 Hence,
the number of subforests at this level is no greater than 12 X 2%p~(k+Mloed/2M) The
maximum number of subforests located at any vertex after balancing is, therefore, no
greater than

1+12X 2-kp—(k+rlogfd/2ﬂ)§ 24 % 2—kp—(k+rlogrd/2n)_

Consequently, the maximum number of red vertices in any forest after rebalancing and
coalescing is at most

(1 =p)ruc+(1+4)/p)24 X 27 *p~k+Tlostd/zmh),
Since mapping and recoloring can increase this at most by a factor of two, we have
Pik+k _S_ 48(1 —p)krikz —kp—(k+ MNogfd/211) + 48(1 + q)z —kp—(k+ I'logrd/ZTI)’

By choosing p > § so that (1 — p)/2p < 1, we have that for k sufficiently large (in terms
of pand d):

Fik+ k = %rik + 48(1 + q)2"‘kp—(k +1 +l’log|'d/211);
thus,
Pieer S96(1 +g)2~kp—(k+ 1+ ogrd/2n) — o1

as claimed.

We next complete the inductive step for z;, . . Since the largest and smallest subforests
differ in size by at most a factor of 1/p, the size of the smallest forest after balancing and
coalescing is at least p(n — r2%*¥)2~0k+K)~1 the factor 4 accounting for the fact that
every vertex has the same number of packets to within one. After mapping and recoloring,
the size of the smallest forest is

zik+ké%(n—r'2ik+k)2—(ik+k)—r’.

With some additional calculations it can be checked that this is at least 27**%n/6 for
p > % and s sufficiently large, thereby completing the proof of the claim.

By choosing s sufficiently large, we have shown that every vertex at levels 0, k, - - -,
log n — s — k of Hy is assigned at least [d/21 and at most ' vertices of 7. Since s is
constant, every vertex at level log # — s of Hj is assigned between [d/2] and c, vertices,
where ¢; is some constant bigger than r’. Moreover, vertices of T are assigned only to
vertices in levels 0, k, « -+ , log n — s of H,. Hence, it remains only to show that vertices
adjacent in T are assigned to vertices in H that are separated by distance at most ¢;, for
some constant ¢,. We already know that ¢, is at most k plus the distance subforests are
allowed to move during the rebalancing step at every kth level. By Lemma 6, this distance
is at most the largest number of subforests at any vertex before rebalancing. By the
construction, this is at most some constant determined by p, d, k, and s. This completes
the proof of Lemma 8 and Theorem 5.

4. Further problems and remarks. While the universal graph for bounded-degree
trees is optimal (within a constant factor), the universal graph for bounded-degree planar
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graphs on n vertices has O(n log n) edges. On the other hand, the best known lower
bound for the number of edges is still ¢n. It is of interest to close up the gap.

One variation of the universal graph problem is to require the universal graph
to be of some specified type. For example, in [CCG] universal trees that contain all
trees with at most » nodes were considered. Relatively little is known about universal
planar graphs that contain all planar graphs on » vertices.

This work is heavily motivated by simulation of graph families in various host
networks with small dilation (i.e., adjacent vertices are mapped into nearby vertices)
and small expansion (i.e., the ratio of the size of host graph and the maximum size of
graphs in the family is small). The decomposition lemma (Lemma 1 in § 2) for binary
trees also provides optimal embeddings of binary trees within other structures. For ex-
ample, we can show that every n-vertex binary tree can be embedded within an n-vertex
complete binary tree with expansion 1 and dilation O(log log 7). This settles a conjecture
of Hong, Mehlhorn, and Rosenberg [HMR ] who showed a lower bound of Q(log log )
for this problem. By embedding a complete binary tree within the shuffle exchange graph
with expansion 1 and dilation 2, we obtain O(log log n) dilation for arbitrary trees
embedded within the shuffle-exchange graphs. Similarly, we have recently shown that an
n-vertex binary tree can be embedded with constant expansion and dilation within the
butterfly network [ BCHLR ]. Finally, we have shown that all binary trees can be embedded
in a hypercube with expansion 1 and dilation 10 [BCLR].
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