CHAPTER 2

Old and New Concentration Inequalities

In the study of random graphs or any randomly chosen objects, the “tools
of the trade” mainly concern various concentration inequalities and martingale
inequalities.

Suppose we wish to predict the outcome of a problem of interest. One reason-
able guess is the expected value of the object. However, how can we tell how good
the expected value is to the actual outcome of the event? It can be very useful
if such a prediction can be accompanied by a guarantee of its accuracy (within a
certain error estimate, for example). This is exactly the role that the concentration
inequalities play. In fact, analysis can easily go astray without the rigorous control
coming from the concentration inequalities.

In our study of random power law graphs, the usual concentration inequalities
are simply not enough. The reasons are multi-fold: Due to uneven degree distri-
bution, the error bound of those very large degrees offset the delicate analysis in
the sparse part of the graph. Furthermore, our graph is dynamically evolving and
therefore the probability space is changing at each tick of the clock. The problems
arising in the analysis of random power law graphs provide impetus for improving
our technical tools.

Indeed, in the course of our study of general random graphs, we need to use
several strengthened versions of concentration inequalities and martingale inequali-
ties. They are interesting in their own right and are useful for many other problems
as well.

In the next several sections, we state and prove a number of variations and
generalizations of concentration inequalities and martingale inequalities. Many of
these will be used in later chapters.

2.1. The binomial distribution and its asymptotic behavior

Bernoulli trials, named after James Bernoulli, can be thought of as a sequence
of coin flips. For some fixed value p, where 0 < p < 1, the outcome of the coin
tossing process has probability p of getting a “head”. Let S;, denote the number of
heads after n tosses. We can write S, as a sum of independent random variables
X; as follows:

Sp=X1+Xa 4+ X,
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24 2. OLD AND NEW CONCENTRATION INEQUALITIES

where, for each i, the random variable X; satisfies
Pr(X;=1) = p,
(2.1) Pr(X;=0) = 1-—p.

A classical question is to determine the distribution of S,,. It is not too difficult to
see that S, has the binomial distribution B(n,p):

Pr(S, =k) = (Z)pk(l—p)"k, for k=0,1,2,...,n.

The expectation and variance of B(n,p) are

E(Sy) = np, Var(S,,) = np(1 — p).

To better understand the asymptotic behavior of the binomial distribution, we
compare it with the normal distribution N(a, o), whose density function is given
by

1 _@-=?
flx) = e 27, —00 <z < 00

Ver

where o denotes the expectation and o2 is the variance.

The case N(0,1) is called the standard normal distribution whose density func-
tion is given by

flx) = — e, —00 < T < 00.
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When p is a constant, the limit of the binomial distribution, after scaling, is
the standard normal distribution and can be viewed as a special case of the Central
Limit Theorem, sometimes called the DeMoivre-Laplace Limit Theorem [53].
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THEOREM 2.1. The binomial distribution B(n,p) for S,, as defined in (2.1),
satisfies, for two constants a and b,

b
1 2
lim Pr(ac < S, —np < bo :/ e 2dy
n—o0 ( " p ) a \/ﬁ
where 0 = \/np(1 — p), provided np(1 — p) — 0o as n — oo.

PrROOF. We use Stirling’s formula for n! (see [70]).

al= (L o(1)Vamn(S)"

\/%(g)".

Q

or, equivalently, n!

For any constant a and b, we have
Pr(aoc < Sy, —np < bo)

> (Z)p’“(l —p)" "

aoc<k—np<bo

L [ n n" k n—k
Z / _ k _ nfkp (1 _p)
aoc<k—np<bo 2 k(n k) k (TL k)

Q

_ Z 1 (@)kJrl/Q(n(]. —p))n7k+1/2
ac<k—np<boc V 27T7’lp(1 _p) k n—k
1 k—mnp\—k-1/2 k—mnp \—ntk—1/2
= Z (1+ ) (1-——=) :

or np n(1—p)

To approximate the above sum, we consider the following slightly simpler expres-
sion. Here, to estimate the lower order term, we use the fact that k = np + O(0)
and 14 2 = en(142) = ¢2=2"+0@") for 4 = o(1). To proceed, we have

aoc<k—np<bo

Pr(ac < S, —np < bo)
1 k—np,—k k—np \—ntk
14 1———
aa<k;p<ba \/%0'< np ) ( n(l _p))

,k(k—npur<n—k><k—np)+k(k—np>2+<n—k><k—np)2+O(%)

E 1 e np n(1—p) nZp2 nZ(1—p)2

%

Q

ac<k—np<bo 2no
- ¥ L -3myio)
2mo

ac<k—np<bo

]_ 7l(k—np)2
e
2mo

ac<k—np<bo

Q

Now, we set © = xp = k;"p, and the increment ‘dz’= x — 51 = 1/0. Note that
a <z < a9 < --- < bforms a 1/o-net for the interval (a,b). As n approaches
infinity, the limit exists. We have

b
1 2
lim Pr(ac < S, —np < bo) = / e T2y,
n—oo a /27T
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Thus, the limit distribution of the normalized binomial distribution is the normal
distribution. 0

When np is upper bounded (by a constant), the above theorem is no longer
true. For example, for p = %, the limit distribution of B(n,p) is the so-called
Poisson distribution P()\):

DU

Pr(X =k) = e

for k=0,1,2,....

The expectation and variance of the Poisson distribution P()) is given by

E(X)=A, and Var(X)=A\

THEOREM 2.2. For p = %, where X is a constant, the limit distribution of
binomial distribution B(n,p) is the Poisson distribution P(\).

PRrROOF. We consider

. . n -
lim Pr(S, =%k) = lim < )pk(l —p)nF
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As p decreases from ©(1) to ©(+), the asymptotic behavior of the binomial
distribution B(n,p) changes from the normal distribution to the Poisson distribu-
tion. (Some examples are illustrated in Figures 5 and 6). Theorem 2.1 states that
the asymptotic behavior of B(n,p) within the interval (np — Co,np + Co) (for any
constant C) is close to the normal distribution. In some applications, we might

need asymptotic estimates beyond this interval.
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2.2. General Chernoff inequalities

If the random variable under consideration can be expressed as a sum of in-
dependent variables, it is possible to derive good estimates. The binomial distri-
bution is one such example where S, = Z?:l X; and the X;’s are independent
and identical. In this section, we consider sums of independent variables that are
not necessarily identical. To control the probability of how close a sum of random
variables is to the expected value, various concentration inequalities are in play. A
typical version of the Chernoff inequalities, attributed to Herman Chernoff, can be
stated as follows:

THEOREM 2.3. [28] Let X1,..., X, be independent random variables such that
E(X;) =0 and |X;| <1 for alli. Let X =Y, X; and o* be the variance of X;.
Then

Pr(|X| > ko) < 2 F/4,
for any 0 < k < 20.

If the random variables X; under consideration assume non-negative values,
the following version of Chernoff inequalities is often useful.

THEOREM 2.4. [28] Let X1,...,X, be independent random variables with
PI‘(Xz = 1) = Pi, PI‘(X,L' = O) =1 — Pi-
We consider the sum X = Y1 | X;, with expectation E(X) = > | p;. Then we
have
(Lower tail) Pr( X <EX)-)A) < e~ /2B

2

(Upper tail) Pr(X >EX)+ ) < ¢~ TEEFRT |

We remark that the term \/3 appearing in the exponent of the bound for the
upper tail is significant. This covers the case when the limit distribution is Poisson
as well as normal.
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There are many variations of the Chernoff inequalities. Due to the fundamen-
tal nature of these inequalities, we will state several versions and then prove the
strongest version from which all the other inequalities can be deduced. (See Fig-
ure 7 for the flowchart of these theorems.) In this section, we will prove Theorem
2.8 and deduce Theorems 2.6 and 2.5. Theorems 2.10 and 2.11 will be stated and
proved in the next section. Theorems 2.9, 2.7, 2.13, and 2.14 on the lower tail can
be deduced by reflecting X to —X.

Upper tails Lower tails

heorem 2.11 Theorem 2-10| |Theorem 2.13|—> heorem 2.14
A

A

\4 y

|Theorem 2.8 | |Theorem 2.9 |

4

|Theorem 2.4 |

FIGURE 7. The flowchart for theorems on the sum of independent variables.

The following inequality is a generalization of the Chernoff inequalities for the
binomial distribution:

THEOREM 2.5. [34] Let X1,..., X, be independent random variables with
Pl"()(z = ].) = Di, PI‘(XZ‘ = 0) =1 — Di-

For X =" | a;X; with a; > 0, we have E(X) = " | a;p; and we define v =
St alpi. Then we have

(2.2) Pr(X <E(X)-A) < e M/

2
(2.3) Pr(X > E(X)+)\) < e wienm
where a = max{ay, as,...,an}.

To compare inequalities (2.2) to (2.3), we consider an example in Figure 8.
The cumulative distribution is the function Pr(X > z). The dotted curve in Figure
8 illustrates the cumulative distribution of the binomial distribution B(1000,0.1)
with the value ranging from 0 to 1 as x goes from —oo to co. The solid curve at
the lower-left corner is the bound e~*"/2” for the lower tail. The solid curve at the

__a .
upper-right corner is the bound 1 — e 2@+e%/3) for the upper tail.
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The inequality (2.3) in the above theorem is a corollary of the following general
concentration inequality (also see Theorem 2.7 in the survey paper by McDiarmid
[99]).

THEOREM 2.6. [99] Let X; be independent random wvariables satisfying X; <
E(X;) + M, for 1 <i < n. We consider the sum X = Y | X; with expectation
E(X) =", E(X;) and variance Var(X) = Y | Var(X;). Then we have

A2

Pr(X > E(X) + \) < ¢ 3Varcian/s

In the other direction, we have the following inequality.

THEOREM 2.7. If X1, X5, ..., X, are non-negative independent random vari-
ables, we have the following bounds for the sum X =" | X;:
)\2

Pr(X <E(X)—\) <e 2Z180D),

A strengthened version of the above theorem is as follows:
THEOREM 2.8. Suppose X; are independent random variables satisfying X; <

M, for1<i<mn. Let X =31 | X; and || X| = /> i, E(X?). Then we have

2
PriX >E(X)+ )\ <e AXTP A7)

Replacing X by — X in the proof of Theorem 2.8, we have the following theorem
for the lower tail.

THEOREM 2.9. Let X; be independent random variables satisfying X; > —M,
for1<i<mn. Let X =% | X; and | X|| = />, E(X?). Then we have

A2

Pr(X <E(X)—)) <e 20X1Z+Mmx/3)
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Before we give the proof of Theorem 2.8, we will first show the implications of
Theorems 2.8 and 2.9. Namely, we will show that the other concentration inequal-
ities can be derived from Theorems 2.8 and 2.9.

Fact: Theorem 2.8 = Theorem 2.6:

ProOF. Let X] = X; — E(X;) and X' =31 | X/ = X — E(X). We have
X/ <M forl<i<n.

We also have

X7 = YR
= D_B((Xi —E(X))?)

= ZVar(Xi)
i=1

= Var(X).
Applying Theorem 2.8, we get
Pr(X >E(X)+ ) = Pr(X'>))

D
e 2(1X"I12+Mx/3)

IN

A2
e 2(Var(X)+Mx/3)

A

Fact: Theorem 2.9 = Theorem 2.7
The proof is straightforward by choosing M = 0.

Fact: Theorem 2.6 and 2.7 =— Theorem 2.5

ProOOF. We define Y; = q;X;. Note that

IX[1P = B(Y?) =" afp;i = v.
i=1 i=1

Equation (2.2) now follows from Theorem 2.7 since the Y;’s are non-negative.

For the other direction, we have
Yi<a; <a<EY;)+a.

Equation (2.3) now follows from Theorem 2.6. O

Fact: Theorem 2.8 and Theorem 2.9 = Theorem 2.3

The proof is by choosing Y = X — E(X), M = 1 and applying Theorems 2.8 and
29to Y.
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Fact: Theorem 2.5 = Theorem 2.4
The proof follows by choosing a1 =as =---=a, = 1.

Finally, we give the complete proof of Theorem 2.8 and thus finish the proofs
for all the above theorems on Chernoff inequalities.

Proof of Theorem 2.8: We consider
B(e"Y) = B(e! =i X) = [ B(e")
since the X;’s are independent.

We define g(y) =2> 12, I;, f = W, and use the following facts:

9(0) = 1.

g(y) <1, for y <0.

¢(y) is monotone increasing, for y > 0.
For y < 3, we have

oo o0 yk72 1
Z <D Sme=T
= k—2 _
— Pt 3 1—y/3
since k! > 2 - 3572, Then we have, for k > 2,

BEe) = J[EEX)
i=1

n o0

th
= E(
e

i=1
n

1
= J[EQ+EX)+ 51&2X§g(t)g-))
i=1

[[a+®Ex)+ %tQE(Xf)g(tM))

i=1

IN

IA

HetE )+ LIPE(X7)g(tM)

etE(X)+§t29(tM) iL=1 E(Xlz)

CtE(X)+3t2g(tM)]| X ||

Hence, for t satisfying tM < 3, we have
Pr(X >E(X)+)\) = Pr(e™ > etE(X)th)\)

< eftE(X)ft)\E(etX)
< AR X 2
< eft/\Jr%tQ”XHQ 1—1,%»1/3.
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To minimize the above expression, we choose t = BIE

and we have

Pr(X > E(X) + A)

The proof is complete.

<
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W. Therefore, tM < 3

142 2 1
eft/\Jrit ”XH 1—-tM/3

I C
e 2(1XI2+Mx/3)

2.3. More concentration inequalities

Here we state several variations and extensions of the concentration inequalities
in Theorem 2.8. We first consider the upper tail.

THEOREM 2.10. Let X; denote independent random variables satisfying X; <
E(X;)+ai+ M, for 1 <i<mn. For, X =" | X;, we have

A2

PI‘(X > E(X) 4 )\) < 6_2(Var(x)+z';}:1 a%+1\l>\/3).

ProOF. Let X! = X; — E(X;) —a; and X’ = )" | X/. We have

X' - E(X')

Thus,

X711

By applying Theorem 2.8, the proof is finished.

X/ <M

forl1 <i<n.

n

S (X{ ~ B(x)

iE(Xf)

n

i=1

Z E((X; — E(X;) — a)?)
> (B((X: — B(X3)? +a7)

Var(X) + Z a?.
i=1
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THEOREM 2.11. Suppose X; are independent random variables satisfying X; <
E(X;) + M;, for 0 < i < n. We order the X;’s so that the M; are in increasing
order. Let X = Z?zl X;. Then for any 1 < k < n, we have

A2

Pr(X > E(X) +)) < ¢ HVaCOTm, (0 -3 7+ 33/

PROOF. For fixed k, we choose M = M}, and

(o0 if1<i<Fk,
@i M, — M, ifk<i<n.

We have

Using Theorem 2.10, we have

Pr(X; > E(X) + \) < e 2VarCOrEi (M- Mp)THMa/s)
O

ExXAMPLE 2.12. Let Xi, Xo,..., X, be independent random variables. For
1 <i<n-—1, suppose X; follows the same distribution with

Pr(X;=0)=1—-p and Pr(X;=1)=p
and X, follows the distribution with
Pr(X,=0)=1-p and Pr(X,=+vn)=p.
Consider the sum X = Y7 | X;.

We have

= (n—1)p(1—p)+np(l—p)
= (2n—1)p(1 - p).

Apply Theorem 2.6 with M = (1 — p)y/n. We have
)\2

Pr(X ZE( ) ) e 2(@n—Dp(A—p)+(A—p)VnA/3) ,

In particular, for constant p € (0,1) and A = ©(n2 7€), we have

Pr(X > E(X)+\) <e 9",
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Now we apply Theorem 2.11 with My = -+ = M,y = (1 —p) and M,, =
v/n(1 = p). Choosing k =n — 1, we have
Var(X) + (M,, — Mn—1)2 = 2n-1)p(l-p)+(1- )% (Vn—1)>2
< @n-1p(l—p)+ (1 -p)S°n
< (1-pHn

Thus,

2
Pr(X; >E(X)+ ) < ¢ AT
For constant p € (0,1) and A = O(n2*¢), we have

Pr(X > E(X)+A) < e 00,

From the above examples, we note that Theorem 2.11 gives a significantly better
bound than that in Theorem 2.6 if the random variables X; have very different upper
bounds.

For completeness, we also list the corresponding theorems for the lower tails.
(These can be derived by replacing X by —X.)

THEOREM 2.13. Let X; denote independent random variables satisfying X; >
E(X;) —a; — M, for 0 <i<n. For X =" | X;, we have

A2

Pr(X < E(X) _ )\) < eiz(Var(x)Jrz;L:l a?+1\l>\/3).

THEOREM 2.14. Let X; denote independent random variables satisfying X; >
E(X;) — M;, for 0 < i < mn. We order the X;’s so that the M; are in increasing
order. Let X = Z?zl X;. Then for any 1 < k < n, we have

A2

Pr(X < B(X) — A) < ¢ AVCOFEI, (430375

Continuing the above example, we choose M1 = My = --- = M,,_1 = p, and
M,, = \/np. We choose k =n — 1, so we have

(2n — Dp(1 —p) + p*(Vn — 1)?
(2n — Dp(1 —p) +p°n
p(2 —p)n.

Var(X) + (M,, — M,,_1)?

INIA

Using Theorem 2.14, we have

A2

Pr(X < E(X) — )\) < e 2@-p)ntpIN/3)
For a constant p € (0,1) and A = O(n2 1), we have

25)

Pr(X <E(X)—\) <e ®®
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2.4. A concentration inequality with a large error estimate

In the previous section, we saw that the Chernoff inequality gives very good
probabilistic estimates when a random variable is close to its expected value. Sup-
pose we allow the error bound to the expected value to be a positive fraction of the
expected value. Then we can obtain even better bounds for the probability of the
tails. The following two concentration inequalities can be found in [105].

THEOREM 2.15. Let X be a sum of independent random indicator variables.
For any e > 0,

(2.4) Pr(X > (14 )E(X)) < {

THEOREM 2.16. Let X be a sum of independent random indicator variables.
For any 0 <e <1,

(2.5) Pr(X < eE(X)) < e~ 1-9"E()/2,

The above inequalities, however, are still not enough for our applications in
Chapter 7. We need the following somewhat stronger concentration inequality for
the lower tail.

THEOREM 2.17. Let X be the sum of independent random indicator variables.
For any 0 < e <e™!, we have

(2.6) Pr(X < eB(X)) < e~ (17 2c(1-ne))BX),

PROOF. Suppose that X = Z?:l X, where X;’s are independent random vari-
ables with

Pr(X;=0)=1-p; and Pr(X; =1) =p,.
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We have

LeB(X))
Pr(X <eB(X)) = Y Pr(X=

LeE(X)]

= 2 X wnIl0-»

k=0 |S|=ki€S igs
LeE(X)]

< > Y II»Ile™
k=0 |S|=ki€S ig$
[eE(X)]

- S e e
k=0 |S|=ki€S
[eE(X)]

— Z Z HpielellpﬂrEiesm
k=0 |S|=ki€S
[eE(X)]

< Z Z Hpie—E(X)-i-k
k=0 |S|=ki€S

. LeEi():()Je_E(X).g.k sz}'pl)

[eE(X)] k

_ E(X

= e E) k;) %

When €E(X) < 1, the statement is true since
PI'(X S GE(X)) S e*E(X) S e*(l*Qﬁ(l*lns))E(X).
Now we consider the case eE(X) > 1.

Note that g(k) = w increases when k < eE(X). Let ko = [eE(X)]| <
eE(X).

We have
ko
Pr(X < (B(X)) < e BOY (eE;‘i)’(W

(eB(X))*o
kol 7

IN

e B (ko + 1)

By using Stirling’s formula
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we have
E(X))ko
magaangemw%ﬁng%#_
0.
2E(X
< 67E(X)(/€0 -+ 1)(6 ( ))ko
ko
2
< e BOO(E(X) + 1) (S ) BX)
€
= (GE(X) 4 1)6*(17264’6111 E)E(X).
Here we replaced ko by eE(X) since the function (x + 1)(@)1 is increasing for
x < eE(X).

To simplify the above expression, we have

1
1—
since eB(X) > 1and e <e ! <1—e Thus, eE(X)+ 1< E(X).

B(X) > - >

a | =
e

Also, we have E(X) > % > e. The function 1“7”” is decreasing for x > e. Thus,

InE(X) - 1n% — em
BX) = % = —clne.
We have
Pr(X < eE(X)) < (eB(X)4 1)e”(1-2etelnab(X)
< E(X)67(1726)E(X)€76lneE(X)
< 67(1726)E(X)ef26 IneE(X)
— 67(1726(171n6))E(X).
The proof of Theorem 2.17 is complete. (]
2.5. Martingales and Azuma’s inequality
A martingale is a sequence of random variables X, X1,... with finite means

such that the conditional expectation of X,, 1 given Xy, X1,..., X, is equal to X,,.

The above definition is given in the classical book of Feller (see [53], p. 210).
However, the conditional expectation depends on the random variables under con-
sideration and can be difficult to deal with in various cases. In this book we will
use the following definition which is concise and basically equivalent for the finite
cases.

Suppose that €2 is a probability space with a probability distribution p. Let F
denote a o-field on . (A o-field on € is a collection of subsets of © which contains
f and Q, and is closed under unions, intersections, and complementation.) In a
o-field F of €2, the smallest set in F containing an element x is the intersection of
all sets in F containing x. A function f : Q — R is said to be F-measurable if
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f(z) = f(y) for any y in the smallest set containing x. (For more terminology on
martingales, the reader is referred to [80].)

If f:Q — R is a function, we define the expectation E(f) = E(f(x) | z € )
by
E(f) =E(f(z) |z € Q):= Y f(a)p(w).

z€Q

If F is a o-field on 2, we define the conditional expectation E(f | F) : 2 — R by

the formula
1

ERAREAERD SpwyTo JP

fy)r(y)

where F(x) is the smallest element of F which contains z.

A filter F is an increasing chain of o-subfields
{0,Q}=FycFH C---CF,=F.

A martingale (obtained from) X is associated with a filter F and a sequence of
random variables Xo, X5,..., X, satisfying X; = E(X | F;) and, in particular,
Xo=E(X) and X,, = X.

ExaMPLE 2.18. For given independent random variables Y7, Y5, ...,Y,, we can
define a martingale X = Y1 +Y5+4---+Y,, as follows. Let F; be the o-field generated
by Y1,...,Y;. (In other words, F; is the minimum o-field so that Y3,...,Y; are F;-
measurable.) We have a natural filter F:

{0,Q}=FyCcFHC---CF,=F.

Let X; = 22:1 Y + Z?:Hl E(Y;). Then, Xy, X1,X>,..., X, form a martingale
corresponding to the filter F'.

For ¢ = (¢1,¢2,...,¢,) a vector with positive entries, the martingale X is said
to be c-Lipschitz if

(27) |X1 - Xi—1| S C;
for i =1,2,...,n. A powerful tool for controlling martingales is the following;:

THEOREM 2.19 (Azuma’s inequality). If a martingale X is c-Lipschitz, then

A2

(2.8) Pr(|X — E(X)| > \) <2 217,
where ¢ = (¢1,...,¢n).
THEOREM 2.20. Let X1, Xo,..., X, be independent random variables satisfying

|1 X; —E(X)| <¢, forl<i<n.
Then we have the following bound for the sum X =" | X;.

A2

Pr(|X —E(X)| > \) <2 2T,
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Proof of Azuma’s inequality: For a fixed ¢, we consider the convex function
f(z) = e*®. For any |z| < ¢, f(z) is below the line segment from (—c, f(—c)) to
(¢, f(¢)). In other words, we have

1
etz S (etc _ 67t6)$+ i(etc + eftc).

Sy

Therefore, we can write

1 1
E(et(Xi—Xi—1)|Fi71) < E(z_(etc,; _ e_tCi)(Xi _Xifl) + §(etci _|_e—tc,;) .7_—1171)
&
1
— i(etci +67tci)
< et2cf/2.

Here we apply the conditions E(X; — X;_1|F;—1) =0 and |X; — X;_1| < ¢;.
Hence,

] 2.2 ]
E(etXI fz—l) S et ci/26tX1,1.

Inductively, we have

E(e™) = E(E(e™"|Fn 1))
< etzci/QE(etXn_l)
<
n

< Hetch/QE(eth)
i=1

= e3t? XiLi € ptE(X)

Therefore,

Pr(X > E(X) + A)

Pr(e!X—E(X) > e

< e—tAE(et(X—E(X)))
S e_tAe%tz 1 Cz?
— e_tA'i'%tz 1 C?

We choose t = —)‘C; (in order to minimize the above expression). We have
i=1 "1
Pr(X >E(X)+)\) < e tAF3t? T o
/\2
= e 2Tia,
To derive a similar lower bound, we consider —X; instead of X; in the preceding
proof. Then we obtain the following bound for the lower tail.

A2

Pr(X <E(X)—-\) <e 2Zi=17,
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2.6. General martingale inequalities

Many problems which can be set up as a martingale do not satisfy the Lipschitz
condition. It is desirable to be able to use tools similar to Azuma’s inequality in
such cases. In this section, we will first state and then prove several extensions of
Azuma’s inequality (see Figure 9).

Upper tails Leverer tails
Theorem 2 Eﬂl-l—lTrﬂﬂﬂm l.ia-l |Th¢-:|rlrl"- 2 Esl—l*ll'hmnrm z 254
L
Th:nrc_m E.ZAI Thear=m 2.27

Thearem 2.21

F1GURE 9. The flowchart for theorems on martingales.

Our starting point is the following well known concentration inequality (see
[99)):

THEOREM 2.21. Let X be the martingale associated with a filter F satisfying

(1) Var(X;|Fi_1) < o?, for 1 <i<mn;
(2) Xi_Xi—l SM, f07”1 SZS’I’L

Then, we have
A2

Pr(X —E(X) > \) <e 2@iioinng,

Since the sum of independent random variables can be viewed as a martingale
(see Example 2.18), Theorem 2.21 implies Theorem 2.6. In a similar way, the
following theorem is associated with Theorem 2.10.

THEOREM 2.22. Let X be the martingale associated with a filter F satisfying

(1) Var(X;|Fi—1) <o?, for 1 <i<n;
(2) Xz _Xi—l S Mi; fO?” 1 S ) S n.

Then, we have
)\2

Pr(X —B(X) > \) <e 2ZiaCiivd,

The above theorem can be further generalized:
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THEOREM 2.23. Let X be the martingale associated with a filter F satisfying

(1) Var(X;|Fi—1) < o?, for 1 <i<n;
(2) Xi— X1 <a;+ M, for1 <i<n.

Then, we have

A2

Pr(X —E(X) > \) <e *Eeitediinm,

Theorem 2.23 implies Theorem 2.21 by choosing a1 = as =--- = a, = 0.

We also have the following theorem corresponding to Theorem 2.11.

THEOREM 2.24. Let X be the martingale associated with a filter F satisfying

(1) Var(X;|Fi—1) <o?, for 1 <i<n;
(2) AXz —Xi,1 S Mi, fOT‘ 1 S ) § n.

Then, for any M, we have

A2

PI‘(X — E(X) > )\) < ei 227, "?*zMi>M(Mf,*M)2+M>\/3).

Theorem 2.23 implies Theorem 2.24 by choosing

{0 it M; < M,
Y=Y M — M if M; > M.

It suffices to prove Theorem 2.23 so that all the above stated theorems hold.

Proof of Theorem 2.23:

Recall that g(y) =232, y;—f satisfies the following properties:

g(y) <1, for y <0.
lim, o g(y) = 1.
g(y) is monotone increasing, for y > 0.

When b < 3, we have g(b) < 1_%)/3.
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Since E(X;|F;—1) = X;—1 and X; — X;-1 — a; < M, we have

[e ) tk

Fio1) = EO (X=X - ai)¥|Fil)
k=0

E(et(Xiin,l 70,1')

Lk
t
= 1-tai+ B (X = Xioy —a)*|Fi)
k=2
t2
< 1—ta; +E(=

5 (Xi — Xim1 — a;)*g(tM)|Fi—1)

t2
= 1—ta;+ Eg(tM)E((Xi — Xi1 —a)}Fisy)
t2
1—ta; + Eg(tM)(E((Xz — Xi—1)2|-7:i71) + af)

t2
1 — ta; + Eg(tM)(JiQ + a?)

IN

2
e—tait 5 g(tM) (0 +a?)

IN

Thus,
E(etXi szl) — E(et(X,-fX,-,lfai) Fiil)etxiflthai

—ta;+ ég(tM)(ai2 +af)etXi,1 +ta;

IN

e
2
e T 9(tM) (07 +a?) tXi1

Inductively, we have
E(eY) = E(E(E"|F,-1))

2
e TIM) (o) Far ) (gt Xn-1)

<

<
n 2

< He%g(tM)(U?Jraf)E(eth)
i=1

= 3t?9(tM) XL, (o7 4a?) tB(X)

Then for ¢ satisfying tM < 3, we have
Pr(X > E(X)+))

Pr(etX > etE(X)-i—t)\)

< e—tE(X)—t)\E(etX)

—tA Lt2g(tM) S°™_ (02 4a?
< e ezt 9 Yisi(oi+a3)
— o tA 3t g(tM) 7 (o7 +a)

2 n
< e_tA‘f‘%m Zi=1(‘7i2+a?).

We choose t = 7 Clearly tM < 3 and

A
" (02+a?)+MX/3"
Pr(X E(X)+)) < e i Shiotted

_ A2
e TP (of+cd)+MA/3)

The proof of the theorem is complete.
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For completeness, we state the following theorems for the lower tails. The
proofs are almost identical and will be omitted.
THEOREM 2.25. Let X be the martingale associated with a filter F satisfying

(1) Var(X;|Fi—1) < o2, for 1 <i<mn;
(2) Xio1 —Xi<a;+ M, for 1 <i<n.

Then, we have

A2

Pr(X —E(X) < -\) < e 2TiL (@F+a?)+MA/3)

THEOREM 2.26. Let X be the martingale associated with o filter F satisfying

(1) Var(X;|Fi—1) < o?, for 1 <i<n;
(2) Xi,1 —Xi S Mi, fOT‘ 1 S ) § n.

Then, we have
/\2

Pr(X —E(X) < —\) < e uimieiaid

THEOREM 2.27. Let X be the martingale associated with a filter F satisfying

(1) Var(X;|Fi_1) <o?, for 1 <i<n;
(2) Xi,1 —Xi S Mi, fOT‘ 1 S ) § n.

Then, for any M, we have
)\2

- n 2 L 2 E
Pr(X — E(X) < —)) < 2Zimioitmansu (M manieaine,

2.7. Supermartingales and Submartingales

In this section, we consider further strengthened versions of the martingale
inequalities that were mentioned so far. Instead of a fixed upper bound for the
variance, we will assume that the variance Var(X;|F;_1) is upper bounded by a
linear function of X;_;. Here we assume this linear function is non-negative for all
values that X;_; takes. We first need some terminology.

For a filter F:
0.Q}=FcFh C---CF,=F,
a sequence of random variables X, X1,..., X, is called a submartingale if X; is

Fi-measurable (i.e., X;(a) = X;(b) if all elements of F; containing a also contain b
and vice versa) then E(X; | Fi—1) > X;_1, for 1 <i <mn.

A sequence of random variables Xy, X1,..., X, is said to be a supermartingale
if X; is F;-measurable and E(X; | F;_1) < X;_1, for 1 <i <mn.

To avoid repetition, we will first state a number of useful inequalities for sub-
martingales and supermartingales. Then we will give the proof for the general
inequalities in Theorem 2.32 for submartingales and in Theorem 2.30 for super-
martingales. Furthermore, we will show that all the stated theorems follow from
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Theorems 2.32 and 2.30 (See Figure 10). Note that the inequalities for submartin-
gales and supermartingales are not quite symmetric.

Submartingale Supermartingale

Theorem 2 10f#=—{Theorem 2.3 Theorem 2 32}—| Thearem 2.13
Theaorsm z.:m| Theorem 2.154

F1GURE 10. The flowchart for theorems on submartingales and supermartingales.

THEOREM 2.28. Suppose that a supermartingale X, associated with a filter F,
satisfies
Var(X;|Fi-1) < ¢iXi1
and
X —EX|Fic1) <M
for 1 <i<n. Then we have

A2

Pr(X, > Xo+ ) < e 2(Xo+N(TTo; ¢)+MA/3)

THEOREM 2.29. Suppose that a submartingale X, associated with a filter F,
satisfies, for 1 <i < n,
Var(X;|Fi-1) < ¢iXi1
and
E(X;|Fi-1) — Xi < M.

Then we have

2
Pr(X, < Xo—\) < e_2<Xo<z;l=fm)+MA/3>7
for any A < X.

THEOREM 2.30. Suppose that a supermartingale X, associated with o filter F,
satisfies
Var(X¢|.7:i,1) < af + ¢; X1
and
Xi—EX;|Fici) <ai+M
for 1 <i<n. Here o;, a;, ¢; and M are non-negative constants. Then we have
Pr(Xn > Xy + /\) < e_2(25;1(o§+a$>+(X;iA>(Z;L=1 ®i)+MX/3)

REMARK 2.31. Theorem 2.30 implies Theorem 2.28 by setting all 0;’s and a;’s
to zero. Theorem 2.30 also implies Theorem 2.23 by choosing ¢1 = --- = ¢, = 0.

The theorem for a submartingale is slightly different due to the asymmetry of
the condition on the variance.
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THEOREM 2.32. Suppose a submartingale X, associated with o filter F, satis-
fies, for 1 <i <mn,

Var(X;|Fi—1) < 07 + ¢ Xi1
and
E(X;|Fic1) — Xi <a; + M,
where M, a;’s, 0;’s, and ¢;’s are non-negative constants. Then we have

_ A2
Pr(X,<Xo—-X<e 2T (07 +aD)+ X0 (D] $)FMA/3)

" (024a?

=1

REMARK 2.33. Theorem 2.32 implies Theorem 2.29 by setting all 0;’s and a;’s
to zero. Theorem 2.32 also implies Theorem 2.25 by choosing ¢1 = --- = ¢, = 0.

Proof of Theorem 2.30:

For a positive ¢ (to be chosen later), we consider

E(etXi ‘7_‘7,_1) — etE(Xi‘]:ifl)"l’taiE(et(XifE(Xi‘-Fifl)fai)

Fi-1)
F ) tas o=
Pl Fi) oy = EE((Xi —E(Xy|Fic1) — ai)¥|Fiov)
k=0

k .
< Bl Fi )+ FE(X—E(X|Fim1)—ai)* | Fioy)

Recall that g(y) =237, y;—jz satisfies

1

9(y) < g(b) < T3

forally <band 0 <b < 3.

Since X; — E(X;|Fi—1) — a; < M, we have

o0 tk N

EE((Xz - E(Xi|-7:i—1) - Gi) |-7:i71)

k=2

g(tM) /2
2

IN

E((X; — E(X;|Fio1) — a:)*|Fic1)

= @ﬁ(\/ar(XA}}_l) + af)

tM
< %ﬂ(df + ¢iXi1 +a).

Since E(X;|F;—1) < X,_1, we have

k
E(etX,; B Fim )+ 3072, LE(X:—B(X;|Fi—1)—ai)®|Fiz1)

Fi-1)

IN

etXi—l“l’th(U?“F(ﬁiXi—l"ra?)

IN

t M 2
e(tJr%th)Xiq e%g(tM)(U?Jra?).
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We define t; > 0 for 0 < i < n, satisfying

g(toM)

tic1 =1t + > oit?,

while tg will be chosen later. Then
th <tp—1 <--- <to,
and

X (a0 62y xS o M) (024a?)
E(e X elti S i) Xi1 g F 9t 2+a?

Fiz1)

IN

2
< oMo Xy  Fg(ti M) (07 +a?)
t2
_ eti—lxi—leTLg(tiM)(U?Jl‘a?)

since ¢(y) is increasing for y > 0.

By Markov’s inequality, we have

Pr(X, > Xo+ ) < e Kot VE(etnXn)
_ e*tn(XoJr)\)E(E(etan

fnfl))

2
12
e*tn(XoJr)\)E(etnlenfl )G%Q(tiM)(U?Jra?)

<
<
< eft"(XOJ”\)E(etOXO)eZLl tzf g(t; M) (02 +a?)
< e—tn(Xo+A)+toXo+§g(toM)Zz;l(afwf).
Note that
n
th = to— Z(ti—l —t;)
i=1
—~ g(toM)
0 2
=t _Z 2 it
i=1
g(toM) >
0 2
>t 5 5y i
i=1
Hence
Pr(X, > Xo+2A) < e—tn,(Xo+>\)+toXo+§g(toM) S (of+ad)
< o (=TS | 60 (XotA) Ho Xot D g(toM) S, (07 +a?)

et UG (0 (o7 +ad)+(Xo+X) 7y ¢4)

Now we choose tg =

A .
ST TR (Ko PN (T T3 Using the fact that to M <

3, we have
Pr(X, > Xo+ ) < e OAREL (7 +ad+(Xo ) T, 6 s—gmi7sy

_ A2
= e 2T (i +ad)+(Xo+N(Thy ¢3)+MA/3)

The proof of the theorem is complete. O

Proof of Theorem 2.32:
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The proof is quite similar to that of Theorem 2.30. The following inequality
still holds.

E(eftX" 1;1) — eftE(Xi\J-‘i,l)thaiE( —t(X; —B(X;|Fi—1)+a;) -7'—1‘71)
(o) tk
—tB(X; | Fi i
= e tEXilFi-1)+ta Z 'E(( (X Fie1) — Xi—ai)ku:i—l)
k!
k= O
< e_tE(Xi‘fi—1)+Zzo2 & E((E(X |Fi—1)—Xi—a:)*|Fi1)
< eftE(Xi\.Fi,l)Jr—g(tzM)t E(X;—E(X:|Fi_1)—a:)?)
< e—tE(Xi\fi_l)-i-Wtz(Var(X,ﬂ,|.7-'11_1)+af)
< e HEREO) X KGR (0T rad)

We now define ¢; > 0, for 0 < ¢ < n satisfying

ton M
tic1 =t — %d)it?v

while ¢,, will be defined later. Then we have
to <ty <o <y,
and

E(e "% |Fim1) o (b= LD 20 X, 2412 (02 4a?)

IN

o~ (ti— Lt 26 Xy , 248242 (07 +a3)

IN

_ e—tq‘,—lXi,_le—g(t’QLM)tf(af-i-af).

By Markov’s inequality, we have

Pr(X, <Xo—A) = Pr(-t, X —tn(Xo — A))
< et-,L(Xo ( t-,LX-,L)
—  etn(Xo—A ( (e —tnXn Fn-1))
< etn(Xo=NE(emte-1Xn-1)e LWy 242 (07 +a7)
<
< etn(Xo*A)E(e*toXO)e oy L2 (07 4a?)
< (X0 N —toXot Fg(tn M) T, (07 +a?)
We note
n
to = tp+ Z(ti—l — i)
i=1

v
-
i
b"l\?
Ingh
&
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Thus, we have

Pr(Xn < Xy — )\) etn(XO_A)_tOXOJF%g(tnM) S (oF+a3)

IN

2
< etn(Xo=N)—(tn— 2820 2) Xo+ 2 g (£, M) X7, (07 +a7)

e tn A HBRR (S5 (o +ad) (ST, ¢0)Xo)

We have t, M < 3 and

_ A
We choose t,, = T (0P ta) T (0T, $1) Xo T MA/3"

Pr(X, < Xo—A) < ot AL (2T (07 +a)+H(Ty 60 X0) sa—rarrsy

_ A2
< e 2ATi (67 +aD)TXo(Ti; $)+MA/3)

It remains to verify that all ¢;’s are non-negative. Indeed,

ti 2 to
taM) o
> g, - Sl >tiZ¢i
i=1
> tn(l—il tnf:¢i)
- 2(1 —t,M/3) P
A
= In (1 - n >
2, + Ziglmtel)
> 0.
The proof of the theorem is complete. O

2.8. The decision tree and relaxed concentration inequalities

In this section, we will extend and generalize previous theorems to a martingale
which is not strictly Lipschitz but is nearly Lipschitz. Namely, the (Lipschitz-
like) assumptions are allowed to fail for relatively small subsets of the probability
space and we can still have similar but weaker concentration inequalities. Similar
techniques have been introduced by Kim and Vu [81] in their important work on
deriving concentration inequalities for multivariate polynomials. The basic setup
for decision trees can be found in [5] and has been used in the work of Alon, Kim and
Spencer [4]. Wormald [124] considers martingales with a ‘stopping time’ that has
a similar flavor. Here we use a rather general setting and we shall give a complete
proof here.

We are only interested in finite probability spaces and we use the following
computational model. The random variable X can be evaluated by a sequence of
decisions Y7,Y5,...,Y,. Each decision has finitely many outputs. The probability
that an output is chosen depends on the previous history. We can describe the
process by a decision tree T', a complete rooted tree with depth n. Each edge uv of
T is associated with a probability p,., depending on the decision made from u to
v. Note that for any node u, we have

Zpuv =1
v
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We allow p,, to be zero and thus include the case of having fewer than r outputs
for some fixed r. Let ); denote the probability space obtained after the first i
decisions. Suppose Q2 = 2, and X is the random variable on Q. Let m;: Q — §;
be the projection mapping each point to the subset of points with the same first i
decisions. Let F; be the o-field generated by Y1, Ya,...,Y;. (In fact, F; = W;1(2Qi)
is the full o-field via the projection m;.) The F; form a natural filter:

0.0y =FcFh C---CF,=F.

The leaves of the decision tree are exactly the elements of 2. Let Xo, X1,..., X, =
X denote the sequence of decisions to evaluate X. Note that X; is F;-measurable,
and can be interpreted as a labeling on nodes at depth 3.

There is one-to-one correspondence between the following:

e A sequence of random variables Xg, X7, ..., X, satisfying X, is F;-measurable,
fori=0,1,...,n.
e A vertex labeling of the decision tree T', f: V(T) — R.

In order to simplify and unify the proofs for various general types of martingales,
here we introduce a definition for a function f : V(T') — R. We say f satisfies an
admissible condition P if P = {P,} holds for every vertex v.

Examples of admissible conditions:

(1) Submartingale: For 1 < i < n, we have
BE(Xi|Fi-1) > Xi-1.
Thus the admissible condition P, holds if
f@) < D punf®)
veC(u)

where (), is the set of all children nodes of u and p,, is the transition
probability at the edge uwv.
(2) Supermartingale: For 1 <i < n, we have

E(Xi|Fi-1) < Xi-1.
In this case, the admissible condition of the submartingale is
fw)= D" punf(v).
veC(u)
(3) Martingale: For 1 <4 < n, we have
E(Xi|Fi-1) = Xi-1.
The admissible condition of the martingale is then
Fw)= Y puwf(v).
veC(u)
(4) c-Lipschitz: For 1 <14 < n, we have
| Xi — Xia| < i
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The admissible condition of the c-Lipschitz property can be described as
follows:

|f(u) = f(v)] < ¢, for any child v € C(u)

where the node w is at level 7 of the decision tree.
Bounded Variance: For 1 <i < n, we have

Var(X;|Fi_1) < o?

for some constants o;.
The admissible condition of the bounded variance property can be
described as:

S 20 = (Y puf)? <o
veC(u) veC (u)
General Bounded Variance: For 1 <i < n, we have
Var(X;|Fi—1) < 0? + ¢ X 1
where o;, ¢; are non-negative constants, and X; > 0. The admissible

condition of the general bounded variance property can be described as
follows:

Z puvf2(v) —( Z puvf(v))2 < 01‘2 + ¢if(u), and f(u) >0

veC(u) veC(u)

where i is the depth of the node u.
Upper-bounded: For 1 < i <n, we have

Xi—EX;|Fici) <ai+M

where a;’s, and M are non-negative constants. The admissible condition
of the upper bounded property can be described as follows:

f(v) = Z Puvf(v) < a;+ M, for any child v € C(u)
veC(u)

where 7 is the depth of the node u.
Lower-bounded: For 1 < i <n, we have

E(X;|Fic1) - Xi <a; + M

where a;’s, and M are non-negative constants. The admissible condition
of the lower bounded property can be described as follows:

( Z Punf () — f(v) <a; + M, for any child v € C(u)
veC (u)

where 7 is the depth of the node w.

For any labeling f on T and fixed vertex r, we can define a new labeling f, as

50
(5)
(6)
(7)
(8)
follows:

folu) = f(r) if uis a descendant of r,
)= f(u)  otherwise.

A property P is said to be invariant under subtree-unification if for any tree
labeling f satisfying P, and a vertex r, f,. satisfies P.
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We have the following theorem.

THEOREM 2.34. The eight properties as stated in the preceding eramples —
submartingale, supermartingale, martingale, c-Lipschitz, bounded variance, general
bounded variance, upper-bounded, and lower-bounded — are all invariant under
subtree-unification.

PROOF. We note that these properties are all admissible conditions. Let P
denote any one of these. For any node u, if v is not a descendant of r, then f, and
f have the same value on v and its children nodes. Hence, P, holds for f, since P,
does for f.

If u is a descendant of r, then f.(u) takes the same value as f(r) as well as
its children nodes. We verify P, in each case. Assume that u is at level i of the
decision tree T'.

(1) For supermartingale, submartingale, and martingale properties, we have

Z puvfr(v) = Z puv.f(r)

veC(u) veC (u)

= f(?“) Z Puv

veC(u)
f(r)
= fr(u).
Hence, P, holds for f,.
(2) For c-Lipschitz property, we have
|fr(u) — fr(v)|=0<¢;, forany child v € C(u).

Again, P, holds for f;.
(3) For the bounded variance property, we have
Z puver(U) _( Z puvfr(v))Q = Z puva(r) _( Z puvf(r))Q
veC(u) veC (u) veC(u) veC (u)
= P~ £0)
= 0
< a2

(2

(4) For the general bounded variance property, we have

fr(u) = f(r) > 0.
> pwfi0) = (Y punfe(v)? > Pl )= (D puwf(r)?

veC(u) veC(u) veC(u) veC(u)
F2(r) = f2(r)

0

o} + ¢ifr(u).

IN
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(5) For the upper-bounded property, we have

@)= Y puh @) = f)= Y puf(r)

veC (u) veC (u)
— ) - )
=0
< a;+M.

for any child v of u.
(6) For the lower-bounded property, we have

Z Puv fr(v) = fr(v) Z Punf(r) — f(r)
veC(u) veC(u)
f(r)—=f(r)
= 0
a; + M,

IN

for any child v of w.

Therefore, P, holds for f, and any vertex v. O

For two admissible conditions P and ), we define PQ to be the property,
which is only true when both P and @ are true. If both admissible conditions
P and @ are invariant under subtree-unification, then PQ is also invariant under
subtree-unification.

For any vertex u of the tree T', an ancestor of u is a vertex lying on the unique
path from the root to u. For an admissible condition P, the associated bad set B;
over X;’s is defined to be

B; = {v]| the depth of v is ¢, and P, does not hold for some ancestor u of v}.
LEMMA 2.35. For a filter F
0,9 =FRchc---CF.=F,

suppose each random variable X; is F;-measurable, for 0 <i < n. For any admis-
sible condition P, let B; be the associated bad set of P over X;. There are random
variables Yy, ..., Y, satisfying:

(1) Y; is Fi-measurable.
(2) Yo,...,Y, satisfy condition P.
(3) {z:Yi(z) # Xi(x)} C By, for 0 <i<n.

PrROOF. We modify f and define f’ on T as follows. For any vertex u,

F(u) = flw) if f satisfies P, for every ancestor v of u including wu itself.
| f(v) o is the ancestor with smallest depth so that f fails P,.

Let S be the set of vertices u satisfying

o f fails P,,
e f satisfies P, for every ancestor v of u.
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It is clear that f/ can be obtained from f by a sequence of subtree-unifications,
where S is the set of the roots of subtrees. Furthermore, the order of subtree-
unifications does not matter. Since P is invariant under subtree-unifications, the
number of vertices that P fails decreases. Now we will show f’ satisfies P.

Suppose to the contrary that f’ fails P, for some vertex u. Since P is invariant
under subtree-unifications, f also fails P,. By the definition, there is an ancestor v
(of w) in S. After the subtree-unification on the subtree rooted at v, P, is satisfied.
This is a contradiction.

Let Yy,Y1,...,Y, be the random variables corresponding to the labeling f’.
Then the Y;’s satisfy the desired properties. O

The following theorem generalizes Azuma’s inequality. A similar but more
restricted version can be found in [81].

THEOREM 2.36. For a filter F
0.Q}=FcFH C---CF,=F,

suppose the random variable X; is F;-measurable, for 0 < i < n. Let B; denote the
bad set associated with the following admissible conditions:

E(Xi|Fi1) = Xi
|Xi—Xi,1| < ¢

where c1,ca, ..., ¢, are non-negative numbers. Let B = U}'B; denote the union of
all bad sets. Then we have

A2

Pr(|X, — Xo| > \) < 2¢ 2% 4+ Pr(B).

PROOF. We use Lemma 2.35 which gives random variables Yy, Y7, ...,Y,, sat-
isfying properties (1)-(3) in the statement of Lemma 2.35. Then it satisfies

EY;|Fic1) = Yia
Y; =Yi1| < e

In other words, Yp,...,Y, form a martingale which is (c1,...,c,)-Lipschitz. By

z i ity, w v
Azuma’s inequality, we have
2

P
Pr(|Y, — Yo| > \) < 2e 2Zimaef,
Since Yo = Xo and {z : Y, (z) # X (7)} C Ui=1nB; = B, we have
Pr(|X, — Xo[ 2 A) < Pr(|Yn —Yo[ 2 A) +Pr(X, #Y3)

A2

< 2 2T 4 Pr(B).

O
For ¢ = (¢1,¢a,...,¢n) a vector with positive entries, a martingale is said to be
near-c-Lipschitz with an exceptional probability 7 if
(2.9) > Pr(|Xi— Xia| > e) <n.
i

Theorem 2.36 can be restated as follows:
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THEOREM 2.37. For non-negative values, c1,cCo, ..., Cpn, suppose a martingale
X is near-c-Lipschitz with an exceptional probability . Then X satisfies

a2

Pr(|X —E(X)|>a) <2 *Tii<? 4.

Now, we can use the same technique to relax all the theorems in the previous
sections.

Here are the relaxed versions of Theorems 2.23, 2.28, and 2.30.

THEOREM 2.38. For a filter F
0,y =FocFH C---CF,=7F,
suppose a random variable X; is F;-measurable, for 0 < i < n. Let B; be the bad
set associated with the following admissible conditions:
BE(X; | Fic1) < Xia
Var(X;|Fi—1) o}
X; — E(X;|Fic1)

1
where 0;,a; and M are non-negative constants. Let B = U}, B; be the union of all

<
< a+M
bad sets. Then we have

Pr(X, > Xo+ ) < 6_2(2521("?12“%*““/3) + Pr(B).
THEOREM 2.39. For a filter F
0,y =FocFH C---CF,=7F,

suppose a non-negative random variable X; is F;-measurable, for 0 < i < n. Let
B; be the bad set associated with the following admissible conditions:

B(X; | Fic1) < Xia

Var(X;|Fi—1) < ¢iXia

X —EX;|Fic1) < M

where ¢; and M are non-negative constants. Let B = U}, B; be the union of all
bad sets. Then we have

A2
g

Pr(X, > Xo+A) < e XCorNEL 0075 4 Pr(B).
THEOREM 2.40. For a filter F
{0,Q}y=FycFHC---CF,=7F,

suppose a non-negative random variable X; is F;-measurable, for 0 < i < n. Let
B; be the bad set associated with the following admissible conditions:

E(X; | Fic1) < Xia
Var(Xi|.7:i,1) < (712 + ¢; X1
Xi —E(X|Fic1) < ai+M

where 0;, ¢;,a; and M are non-negative constants. Let B = U] B; be the union of

all bad sets. Then we have
22

Pr(X, > Xo+\) < e 2Zi T+ +(Xo+ (T ¢)+MA/3) 4 Pr(B).
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For submartingales, we have the following relaxed versions of Theorems 2.25,
2.29, and 2.32.

THEOREM 2.41. For a filter F
{0,Q}=FcFHC---CF,=F,

suppose a random variable X; is F;-measurable, for 0 < i < n. Let B; be the bad
set associated with the following admissible conditions:

E(XZ | .7'—1‘71) > Xia
Var(Xi|.7-'i,1) § (712
E(Xi|Fi1) - Xs < a;i+M

where 0;,a; and M are non-negative constants. Let B = U}, B; be the union of all
bad sets. Then we have
/\2

Pr(X, < Xo—A) < e 2L CTHaDidn/s 4 pr(B).

THEOREM 2.42. For a filter F
{0,Q}y=FycFHC---CF,=7F,

suppose a random variable X; is F;-measurable, for 0 < i < n. Let B; be the bad
set associated with the following admissible conditions:
E(XZ | .7'—1‘71) > Xia
Var(X;|Fim1) < ¢iXia
E(Xi|Fis) - Xy < M
where ¢; and M are non-negative constants. Let B = U}, B; be the union of all
bad sets. Then we have

A2

Pr(X, < Xo— ) < e 2X0(Zi, ¢)+MA3) 4 Pr(B).

for all XM < Xj.
THEOREM 2.43. For a filter F
0.Q}=FcF C---CF,=F,

suppose a non-negative random variable X; is F;-measurable, for 0 < i < n. Let
B; be the bad set associated with the following admissible conditions:

E(X; | Fic1) > Xia
Var(X;|Fi—1) < o7+ ¢iXioa
B(Xi|Fi1) - Xs < ai+M

where i, i, a; and M are non-negative constants. Let B = U}, B; be the union of
all bad sets. Then we have

A2

Pr(X, < Xo—\) < e TPy (eF+e)+Xo(Tig #0)TMA/3) | Pr(B),

for A < Xo.
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The best way to see the powerful effect of the concentration and martingale
inequalities, as stated in this chapter, is to check out many interesting applications.
Indeed, the inequalities here are especially useful for estimating the error bounds in
the random graphs that we shall discuss in subsequent chapters. The applications
for random graphs of the off-line models are easier than those for the on-line models.
The concentration results in Chapter 3 (for the preferential attachment scheme) and
Chapter 4 (for the duplication model) are all quite complicated. For a beginner,
a good place to start is Chapter 5 on classical random graphs of the Erdés-Rényi
model and the generalization of random graph models with given expected degrees.
An earlier version of this chapter has appeared as a survey paper [36] and includes
some further applications.





