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Introduction

Fano studied the variety of lines on a cubic hypersurface with a ®nite number of
singular points. The variety parametrizing linear spaces of given dimension in a
projective variety X is now called a Fano variety. Subvarieties of a Fano variety
can be de®ned using various incidence relations. Such varieties are studied to help
understand the geometric properties of X and for their own sake. For instance, the
proofs of the irrationality of a smooth cubic threefold X and of the Torelli
theorem for X by Clemens and Grif®ths use varieties of lines in the cubic.

Suppose that X is a smooth cubic hypersurface in P4 and let F be the Fano
variety of lines in X. By [5, Lemma 7.7, p. 312] the variety F is a smooth surface.
Let us ®x a general line l in X, corresponding to a general element of F, and let
Dl be the variety of lines in X incident to l. The blow up Xl of X along l has the
structure of a conic-bundle over P2 and its discriminant curve is a smooth plane
quintic Ql:

Xl???y
Ql Ì P2

The curve Dl is an eÂtale double cover of Ql.
In a ®rst proof of the irrationality of X, Clemens and Grif®ths use the canonical

isomorphism between the Albanese variety of F and the intermediate jacobian of
X (see [5, Theorem 11.19, p. 334]). In a second proof they use the canonical
isomorphism (due to Mumford, see [5, Appendix C]) between the intermediate
jacobian of X and the Prym variety of the (eÂtale) double cover Dl ! Ql . More
generally, Mumford's result says that this isomorphism holds for a conic bundle X
over P2 with discriminant curve Ql and double curve Dl parametrizing the
components of the singular conics parametrized by Ql. Beauville generalized this
isomorphism to the case where X is an odd-dimensional quadric bundle over P2

with discriminant curve Ql and double cover Dl parametrizing the rulings of the
quadrics parametrized by Ql (see [1]).

In this paper we `generalize' the isomorphism between the intermediate
jacobian of X and the Prym variety of Dl ! Ql to the cohomology of higher-
dimensional cubic hypersurfaces. On the way we also obtain some results about
the Fano variety P of planes in X.
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A principally polarized abelian variety A is the Prym variety of a double cover

of curves p: eC ! C if there is an exact sequence

0ÿ! p�JC ÿ! J eC ÿ! Aÿ! 0

and, under the transpose of J eC� A, the principal polarization of J eC pulls back to
twice the principal polarization of A. The generalization that we have in mind
would say that a polarized Hodge structure H is the Prym Hodge structure of two
polarized Hodge structures H1 Ì H2 if there are an involution i: H2 ! H2 and a
surjective morphism of Hodge structures w: H2� H such that i is a morphism of
Hodge structures of type �0; 0�, the kernel of w is the i-invariant part of H2 which
is equal to H1 and such that for any two i-anti-invariant elements a, b of H2 we
have w�a� ´ w�b� � ÿ2a ´ b where ` ´ ' denotes the polarizations (see [1, p. 334]). In
our case H will be the primitive cohomology of a cubic hypersurface and H1 and
H2 will be the `primitive' cohomologies of (partial) desingularizations of Ql and Dl.

From now on let X be a smooth cubic hypersurface in Pn. For a general line
l Ì X, we de®ne Xl to be the blow up of X along l. Then Xl is a conic bundle
over Pnÿ2 and we de®ne Ql to be its discriminant variety:

Xl???y
Ql Ì Pnÿ2

For n > 5 the variety Ql is singular. It parametrizes the singular or higher-

dimensional ®bres of Xl ! Pnÿ2 and it can be thought of as the variety
parametrizing planes in Pn which contain l and, either are contained in X or,
whose intersection with X is a union of three (possibly equal) lines. We de®ne Dl

to be the variety of lines in X incident to l. Then Dl admits a rational map of
degree 2 to Ql and the varieties Dl and Ql have dimension nÿ 3. It is proved in
[14, p. 590] that Dl is smooth and its map to Ql is a morphism for n � 5 and l
general. We show that, for n > 6, the variety Dl is always singular and the
rational map Dl ! Ql is never a morphism. We de®ne a natural desingularization
Sl of Dl such that the rational map Dl ! Ql lifts to a morphism Sl ! Ql.
However, for n > 8, the morphism is not ®nite. So we de®ne natural blow-ups
S 0l and Q 0l of Sl and Ql such that the morphism Sl ! Ql lifts to a double cover
S 0l ! Q 0l . The varieties Sl and S 0l naturally parametrize lines in blow-ups of
Xl so that we have Abel±Jacobi maps w: H nÿ3�Sl; Z� ! H nÿ1�X; Z� and
w 0: H nÿ3�S 0l ; Z� ! H nÿ1�X; Z�. Our main results are as follows.

Lemma 1. The Abel±Jacobi maps

w: H nÿ3�Sl; Z� ÿ! H nÿ1�X; Z�
and

w 0: H nÿ3�S 0l ; Z� ÿ! H nÿ1�X; Z�
are surjective.

The involution il: S 0l ! S 0l of the double cover S 0l ! Q 0l induces an involution
i: H nÿ3�S 0l ; Z� ! H nÿ3�S 0l ; Z� whose invariant subgroup is H nÿ3�Q 0l ; Z�. How-
ever, the Prym construction only works for `primitive' cohomologies (see
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De®nition 5.7 below). Denote the primitive part of each cohomology group H by H 0.

We need to show that for any two i-anti-invariant elements a, b of H nÿ3�S 0l ; Z�0, we
have w 0�a� ´ w 0�b� � ÿ2a ´ b. This follows from the following (see 5.9).

Theorem 2. Let a and b be two elements of H nÿ3�S 0l ; Z�0. Then

w 0�a� ´ w 0�b� � a ´ i�l bÿ a ´ b:

We use this theorem to prove the following.

Theorem 3. The Abel±Jacobi map

w 00: H nÿ3�S 0l ; Z�0 ÿ! H nÿ1�X; Z�0
is surjective with kernel equal to the image of H nÿ3�Q 0l ; Z�0 in H nÿ3�S 0l ; Z�0.

This ®nishes the Prym construction.
We now discuss two applications of the above Prym construction. The ®rst

concerns the Hodge conjectures. The general Hodge conjecture GHC�X; m; p� as
stated in [13, p. 166] is the following:

GHC�X; m; p�: for every Q-Hodge substructure V of H m�X; Q� with level at
most mÿ 2p, there exists a subvariety Z of X of codimension p such that V is
contained in the image of the Gysin map H mÿ2 p�eZ; Q� ! H m�X; Q� where eZ
is a desingularization of Z.

It is proved in [13, Proposition 2.6], that GHC�Y ; m; 1� holds for all uniruled
smooth varieties Y of dimension m. Our Lemma 1 gives a geometric proof of
GHC�X; nÿ 1; 1� for a smooth cubic hypersurface X in Pn: the full cohomology
H nÿ1�X; Z� is supported on the subvariety Z which is the union of all the lines in
X incident to l.

The second application is as follows (see § 6).

Theorem 4. The Abel±Jacobi map f: H nÿ1�X; Z�0 ! H nÿ3�F; Z�0 is an
isomorphism of Hodge structures.

This was proved for cubic threefolds by Clemens and Grif®ths [5, Theorem
11.19, p. 334], for cubic fourfolds by Beauville and Donagi [3], and for higher-
dimensional cubic hypersurfaces by Shimada [12, Theorem, p. 703, and Proposition
4, p. 716].

An immediate consequence of Theorem 4 and Lemma 1 is the following.

Corollary 5. The push-forward Hnÿ3�Sl; Z� ! Hnÿ3�F; Z� is surjective.

This fact was not known for n > 5.
We now describe our results in slightly greater detail. In § 1 we prove that, for

n > 6 and l general, the singular locus of Dl is flg Ì Dl. Also, for n > 6, the
natural map Dl ! Ql sending a line l 0 to the plane spanned by l and l 0 is only a
rational map. In § 2, we prove that the variety Sl parametrizing lines in the ®bres
of the conic bundle Xl ! Pnÿ2 is a small desingularization of Dl which admits a
morphism of generic degree 2 to Ql. We show that Sl can also be de®ned as a
subvariety of the product of Grassmannians of lines and planes in Pn. For the
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generalized Prym construction we need a ®nite morphism of degree 2 to Ql and
the morphism Sl ! Ql is not ®nite for n > 8. It fails to be ®nite at the points of
Ql parametrizing planes contained in X (and containing l). Let Tl denote the
variety parametrizing planes in X which contain l. Since Pnÿ2 parametrizes the
planes in Pn which contain l, the variety Tl is naturally a subvariety of Pnÿ2 and
in fact is contained in Ql:

Xl???y
Tl Ì Ql Ì Pnÿ2

In § 3 we prove that for l general, Tl is a smooth complete intersection of the
expected dimension nÿ 8 in Pnÿ2. For this we analyse the structure of the Fano
variety P of planes in X. We prove that P is always of the expected dimension
3nÿ 16 and determine its singular locus. It is proved in [4, Theorem 4.1, p. 33] or
[6, TheÂoreÁme 2.1] that P is connected for n > 6. We prove that P is irreducible
for n > 8. In § 4 we blow up Xl ! Pnÿ2 along Tl and its inverse image in Xl to
obtain X 0l ! Pnÿ2 0. The discriminant hypersurface of this conic-bundle is the
blow-up Q 0l of Ql along Tl:

X 0l???y
Q 0l Ì Pnÿ2 0

The variety S 0l is then de®ned as the variety of lines in the ®bres of the conic
bundle X 0l ! Pnÿ2 0. We prove that the rational involution acting in the ®bres of
Sl ! Ql lifts to a regular involution il: S 0l ! S 0l and the quotient of S 0l by il is Q 0l .
We also prove that S 0l is the blow up of Sl along the inverse image of Tl and the
rami®cation locus R 0l of S 0l ! Q 0l is smooth of codimension 2 and is an ordinary
double locus for Q 0l . In § 5 we prove Lemma 1, Theorem 2 and Theorem 3. We
also prove some results about the rational cohomology ring of Sl: we prove that,
except in the middle degree, this rational cohomology ring is generated by
H 2�Sl; Q� which, for n > 6, is generated by the inverse images h and j1 of the
hyperplane classes of Ql and Dl (the hyperplane class of Dl is the restriction of
the hyperplane class of the Grassmannian of lines in Pn). For n � 5, the space
H 2�Sl; Q� is the direct sum of its primitive part and Qh�Qj1. In § 6 we prove
Theorem 4.

Acknowledgments. I am indebted to Joe Harris, Brendan Hassett, Barry Mazur
and Robert Varley for many stimulating discussions.

Notation and conventions

The symbol n will always denote an integer greater than or equal to 5.
For all positive integers k and l, we denote by G�k; l� the Grassmannian of

k-dimensional vector spaces in C l. For any vector space or vector bundle W , we
denote by P�W � the projective space of lines in (the ®bres of) W with its usual
scheme structure.
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For all cohomology vector spaces H i�Y ; ? � of a variety Y, we will denote by
hi�Y ; ? � the dimension of H i�Y ; ? �. For a point y 2 Y , we denote by TyY the
Zariski tangent space to Y at y. If we are given an embedding Y Ì Pm �
�Cm�1 nf0g�=C�, we denote by T 0yY the inverse image of TyY by the map

Cm�1� Cm�1=Cv � TyP
m where v is a non-zero vector in Cm�1 mapping to y.

We call P�T 0yY � the projective tangent space to Y at y.
For any subsets or subschemes Y1; . . . ; Ym of a projective space Pd, or an af®ne

space Cd, we denote by hY1; . . . ;Ymi the smallest linear subspace of Pd, or of Cd

respectively, containing Y1; . . . ; Ym.
For a subscheme Y1 of a scheme Y2, we denote by NY1 =Y2

the normal sheaf to
Y1 in Y2.

For a global section s of a sheaf F on a scheme Y , we denote by Z�s� the
scheme of zeros of s in Y .

1. The variety Dl of lines incident to l

For a smooth cubic hypersurface X Ì Pn of equation G, we let d: Pn ! �Pn��
be the dual morphism of X. In terms of a system of projective coordinates
fx0; . . . ; xng on Pn, the morphism d is given by

d�x0; . . . ; xn� � �¶0 G�x0; . . . ; xn�; . . . ; ¶nG�x0; . . . ; xn��
where ¶i � ¶=¶xi.

Let l Ì X be a line. Following [5, p. 307, De®nition 6.6, Lemma 6.7, and p. 310,
Proposition 6.19], we make the following de®nition.

De®nition 1.1. 1. The line l is of ®rst type if the normal bundle to l in X
is isomorphic to O�2

l � Ol�1���nÿ4�. Equivalently, the intersection Tl of the
projective tangent spaces to X along l is a linear subspace of Pn of dimension
nÿ 3. Equivalently, the dual morphism d maps l isomorphically onto a conic in
�Pn��, that is, the restriction map h¶0G; . . . ; ¶nGi ! H 0�l; Ol�2�� is surjective
where h¶0G; . . . ; ¶nGi is the span of ¶0G; . . . ; ¶nG in H 0�Pn; OP n�2��.

2. The line l is of second type if the normal bundle to l in X is isomorphic to
Ol�ÿ1� � Ol�1���nÿ3�. Equivalently, the space Tl is a linear subspace of Pn of
dimension nÿ 2. Equivalently, the dual morphism d has degree 2 on l and maps l
onto a line in �Pn��, that is, the restriction map h¶0G; . . . ; ¶nGi ! H 0�l; Ol�2��
has rank 2.

By [5, Lemma 7.7, p. 312], the variety F of lines in X is smooth of dimension
2�nÿ 3�. An easy dimension count shows that the dimension of Dl is at least
nÿ 3 for any l 2 F. Suppose that l is of ®rst type. We have the following lemma.

Lemma 1.2. Let l 0 2 Dl be distinct from l. If l 0 is of ®rst type or if l 0 is of
second type and l is not contained in Tl 0 , then the dimension of Tl 0Dl is nÿ 3
(that is, Dl is smooth of dimension nÿ 3 at l 0). If l 0 is of second type and l is
contained in Tl 0 , then the dimension of Tl 0Dl is nÿ 2.

Proof. The variety Dl is the intersection of F with the variety Gl parametrizing all
lines in Pn which are incident to l. Therefore Tl 0Dl � Tl 0Gl Ç Tl 0F Ì Tl 0G�2; n� 1�.
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Let V and V 0 be the vector spaces in Cn�1 whose projectivizations are
respectively l and l 0. Then Tl 0 Gl can be identi®ed with the subvector space of
Tl 0G�2; n� 1� � Hom�V 0; Cn�1=V 0� consisting of those homomorphisms f such
that f �V Ç V 0� Ì �V � V 0�=V 0 (see for example, [9, Example 16.4, pp. 202±203]).
It follows that the set of homomorphisms f such that f �V Ç V 0� � 0 is a subspace
of Tl 0Gl of codimension 1, and therefore its intersection H with Tl 0Dl has
codimension 1 or less in Tl 0Dl.

The space Tl 0F can be identi®ed with the subvector space of Tl 0G�2; n� 1� �
Hom�V 0; Cn�1=V 0� consisting of those homomorphisms f such that for any
vector v 2 V 0nf0g mapping to a point p 2 l 0, we have f �v� 2 T 0p X =V 0 (see [9,
Examples 16.21, 16.23, pp. 209±210]). If f : V 0 ! Cn�1=V 0 satis®es f �V Ç V 0� � 0,
then f �V 0� � C f �v� for v a general vector in V 0. Hence, if f 2 H, then
f �V 0� Ì

T
p2 l 0 T

0
p X =V 0.

If l 0 is of ®rst type, then
T

p2l 0 T
0

p X has dimension nÿ 2, and henceT
p2 l 0 T

0
p X =V 0 has dimension nÿ 4. So H has dimension nÿ 4 and, since H

has codimension 1 or less in Tl 0Dl, we deduce that Tl 0Dl has dimension at most
nÿ 3, and hence it has dimension equal to nÿ 3 (since Dl has dimension at least
nÿ 3).

If l 0 is of second type, then the tangent space Tl 0F can be identi®ed with
Hom�V 0; T p2 l 0 T

0
p X=V 0� (because, for instance, the latter is contained in Tl 0F and

the two spaces have the same dimension). If V is not contained in
T

p2 l 0 T
0

p X, then
f �V Ç V 0� Ì �V � V 0�=V 0 for f 2 Hom�V 0; T p2 l 0 T

0
p X =V 0� implies f �V Ç V 0� � 0.

So Tl 0Dl � Tl 0F Ç Tl 0Gl has dimension equal to the dimension of
T

p2 l 0 T
0

p X=V 0

which is nÿ 3. So in this case Dl is smooth at l 0. If V Ì
T

p2 l 0 T
0
p X =V 0, then the

requirement f �V Ç V 0� Ì �V � V 0�=V 0 imposes nÿ 4 conditions on f and the
dimension of Tl 0Dl is nÿ 2.

Since Tl has dimension nÿ 3, we see that, as soon as n > 5, we have l 2 Dl.
We have the following.

Lemma 1.3. If n > 6, then Dl is singular at l. If n � 5, then Dl is smooth at l
if X does not have contact multiplicity 3 along l with the plane Tl and if there is
no line l 0 of second type in Tl.

Proof. The case n � 5 is Lemma 1 on p. 590 of [14]. Suppose n > 6. For l
general, consider a plane section of X of the form l� l 0 � l 00 such that l Ç l 0 and
l Ç l 00 are general points on l. The set of lines through l Ç l 0 is a divisor in Dl and
meets the set of lines through l Ç l 00 only at l 2 Dl. So we have two divisors in Dl

which meet only at a point, and Dl has dimension at least 3. Therefore Dl is not
smooth at l for l general and hence for all l.

We now prove an existence result.

Lemma 1.4. The set of lines l 2 F such that l is contained in Tl 0 for some line
l 0 2 F of second type is a proper closed subset of F. In other words (by Lemma
1.2), for l 2 F general, the variety Dlnflg is smooth of dimension nÿ 3.

Proof. Since the dimension of F is 2�nÿ 3� and the dimension of the variety
F0 Ì F parametrizing lines of second type is nÿ 3 (see [5, p. 311, Corollary 7.6]),
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if the lemma fails, then for any line l 0 2 F0, the dimension of the family of lines
in X Ç Tl 0 which intersect l 0 is at least nÿ 3.

The variety Tl 0 is a linear subspace of codimension 2 of Pn. Any plane in Tl 0

which contains l 0 is tangent to X along l 0. The intersection of a general such plane
P with X is the union of l 0 and a line l, the line l 0 having multiplicity 2 (or 3 if
l � l 0) in the intersection cycle �P Ç X �. Conversely, any line l in X Ç Tl 0 which
intersects l 0 is contained in such a plane. The family of planes in Tl 0 which
contain l 0 has dimension nÿ 4. Therefore, if the family of lines l in X Ç Tl 0

which intersect l 0 has dimension at least nÿ 3, then for each such line l 6� l 0, the
plane h l; l 0 i contains a positive-dimensional family of lines in X Ç Tl 0 and hence
h l; l 0 i is contained in X Ç Tl 0 . Therefore X Ç Tl 0 is a cone over a cubic
hypersurface in Tl 0 = l 0 and, for each plane P Ì X Ç Tl 0 which contains l 0, there is
a hyperplane in Tl 0 tangent to X Ç Tl 0 along P. Therefore TP :� T p2P PT 0p X has
codimension 3 in Pn. Hence the restriction of the dual morphism of X to P is a
morphism of degree 4 from P onto a plane in �Pn��. It follows from [5, Lemma
5.15, p. 304] that all such planes are contained in a proper closed subset of X.
Therefore a general line l 2 F is not contained in such a plane and hence not in
Tl 0 . We have a contradiction.

2. Desingularizing Dl

Let Xl and Pn
l be the blow ups of X and Pn respectively along l. Then the

projection from l gives a projective bundle structure on Pn
l and a conic bundle

structure on Xl (that is, a general ®bre of pX: Xl ! Pnÿ2 is a conic in the
corresponding ®bre of p: Pn

l ! Pnÿ2):

Xl a Pn
l

pX

ÿÿÿÿ!
???yp

Pnÿ2

Let E be the locally free sheaf OP nÿ 2�ÿ1� � O�2
P nÿ 2 . Then it is easily seen (as

in, for example, [10, p. 374, Example 2.11.4]) that p: Pn
l ! Pnÿ2 is isomorphic

to the projective bundle P�E� ! Pnÿ2. The variety Xl Ì Pn
l is the divisor of

zeros of a section s of OPE�2� 
 p�OP nÿ 2�m� for some integer m because the
general ®bres of pX: Xl ! Pnÿ2 are smooth conics in the ®bres of p. Since
p��OPE�2� 
 p�OP nÿ 2�m��> Sym2E � 
 OP nÿ 2�m�, the section s de®nes a (`sym-
metric') morphism of vector bundles f: E! E � 
 OP nÿ 2�m�. The degeneracy
locus Ql Ì Pnÿ2 of this morphism is the locus over which the ®bres of pX are
singular conics (or have dimension at least 2). By, for instance, intersecting Ql

with a general line, we see that Ql is a quintic hypersurface (see [11, pp. 3±5]).
Therefore m � 1. Let Sl be the variety parametrizing lines in the ®bres of pX . We
have a morphism Sl ! Dl de®ned by sending a line in a ®bre of p to its image in
Pn. Let E1 Ì Xl be the exceptional divisor of «1: Xl ! X and let P1 Ì Sl be the
variety parametrizing lines which lie in E1. Then the morphism Sl ! Dl induces
an isomorphism Sl n P1 > Dl n flg.

Lemma 2.1. Suppose that l is of ®rst type and Dl nflg is smooth. Then Sl is
smooth and irreducible and admits a morphism of generic degree 2 onto Ql. The
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variety Sl can also be de®ned as the closure of the subvariety of G�2; n� 1� ´
G�3; n� 1� parametrizing pairs �l 0; L 0� such that l 0 2 Dl nflg and L 0 � h l; l 0 i.

Proof. The morphism Sl ! Ql is de®ned by sending a line in a ®bre of p to
its image in Pnÿ2. It is of generic degree 2 because the rational map Dl ! Ql is
of generic degree 2. The variety Sl is irreducible because Ql is irreducible and
Sl ! Ql is not split (intersect Ql with a general plane and use [2]).

For l 0 2 Sl nP1 , the variety Sl is smooth at l 0 since Sl nP1 > Dl nflg.
For l 0 2 P1 we determine the Zariski tangent space to Sl at l 0. Since l 0 maps to

a point in Pnÿ2, it corresponds to a plane L0 in Pn which contains l. Since l 0 is
also contained in E1, it maps onto l in Pn under the blow up morphism Pn

l ! Pn

and L 0 is tangent to X along l. So we easily see that we can identify Sl with
the closure of the subvariety of the product of the Grassmannians
G�2; n� 1� ´ G�3; n� 1� parametrizing pairs �l 0; L 0� such that l 0 2 Dl nflg and
L 0 � hl; l 0 i.

Let W 0 and V be the vector spaces in Cn�1 whose projectivizations are L 0 and
l respectively. The tangent space to G�2; n� 1� ´ G�3; n� 1� at �l; L 0� can be
canonically identi®ed with Hom�V ; Cn�1=V � � Hom�W 0; Cn�1=W 0�. As in [9,
Example 16.3, pp. 202±203, and Examples 16.21, 16.23, pp. 209±210], one can
see that the tangent space to Sl at �l; L 0� can be identi®ed with the set of pairs of
homomorphisms � f ; g� such that for every non-zero vector v 2 V mapping to a
point p of l, we have f �v� 2 T 0p X=V , g�V � � 0, g jV � f �mod W 0� and g�W 0�ÌT

p2 l T 0p X=W 0 (this last condition expresses the fact that the deformation of L 0

contains a deformation of l which is contained in X; hence the deformation of L 0

is tangent to X along l, that is, is contained in Tl). Equivalently, g�V � � 0,
f �V � Ì W 0=V and g�W 0� Ì

T
p2 l T 0p X =W 0. Assuming l is of ®rst type, we see

that the space of such pairs of homomorphisms has dimension nÿ 3.

3. The planes in X

Let P be the variety parametrizing planes in X. For P 2P, we say that d has rank rP

on P if the span of d�P� has dimension rP. Since d is de®ned by quadrics, we have
rP < 5. Since X is smooth, we have rP > 2. Consider the commutative diagram

P5

v

ÿÿÿ
ÿ!
???yp

Pÿÿÿ!dP
P rP Ì �Pn��

where v is the Veronese map, dP is the restriction of d to P and p is the projection
from a linear space L Ì P5 of dimension 4ÿ rP (with the convention that the
empty set has dimension ÿ1).

Note that L does not intersect v�P� because d is a morphism.
Let Pr be the subvariety of P parametrizing planes P for which rP < r. In this

section we will prove a few facts about P and Pr which we will need later. We
begin with a lemma.

Lemma 3.1. Let T :� Sl Ì Phv�l�i Ì P5 be the secant variety of v�P�. Then
there is a bijective morphism from T Ç L to the parameter space of the family of
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lines of second type in P and T Ç L contains no positive-dimensional linear
spaces. In particular,

(1) if rP � 5, then P contains no lines of second type,

(2) if rP � 4, then P contains at most one line of second type and this happens
exactly when L (which is a point in this case) is in T,

(3) if rP � 3, then P contains one, two or three distinct lines of second type,

(4) if rP � 2, then P contains exactly a one-parameter family of lines of second
type whose parameter space is the bijective image of an irreducible and
reduced plane cubic.

Proof. A line l Ì P is of second type if and only if dP�l� Ì P rP is a line, that
is, if and only if the span hv�l�i> P2 of the smooth conic v�l� intersects L.
Consider the universal line f1: LP ! P� and its embedding LP a VP where
f2: VP ! P� is the projectivization of the bundle f�OLP

�2��. Then T is the image
of VP in P5 by a morphism, say g, which is an isomorphism on the complement
of LP and contracts LP onto v�P�. Since L Ç v�P� � 0= , the morphism g jgÿ 1�T Ç L�
is an isomorphism, say g 0. The morphism from T Ç L onto the parameter space of
the family of lines of second type in P is the composition of g 0ÿ1 with f2. This
morphism is bijective because (since L Ç v�P� � 0= ) the space L intersects any
hv�l�i in at most one point, and any two planes hv�l1�i and hv�l2�i intersect in
exactly one point which is v�l1 Ç l2� 2 v�P�.

To show that T Ç L contains no positive-dimensional linear spaces, recall that T
is the image of the Segre embedding of P ´ P in P8 � P�H 0�P;OP�1��
2�� by
the projection from P�L2H 0�P; OP�1����. Let R1 be the ruling of T by planes
which are images of the ®bres of the two projections of P ´ P onto P. Let R2 be
the ruling of T by planes of the form hv�l�i for some line l Ì P. Then a simple
computation (determining all the pencils of conics which consist entirely of
singular conics) shows that every linear subspace contained in T is contained in
either an element of R1 or an element of R2. Therefore, if L Ç T contains a linear
space m, then either m Ì hv�l�i for some line l Ì P or m Ì L 0 for some element
L 0 of R1. In the ®rst case, the space m is a point because otherwise it would
intersect v�P�. In the second case, the space m is either a point or a line because
any element of R1 contains exactly one point of v�P�. It is easily seen that there
is an element s0 2 H 0�P;OP�1�� such that L 0 parametrizes the hyperplanes in
jOP�2�j containing all the conics of the form Z�s ´ s0� for some s 2 H 0�P; OP�1��.
If m Ì L 0 is a line, then it is easily seen that the codimension, in
h¶0 G; . . . ; ¶n GijP, of the set of elements of the form s ´ s0 is 1. Restricting to
Z�s0�, we see that the dimension of h¶0 G; . . . ; ¶n GijZ�s0� is 1, which is impossible
since then X would have a singular point on Z�s0�. Therefore m is always a point
if it is non-empty.

Proposition 3.2. The space of in®nitesimal deformations of P in X has
dimension 3nÿ 15 if rP � 2. In particular, if n � 5, then X contains at most a
®nite number of planes.

Proof. The intersection TP of the projective tangent spaces to X along P has
dimension nÿ 3. It follows that we have an exact sequence

0ÿ! OP�1�nÿ5 ÿ! NP=X ÿ! V2 ÿ! 0
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where V2 is a locally free sheaf of rank 2. We need to show that h0�P; V2� � 0.
Suppose that there is a non-zero section u 2 H 0�P; V2�. We will ®rst show that the
restriction of u to any line l in P is non-zero. This will follow if we show that the
restriction map H 0�P; V2� ! H 0�l; V2j l� is injective, that is, h0�P; V2�ÿ1�� � 0.
Consider therefore the exact sequence of normal sheaves

0ÿ! NP=X ÿ! NP=P n ÿ! NX =P n jP ÿ! 0:

After tensoring by OP�ÿ1� we obtain the exact sequence

0ÿ! NP=X�ÿ1� ÿ! O
��nÿ2�
P ÿ! OP�2� ÿ! 0:

We can choose our system of coordinates (on Pn) in such a way that
x3 � . . . � xn � 0 are the equations for P and the map O

��nÿ2�
P ! OP�2� in the

sequence above is given by multiplication by ¶3GjP; . . . ; ¶nG jP. So we see that,

since rP � 2, the map on global sections H 0�O��nÿ2�
P � ! H 0�OP�2�� has rank 3.

Therefore h0�P; NP=X�ÿ1�� � nÿ 5 and h0�P; V2�ÿ1�� � 0.
By Lemma 3.1, the plane P contains lines of ®rst type. For any line l Ì P

which is of ®rst type, it is easily seen that V2j l > O�2
l . Hence u has no zeros on l.

It follows that Z�u� is ®nite.
We compute the total Chern class of V2 as

c�V2� �
c�NP=X�
�1� z�nÿ5

� 1� 3z 2

where z � c1�OP�1��. Therefore Z�u� is a ®nite subscheme of length 3 of P. Let
lu be a line in P such that lu Ç Z�u� has length at least 2. Then, by what we saw
above, lu is of second type. It is easily seen that V2j l u

> Ol u
�ÿ1� � Ol u

�1�.
Restricting u to lu, we see that Z�u j l u

� � lu Ç Z�u� has length 1 which is a

contradiction. So h0�P; V2� � 0 and h0�P; NP=X� � 3nÿ 15.

The next result we will need is the following.

Lemma 3.3. The dimension of P2 is at most Min�nÿ 4; 5�.

Proof. The proof of the part dim�P2�< nÿ 4 is similar to the proof of
Corollary 7.6 on p. 311 of [5].

To prove that dim�P2�< 5, we may suppose that n > 10. Let P be an element
of P2. We will show that the space of in®nitesimal deformations of P for which
the rank of d does not increase has dimension at most 5. Let x0, x1, x2 be
coordinates on P, let x0; x1; x2; x3; . . . ; xnÿ3 be coordinates on TP and
x0; . . . ; xnÿ3; xnÿ2; xnÿ1; xn coordinates on Pn. Then the conditions P Ì X and TP

is tangent to X along P can be written

¶i ¶j ¶k G � 0

for all i; j 2 f0; 1; 2g, k 2 f0; . . . ; nÿ 3g, where G is, as before, an equation for X
and ¶i � ¶=¶xi. We need to determine the in®nitesimal deformations of P for
which there is an in®nitesimal deformation of TP which is tangent to X along the
deformation of P. The in®nitesimal deformations of P in Pn are parametrized by

HomC

�
h¶0; ¶1; ¶2 i;

Cn�1

h¶0; ¶1; ¶2 i
�

> HomC�h¶0; ¶1; ¶2 i; h¶3; . . . ; ¶n i�
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and those of TP in Pn are parametrized by

HomC

�
h¶0; . . . ; ¶nÿ3 i;

Cn�1

h¶0; . . . ; ¶nÿ3i
�

> HomC�h¶0; . . . ; ¶nÿ3 i; h¶nÿ2; ¶nÿ1; ¶n i�;

where we also denote by ¶i the vector inCn�1 corresponding to the differential operator
¶i. We need to determine the homomorphisms f¶i 7! ¶ 0i 2 h¶3; . . . ; ¶n i: i 2 f0; 1; 2gg
for which there is a homomorphism f¶i 7! ¶ 00i 2 h¶nÿ2; ¶nÿ1; ¶n i: i 2 f0; . . . ; nÿ 3gg
such that the following conditions hold.

1. The vector ¶ 00i is the projection of ¶ 0i to h¶nÿ2; ¶nÿ1; ¶n i for i 2 f0; 1; 2g.
This expresses the condition that the in®nitesimal deformation of TP contains
the in®nitesimal deformation of P.

2. For all i; j 2 f0; 1; 2g and k 2 f0; . . . ; nÿ 3g,
�¶i � «¶ 0i ��¶j � «¶ 0j ��¶k � «¶ 00k �G � 0

where, as usual, « has square 0. Here we are `differentiating' the relations
¶i ¶j ¶k G � 0. Developing, we obtain

�¶i ¶j ¶ 00k � ¶i ¶ 0j ¶k � ¶ 0i ¶j ¶k�G � 0:

Writing ¶ 0i �
Pn

j�3 ai j ¶j and ¶ 00i �
Pn

j�nÿ2 bi j ¶j, we can write the above
conditions as follows.

1. For all i 2 f0; 1; 2g and j 2 fnÿ 2; nÿ 1; ng,
ai j � bi j:

2. For all i; j 2 f0; 1; 2g and k 2 f0; . . . ; nÿ 3g,Xn

l�nÿ2

bk l ¶i ¶j ¶l G�
Xn

l�3

aj l ¶i ¶l ¶kG�
Xn

l�3

ai l ¶l ¶j ¶kG � 0:

Incorporating the ®rst set of conditions in the second and using the relations
¶i ¶j ¶kG � 0 for i; j 2 f0; 1; 2g, k 2 f0; . . . ; nÿ 3g, we divide our conditions into
two different sets of conditions as follows. We are looking for matrices
�ai l�0 < i < 2;3 < l < n for which there is a matrix �bk l�3< k < nÿ3;nÿ2 < l < n such that,
for all i; j; k 2 f0; 1; 2g,Xn

l�nÿ2

�ak l ¶i ¶j ¶l � aj l ¶i ¶l ¶k � ai l ¶l ¶j ¶k�G � 0

and, for all i; j 2 f0; 1; 2g, k 2 f3; . . . ; nÿ 3g,Xn

l�nÿ2

bk l ¶i ¶j ¶l G�
Xn

l�3

�aj l ¶i ¶l ¶k � ai l ¶l ¶j ¶k�G � 0:

Consider the matrix whose columns are indexed by the alm, bsu �0 < l < 2,
3 < m < n, 3 < s < nÿ 3, nÿ 2 < u < n�, whose rows are indexed by unordered
triples �i; j; k� with i; j 2 f0; 1; 2g, k 2 f0; . . . ; nÿ 3g and whose entries are the
¶i ¶j ¶mG, ¶i ¶m ¶kG, ¶m ¶j ¶kG or ¶i ¶j ¶uG. The entry in the column of al m and the
row of �i; j; k� is non-zero only if l � i; j or k. We can, and will, suppose that
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l � i. Here is the list of such entries which are possibly non-zero:

for 3 < m < n; 3 < k < nÿ 3; l � i 6� j; ¶m ¶j ¶kG;

l � i � j; 2¶m ¶l ¶kG;

for nÿ 2 < m < n; 0 < k < 2; l � i 6� j; k; ¶m ¶j ¶kG;

l � i � j 6� k; 2¶m ¶l ¶kG;

l � i � j � k; 3¶m ¶2
l G:

The entry in the column of bsu and the row of fi; j; kg is non-zero only if s � k.
These possibly non-zero entries are the following:

for nÿ 2 < u < n; 3 < k < nÿ 3; s � k; ¶i ¶j ¶uG:

An easy dimension count shows that we need to prove that there are at most six
relations between the rows of the matrix. Suppose that there are t relations with
coef®cients

fflr
i j kg0 < i; j < 2; 0 < k < nÿ3g1 < r < t

between the rows of our matrix. Each relation can be written as a collection:

for 3 < m < nÿ 3, 0 < i < 2, X
3< k < nÿ3

0 < j < 2

lr
i j k ¶m ¶j ¶kG � 0;

for nÿ 2 < m < n, 0 < i < 2, X
0 < k < nÿ3

0 < j < 2

lr
i j k ¶m ¶j ¶kG � 0; �1�

for nÿ 2 < u < n, 3 < k < nÿ 3,X
0 < i; j < 2

lr
i j k¶i ¶j ¶uG � 0:

Each expression
P

0 < i; j < 2 lr
i j k ¶i ¶j de®nes a hyperplane in H 0�P;OP�2�� which

contains the polynomials ¶uG jP. Since we have three independent such
polynomials, the vector space of hyperplanes containing them has dimension 3.
Hence, after a linear change of coordinates, we can suppose that, for
r 2 f0; . . . ; t ÿ 3g, we have lr

i j k � 0 if 0 < i, j < 2, 3 < k < nÿ 3. The relations
(1) now become, for 0 < r < t ÿ 3, 0 < i < 2,X

0 < k < 2
0 < j < 2

lr
i j k ¶j ¶kG � 0:

If, for a ®xed r 2 f1; . . . ; t ÿ 3g, the three relations
P

0 < k < 2; 0 < j < 2 lr
i j k ¶j ¶kG � 0,

for 0 < i < 2, are not independent, then after a linear change of coordinates,
we may suppose that, for instance, lr

2 j k � 0 for all j; k 2 f0; 1; 2g. Since the
coef®cients lr

i j k are symmetric in i; j; k, we obtain, for 0 < i < 1,X
0 < k < 1
0 < j < 1

lr
i j k ¶j ¶kG � 0:

If l is the line in P obtained as the projectivization of h¶0; ¶1 i, then
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h¶nÿ2G; ¶nÿ1G; ¶nGijl has dimension at least 2 and there can be at most one
hyperplane in H 0�l; Ol�2�� containing h¶nÿ2G; ¶nÿ1G; ¶nGijl. In other words, up
to multiplication by a scalar, there is at most one non-zero relationP

0 < k < 1; 0 < j < 1 lr
i j k ¶j ¶kG � 0. Hence, we can suppose that lr

1 j k � 0 for all
j; k 2 f0; 1g. Again, by symmetry, we are reduced to lr

000¶2
0G � 0 which implies

lr
000 � 0 because X is smooth. Hence all the lr

i j k are zero.
Therefore, if the lr

i j k are not all zero, the three relationsX
0 < k < 2
0 < j < 2

lr
i j k ¶j ¶kG � 0; for 0 < i < 2;

are independent. If t ÿ 3 > 4, then, after a linear change of coordinates, for some
r 2 f1; . . . ; t ÿ 3g, one of the above three relations will be trivial and we are
reduced to the previous case. Therefore t ÿ 3 < 3 and t < 6.

Proposition 3.4. Suppose that n > 6. Then P has pure dimension equal to
the expected dimension 3nÿ 16. If rP > 3, then P is smooth at P.

Proof. Since the dimension of P2 is at most Min�nÿ 4; 5� by Lemma 3.3 and
the dimension of every irreducible component of P is at least 3nÿ 16, it is
enough to show that for every P such that rP > 3, the space H 0�P; NP� of
in®nitesimal deformations of P in X has dimension 3nÿ 16.

Suppose that rP � 3. As in the proof of Proposition 3.2, we have an exact sequence

0ÿ! OP�1���nÿ6� ÿ! NP= X ÿ! V3 ÿ! 0

where V3 is a locally free sheaf of rank 3. Since h0�P; NP=X�> 3nÿ 16, we have
h0�P; V3�> 2. We need to show that h0�P; V3� � 2. As in the proof of Proposition
3.2 we have h0�P; V3�ÿ1�� � 0 so that, for any line l Ì P,

H 0�P; V3�a H 0�l; V3jl�:
Suppose that h0�P; V3�> 3 and let u1, u2, u3 be three linearly independent
elements of H 0�P; V3�. By Lemma 3.1, the plane P contains at least one line l0 of
second type. It is easily seen that V3jl 0

> Ol 0
�ÿ1� � Ol 0

�1��2. Therefore
hu1; u2; u3 ijl 0

generates a subsheaf of the Ol 0
�1��2 summand of V3jl 0

isomorphic

to Ol 0
� Ol 0

�1�. The quotient of Ol 0
�1��2 by Ol 0

� Ol 0
�1� is a skyscraper sheaf

supported on a point p of l0 (with ®bre at p isomorphic to C). So the images of
u1, u2 and u3 by the evaluation map at p generate a one-dimensional vector
subspace of the ®bre of V3 at p. By Lemma 3.1, there is a line l of ®rst type in P
which contains p. It is easily seen that V3jl > O�2

l � Ol�1�. Restricting u1, u2, u3

to l we see that their images by the evaluation map at p generate a vector
subspace of dimension at least 2 of the ®bre of V3 at p, a contradiction.

Suppose now that rP � 4. Then n > 7 and we have the exact sequence

0ÿ! OP�1���nÿ7� ÿ! NP=X ÿ! V4 ÿ! 0

where V4 is a locally free sheaf of rank 4. Since h0�P; NP=X�> 3nÿ 16, we have
h0�P; V4�> 5. We need to show that h0�P; V4� � 5. As before, h0�P; V4�ÿ1�� � 0;
hence, for any line l Ì P, we have H 0�P; V4�a H 0�l; V4jl�. It is easily seen

that when l is of ®rst type, V4jl > O�2
l � Ol�1��2, and when l is of second type,
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V4jl > Ol�ÿ1� � Ol�1��3. Thus h0�P; V4�< 6. Suppose that h0�P; V4� � 6. Then

H 0�P; V4� is isomorphic to H 0�l; V4jl� for every line l Ì P.
Suppose ®rst that P contains a line l0 of second type and let l be a line of ®rst

type in P. We see that V4 is not generated by its global sections anywhere on l0,
whereas V4jl is generated by its global sections. This gives a contradiction at the
point of intersection of l and l0.

So every line l in P is of ®rst type, V4jl > O�2
l � Ol�1��2 and V4 is generated

by its global sections. Let s be a general global section of V4. We claim that s
does not vanish at any point of P. Indeed, since V4 is generated by its global
sections, for every point p of P, the vector space of global sections of V4

vanishing at p has dimension 2. Hence the set of all global sections of V4

vanishing at some point of P has dimension at most 2� 2 � 4 < 6. So we have
the exact sequence

0ÿ! OPÿ!s V4 ÿ! V ÿ! 0

where V is a locally free sheaf of rank 3. Since V4 is generated by its global
sections, so is V and we have h0�P; V � � 5. As before, a general global section s 0

of V does not vanish anywhere on P and we have the exact sequence

0ÿ! OPÿ!s
0

V ÿ! V 0 ÿ! 0

where V 0 is a locally free sheaf of rank 2. We have h0�P; V 0� � 4 and
h0�V 0�ÿ1�� � h0�V�ÿ1�� � h0�V4�ÿ1�� � 0. Hence for every line l Ì P,

H 0�P; V 0�a H 0�l; V 0jl�. Since V 0jl > Ol�1��2, for a non-zero section s of V 0 the

scheme Z�s jl� � Z�s�Ç l has length at most 1. The scheme Z�s� is not a line

because H 0�P; V 0� ! H 0�Z�s�; V 0jZ�s�� is injective. Hence for a general line l Ì P,

Z�s�Ç l is empty. Therefore Z�s� is ®nite. We compute c�V 0� � c�V � �
c�V4� � 1� 2z � 4z2. Therefore Z�s� has length 4. Hence there is a line l such
that Z�sl� has length at least 2 and this contradicts length�Z�sl��< 1.

If rP � 5, consider again the exact sequence of normal sheaves

0ÿ! NP=X ÿ! NP=P n ÿ! NX =P n jP ÿ! 0

which, after tensoring by OP�ÿ1�, becomes

0ÿ! NP=X�ÿ1� ÿ! O
��nÿ2�
P ÿ! OP�2� ÿ! 0:

Then the map on global sections

H 0�P;O��nÿ2�
P � ÿ! H 0�P; OP�2��

is surjective (see the proof of Proposition 3.2). A fortiori, the map

H 0�P; NP=P n� � H 0�P; OP�1���nÿ2��
� H 0�P; O��nÿ2�

P � 
 H 0�P; OP�1��
ÿ! H 0�P; OP�3�� � H 0�P; NX =P n jP�

is surjective and H 0�P; NP=X� has dimension 3nÿ 16.

Corollary 3.5. If n > 8, then P is irreducible.
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Proof. As before, let G be an equation for X . Choose a linear embedding
Pn a Pn�1. Choose coordinates fx0; . . . ; xng on Pn and coordinates
fx0; . . . ; xn; xn�1g on Pn�1. Let Y Ì Pn�1 be the cubic of equation G� xn�1Q
where Q is the equation of a general quadric in Pn�1 and let PY É P be the
variety of planes in Y . Then, by Proposition 3.4, the codimension of P in PY is
3. The singular locus of P is P2 (Propositions 3.2 and 3.4) which has
codimension at least 4 in P by Lemma 3.3 and Proposition 3.4. Therefore, since
P is connected [4, Theorem 4.1, p. 33; 6, TheÂoreÁme 2.1], it is suf®cient to show
that PY is smooth at a general point of P2. Since Q does not contain a general
plane P 2P2, the rank of the dual morphism of Y on P is at least 3. Hence PY is
smooth at a general point of P2 (Proposition 3.4).

Lemma 3.6. The dimension of P3 is at most nÿ 2.

Proof. It is enough to show that at any P with rP < 3 the dimension of the
tangent space to P3 is at most nÿ 2. By Lemma 3.3 it is enough to prove this for
rP � 3. The proof of this is very similar to (and simpler than) the proof of
Lemma 3.3.

Proposition 3.7. If n > 7, then P4 has pure dimension 2nÿ 9.

Proof. For n � 7 there is nothing to prove since P has pure dimension
5 � 3 ´ 7ÿ 16 � 2 ´ 7ÿ 9 and P � P4.

Suppose n > 8. By an easy dimension count, the dimension of every irreducible
component of P4 is at least 2nÿ 9. Since the dimension of P3 is at most
nÿ 2 < 2nÿ 9 (see Lemma 3.6), for a general element P of any irreducible
component of P4 we have rP � 4. We ®rst show the following.

Lemma 3.8. Suppose n > 8. Then the subscheme P 04 of P4 parametrizing
planes which contain a line of second type has pure dimension 2nÿ 10.

Proof. Again by a dimension count, the dimension of every irreducible
component of P 04 is at least 2nÿ 10. Let P be an element of P 04. By Lemma 3.6,
the scheme P3 Ì P 04 has dimension at most nÿ 2 < 2nÿ 10, so we may suppose
that rP � 4. Let l be the unique line of second type contained in P (see, Lemma
3.1). Since the family of lines of second type in X has dimension nÿ 3 (see [5,
Corollary 7.6]), it is enough to show that the space of in®nitesimal deformations
of P in X which contain l has dimension nÿ 7.

Consider the exact sequence of sheaves

0ÿ! NP= X�ÿ1� ÿ! NP=X ÿ! NP=Xjl ÿ! 0

with associated cohomology sequence

0ÿ! H 0�P; NP=X�ÿ1�� ÿ! H 0�P; NP=X�
ÿ!H 0�P; NP=Xjl� ÿ! H 1�P; NP=X�ÿ1�� ÿ! . . . :

The space of in®nitesimal deformations of P in X which contain l can be
identi®ed with the kernel of the homomorphism H 0�P; NP=X� ! H 0�P; NP=Xjl�
which, by the above sequence, can be identi®ed with H 0�P; NP=X�ÿ1��. Recall
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the exact sequence

0ÿ! NP=X�ÿ1� ÿ! O
��nÿ2�
P ÿ! OP�2� ÿ! 0

where the map O
��nÿ2�
P ÿ! OP�2� is given by multiplication by ¶3G; . . . ; ¶nG (see

the proof of Proposition 3.2). It immediately follows that h0�P; NP= X�ÿ1�� �
nÿ 7 if and only if rP � 4.

Note that containing a line of second type imposes at most one condition on
planes P with rP < 4. Therefore Proposition 3.7 follows from Lemma 3.8.

4. Resolving the indeterminacies of the rational involution on Sl

A good generalization of the Prym construction for cubic threefolds to cubic
hypersurfaces of higher dimension would be to realize the cohomology of X as
the anti-invariant part of the cohomology of Sl for the involution exchanging two
lines whenever they are in the same ®bre of p. However, this is only a rational
involution and we need to resolve its indeterminacies. This involution is not well
de®ned exactly at the lines l 0 such that pÿ1�p�l 0�� Ì Xl, that is, the plane L 0 Ì Pn

corresponding to p�l 0� is contained in X. Let Tl Ì Ql Ì Pnÿ2 be the variety
parametrizing the planes in Pn which contain l and are contained in X
(equivalently, the variety Tl parametrizes the ®bres of p which are contained in
Xl). Recall that Xl Ì Pn

l is the divisor of zeros of

s 2 H 0�PE; OPE�2� 
 p�OP nÿ 2�1�� � H 0�Pnÿ2; p��OPE�2�� 
 OP nÿ 2�1��
� H 0�Pnÿ2; Sym2E � 
 OP nÿ 2�1��:

Since E > OP nÿ 2�ÿ1� � O�2
P nÿ 2 , we have

Sym2E � 
 OP nÿ 2�1�> OP nÿ 2�3� � OP nÿ 2�2��2 � OP nÿ 2�1��3:

The variety Tl is the locus of common zeros of all the components of s in the
above direct sum decomposition. Therefore Tl is the scheme-theoretic intersection
of three hyperplanes, two quadrics and one cubic in Pnÿ2. We have the following.

Lemma 4.1. There is a Zariski-dense open subset of F parametrizing lines l
such that l is of ®rst type and rP � 5 for every plane P in X containing l. For l in
this Zariski-dense open subset, the variety Tl is the smooth complete intersection
of the six hypersurfaces obtained as the zero loci of the components of s in the
direct sum decomposition

Sym2E � 
 OP nÿ 2�1�> OP nÿ 2�3� � OP nÿ 2�2��2 � OP nÿ 2�1��3:

Proof. The ®rst part of the lemma follows from Proposition 3.7. For the
second part we need to show that Tl is smooth of the expected dimension nÿ 8.
In other words, for any plane P containing l, the space of in®nitesimal
deformations of P in X containing l has dimension nÿ 8. The proof of this is
similar to the proof of Lemma 3.8.

De®nition 4.2. Let U0 be the subvariety of F parametrizing lines l such that
l is of ®rst type, is not contained in Tl 0 for any line l 0 of second type and every
plane containing l is an element of PnP4.
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By Lemmas 1.4 and 4.1, the variety U0 is an open dense subvariety of F.
Suppose l 2 U0. By Lemmas 1.2, 2.1 and 4.1, the varieties Sl and Tl are smooth of
the expected dimensions nÿ 3 and nÿ 8 respectively. Let X 0l Ì Pn 0

l be the blow
ups of Xl Ì Pn

l along pÿ1�Tl� and let Pnÿ2 0 be the blow up of Pnÿ2 along Tl.
Then we have morphisms

X 0l Ì Pn 0
l

p 0X
ÿÿÿÿ!

???yp 0

Pnÿ2 0

where p 0: Pn 0
l ! Pnÿ2 0 is again a P2-bundle. Since Tl is the zero locus of

s 2 H 0�Pnÿ2; p�OPE�2� 
 OP nÿ 2�1��, we have NTl =P
nÿ 2 > p�OPE�2� 
 OP nÿ 2�1�jTl

.

Therefore, the exceptional divisor E 0 of Pnÿ2 0 ! Pnÿ2 is a P5-bundle over Tl

whose ®bre at a point t 2 Tl corresponding to the plane Pt Ì Xl is jOPt
�2�j.

Lemma 4.3. Suppose that l 2 U0. For all t 2 Tl, the restriction of
p 0X: X 0l ! Pnÿ2 0 to jOPt

�2�j Ì Pnÿ2 0 is the universal conic on jOPt
�2�j. In

particular, the ®bres of p 0X: X 0l ! Pnÿ2 0 are always one-dimensional.

Proof. The restriction of p 0 to the inverse image of a point t 2 Tl is the
second projection Pt ´ jOPt

�2�j ! jOPt
�2�j. Let NX; p be the normal space in Xl to

pÿ1�Tl� at p 2 Pt and let rt: Pt ! jOPt
�2�j� > P5 be the map which to p 2 Pt

associates PNX; p 2 jOPt
�2�j�. For n 2 jOPt

�2�j , the ®bre of p 0X at �t; n� 2 E 0 is
equal to rÿ1

t �rt�Pt�Ç Hn� where Hn is the hyperplane in jOPt
�2�j� corresponding

to n. It is immediately seen that rt is induced by the dual morphism d of X.
Hence, since rPt

� 5, the map rt is the Veronese morphism Pt ! jOPt
�2�j�. Hence

rÿ1
t �rt�Pt�Ç Hn� is the conic in Pt corresponding to n.

It follows from Lemma 4.3 that if we let S 0l be the variety parametrizing lines
in the ®bres of p 0X: X 0l ! Pnÿ2 0, then there is a well-de®ned involution
il: S 0l ! S 0l which sends l 0 to l 00 when l 0 � l 00 is a ®bre of X 0l ! Pnÿ2 0. Sending
a line in a ®bre of p 0X to its image in Xl de®nes a morphism S 0l ! Sl. Let Pl ! Tl

be the family of planes in X containing l. Then the inverse image of Tl in Sl by
the morphism Sl ! Ql is the projective bundle P�l of lines in the ®bres of
Pl ! Tl.

Proposition 4.4. Suppose that l 2 U0. The morphism S 0l ! Sl is the blow up of Sl

along P�l . In particular, the variety S 0l is smooth. The ®xed point locus R 0l of il in S 0l is a
smooth subvariety of codimension 2 of S 0l . The projective bundle P�NR 0

l
=S 0

l
� ! R 0l

is isomorphic to the family of lines in the ®bres of p 0X parametrized by R 0l .

Proof. In Lemma 2.1, we saw that Sl can be identi®ed with the closure of the
subvariety G�2; n� 1� ´ G�3; n� 1� parametrizing pairs �l 0; L 0� of a line and a
plane such that l 6� l 0 and l È l 0 Ì L 0. In the same way, we see that S 0l can be
identi®ed with the closure of the subvariety of G�2; n� 1� ´ G�2; n� 1� ´
G�3; n� 1� parametrizing triples �l 0; l 00; L 0� such that L 0 Ç X É l È l 0 È l 00 and l, l 0, l 00

are distinct. Furthermore, the morphism S 0l ! Sl is the restriction of the projection to
the second and third factors of G�2; n� 1� ´ G�2; n� 1� ´ G�3; n� 1�. Again as
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in the proof of Lemma 2.1 we see that S 0l is smooth. Blowing up P�l and its
inverse image in S 0l we obtain the commutative diagrameS 0l ÿÿÿ! eSl???y ???y

S 0l ÿÿÿ! Sl

Since the inverse image of P�l is a divisor in S 0l , the blow up morphism eS 0l ! S 0l
is an isomorphism. The morphism S 0l ! eSl thus obtained is a birational morphism
of smooth varieties with constant ®bre dimension, and hence it is an isomorphism.
This proves the ®rst part of the proposition.

Now let D be the diagonal of G�2; n� 1� ´ G�2; n� 1�. Then the variety R 0l is
identi®ed with S 0l Ç �D ´ G�3; n� 1��. One now computes the tangent space to R 0l as
in the proof of Lemma 2.1 and sees that NR 0

l
= S 0

l
is isomorphic to I � 
 J =I where I is

the restriction of the universal bundle on G�2; n� 1� and J is the restriction of the
universal bundle on G�3; n� 1�. Therefore P�NR 0

l
=S 0

l
� is isomorphic to P�I � which

is the family of lines in the ®bres of p 0X parametrized by R 0l.

Let Q 0l be the blow up of Ql along Tl. Sending a line l 2 S 0l to the ®bre of
X 0l ! Pnÿ2 0 which contains it de®nes a ®nite morphism S 0l ! Q 0l of degree 2 with
rami®cation locus R 0l . Blowing up R 0l in Q 0l and S 0l we obtain the morphism
S 00l ! Q 00l . We have the following.

Proposition 4.5. The variety R 0l is an ordinary double locus for Q 0l . In
particular, Q 00l is smooth and (by Proposition 4.4) the projectivization P�CR 0

l
=Q 00

l
�

of the normal cone to R 0l in Q 0l is isomorphic to P�NR 0
l
= S 0

l
�.

Proof. The fact that Rl nTl is an ordinary double locus for Ql nTl can be proved, for
instance, by intersecting Ql with a general plane through a point p of Rl nTl. The
resulting curve has an ordinary double point at p by [1, Proposition 1.2, p. 321]. At a
point q of the exceptional divisor of R 0l ! Rl, locally trivialize the pull-back of
E � O�2

P nÿ 2 � OP nÿ 2�ÿ1� to obtain a morphism from a neighbourhood U of q to
jOP 2�2�j. It easily follows from Lemmas 4.1 and 4.3 that this morphism is
dominant and the restriction of X 0l ! Pnÿ2 0 to U is the inverse image of the
universal conic on jOP 2�2�j. The assertion of the proposition now follows from
the corresponding fact for the cubic fourfold parametrizing singular conics in P2.

5. The main theorem

Let Ll ! S 0l and Ll ! Sl be the families of lines in the ®bres of p 0X and pX

respectively. The blow-up morphism «2: X 0l ! Xl de®nes a morphism Ll ! Ll

which ®ts into the commutative diagram

X 0l ÿÿÿ!
«2

Xlÿÿÿ!
«1

X

r

x??? x???r

Ll ÿÿÿ! Ll

p

???y ???yp

S 0l ÿÿÿ! Sl
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where the squares are Cartesian. Put q � «1«2 r and let w 0 � q� p�: H nÿ3�S 0l ; Z� !
H nÿ1�X; Z� and w � �«1r��p�: H nÿ3�Sl; Z� ! H nÿ1�X; Z� be the Abel±Jacobi
maps. The map w is the composition of w 0 with the inclusion
H nÿ3�Sl; Z�a H nÿ3�S 0l ; Z� because the bottom (or top) square above is
Cartesian. We have the following theorem.

Theorem 5.1. The maps w: H nÿ3�Sl; Z� ! H nÿ1�X; Z� and w 0: H nÿ3�S 0l ; Z� !
H nÿ1�X; Z� are surjective.

Proof. Consider the rational map Q 0l ! X 0l which to the singular conic l 0 � l 00

associates the point of intersection l 0 Ç l 00. An easy local computation shows that
the closure of the image of this map is smooth; hence, by a reasoning analogous
to the proof of Proposition 4.4, it can be identi®ed with Q 00l . Let «3: X 00l ! X 0l be
the blow up of X 0l along Q 00l and, for each i �1 < i < 3�, let Ei be the exceptional
divisor of the blow up map «i. Then we have a factorization

X 00leq
ÿÿÿ
ÿÿ!

????y«3

Llÿÿÿ!
r

X 0l
so that w 0 � q� p� � «1�«2�r� p� � «1�«2�«3�eq� p�. Note that eq is an embedding
so that we can, and will, identify Ll with eq�Ll�. Put Ul � X 00l n�E3 È Ll� �
X 0l nr�Ll�. Let ml: Ul ! X 00l be the inclusion. We have the spectral sequence

E
p;q
2 � H p�X 00l ; Rqml�ZU l

� �) H p�q�Ul; Z�
and by [7, § 3.1], we have R0ml�ZU l

� ZX 00
l
, R1ml�ZUl

� ZE3
� ZL l

, R2ml�ZU l
�

ZE 3 Ç L l
and Rqml�ZU l

� 0 for q > 2. Note that E3 Ç Ll > S 00l .
Therefore

E
p;0
2 � H p�X 00l ; Z�;

E
p;1
2 � H p�X 00l ; ZE 3

� ZL l
� � H p�Ll; Z� � H p�E3; Z�;

E
p;2
2 � H p�X 00l ; ZS 00

l
� � H p�S 00l ; Z�;

E
p;q
2 � 0 for q > 2:

So the E ´ ; ´
2 complex is

0ÿ! H pÿ2�S 00l ; Z� ÿ! H p�Ll; Z� � H p�E3; Z� ÿ! H p�2�X 00l ; Z� ÿ! 0

where the maps are obtained by PoincareÂ Duality from the natural push-forwards on
homology induced by the inclusions. We have (see, for instance [1, 0.1.3, p. 312])

H p�2�X 00l ; Z�> H p�2�X 0l ; Z� � H p�Q 00l ; Z�; �2�

H p�2�X 0l ; Z�> H p�2�Xl; Z� �
 M

pÿ6 < i < p
i� p�2�

H i�pÿ1�Tl�; Z�
!
; �3�

H p�2�Xl; Z�> H p�2�X; Z� �
 M

pÿ2�nÿ4�< i < p
i� p�2�

H i�l; Z�
!

�4�
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and

H pÿ2�S 00l ; Z�> H pÿ2�S 0l ; Z� � H pÿ4�R 0l ; Z�: �5�
Since E3 and Ll are P1-bundles over Q 00l and S 0l respectively,

H p�E3; Z�> H p�Q 00l ; Z� � H pÿ2�Q 00l ; Z� �6�
and

H p�Ll; Z�> H p�S 0l ; Z� � H pÿ2�S 0l ; Z�: �7�
The map w 0 is the composition of the inclusion H nÿ3�S 0l ; Z�a H nÿ3�Ll; Z�

obtained from (7) with the differential E nÿ3;1
2 ! E nÿ1;0

2 and the projection

H nÿ1�X 00l ; Z�� H nÿ1�X; Z� obtained from (2), (3) and (4). We ®rst study the
cokernel of the differential E nÿ3;1

2 ! E nÿ1;0
2 .

By [7, 3.2.13], the differentials E
p;q
3 ! E

p�3;qÿ2
3 are zero. Therefore

E ´ ; ´
1 � E ´ ; ´

3 and, in particular,

Coker�H nÿ3�Ll; Z� � H nÿ3�E3; Z� ÿ! H nÿ1�X 00l ; Z��
� Coker�E nÿ3;1

2 ! E nÿ1;0
2 �

� E nÿ1;0
3 � E nÿ1;0

1 � Gr nÿ1�H nÿ1�Ul; Z��:
This is the image of H nÿ1�X 00l ; Z� in H nÿ1�Ul; Z� and, by [7, 3.2.17], it is the
piece Wnÿ1�H nÿ1�Ul; Z�� of weight nÿ 1 of the mixed Hodge structure on
H nÿ1�Ul; Z�.

De®ne Vl :� Pnÿ2 0nQ 0l . The ®bres of the conic-bundle Ul ! Vl are all
smooth; hence

H nÿ1�Ul; Z�> H nÿ3�Vl; Z� � H nÿ1�Vl; Z�:

Lemma 5.2. Under this isomorphism, the space Wnÿ1�H nÿ1�Ul; Z�� is
isomorphic to Wnÿ3�H nÿ3�Vl; Z�� �Wnÿ1�H nÿ1�Vl; Z��.

To prove this, it is suf®cient to show that the maps H nÿ1�Vl; Z� !
H nÿ1�Ul; Z� and H nÿ3�Vl; Z� ! H nÿ1�Ul; Z� are morphisms of mixed Hodge
structures of type �0; 0� and �1; 1� respectively.

By [7, pp. 37±38], the pull-backs on cohomology H nÿ3�Vl; Z� ! H nÿ3�Ul; Z�
and H nÿ1�Vl; Z� ! H nÿ1�Ul; Z� are morphisms of mixed Hodge structures of
type �0; 0�. To see that the map H nÿ3�Vl; Z� ! H nÿ1�Ul; Z� is a morphism of
mixed Hodge structures of type �1; 1� choose a bisection B of the conic bundle
Ul ! Vl and let h be a half of the cohomology class of B. Then the map

H nÿ3�Vl; Z� ÿ! H nÿ1�Ul; Z�
is the composition of pull-back

H nÿ3�Vl; Z� ÿ! H nÿ3�Ul; Z�
with cup-product with h,

H nÿ3�Ul; Z� ÿ! H nÿ1�Ul; Z�:
The class 2h is the restriction to Ul of the cohomology class of the closure of B
in X 0l . Therefore 2h is in the image of

H 2�X 0l ; Z� ÿ! H 2�Ul; Z�
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and hence has pure weight 2 and Hodge type �1; 1�. Therefore h has pure weight
2 and Hodge type �1; 1� in the mixed Hodge structure on H 2�Ul; Z�, and the map
H nÿ3�Vl; Z� ! H nÿ1�Ul; Z� is a morphism of mixed Hodge structures of type

�1; 1� and sends Wnÿ3�H nÿ3�Vl; Z�� into Wnÿ1�H nÿ1�Ul; Z��.
We now determine Wnÿ3�H nÿ3�Vl; Z�� �Wnÿ1�H nÿ1�Vl; Z��. In the following

we let p be equal to nÿ 3 or nÿ 1.
Let Pnÿ2 00 ! Pnÿ2 0 be the blow up of Pnÿ2 0 along R 0l with exceptional divisor

E 00 and identify Q 00l with its image in Pnÿ2 00. Then Vl � Pnÿ2 00n�E 00 È Q 00l � and the
divisors E 00 and Q 00l are smooth and meet transversally. Therefore Wp�H p�Vl; Z��
is the image of H p�Pnÿ2 00; Z� in H p�Vl; Z�, that is, it is isomorphic to the
cokernel of the map

H pÿ2�Q 00l ; Z� � H pÿ2�E 00; Z� ÿ! H p�Pnÿ2 00; Z�
obtained by PoincareÂ Duality from push-forward on homology. Since E 00 is a P2-
bundle over R 0l , we have

H pÿ2�E 00; Z�> H pÿ2�R 0l ; Z� � H pÿ4�R 0l ; Z� � H pÿ6�R 0l ; Z�: �8�
By for example, [1, 0.1.3], we have the isomorphism

H p�Pnÿ2 00; Z�> H p�Pnÿ2 0; Z� � H pÿ2�R 0l ; Z� � H pÿ4�R 0l ; Z�:
Under the map H pÿ2�E 00; Z� ! H p�Pnÿ2 00; Z� above, the summand
H pÿ2�R 0l ; Z� � H pÿ4�R 0l ; Z� in H pÿ2�E 00; Z� maps isomorphically onto the same

summand in H p�Pnÿ2 00; Z�. Therefore Wp�H p�Vl; Z�� is a quotient of H p�Pnÿ2 0; Z�.
The summand H pÿ6�R 0l ; Z� in H pÿ2�E 00; Z� maps into the summand

H p�Pnÿ2 0; Z� of H p�Pnÿ2 00; Z�, the map H pÿ6�R 0l ; Z� ! H p�Pnÿ2 0; Z� being
again obtained by PoincareÂ Duality from push-forward on homology. Since the
degree of Rl in Pnÿ2 is 16, the image of the composition of H pÿ6�R 0l ; Z�a
H p�Pnÿ2 0; Z� with the isomorphism

H p�Pnÿ2 0; Z�> H p�Pnÿ2; Z� �
 M

pÿ10 < i < pÿ2
i� p �2�

H i�Tl; Z�
!

contains an element whose component in the summand H p�Pnÿ2; Z� is 16 times
a generator of H p�Pnÿ2; Z�.

Since the degree of Ql is 5, the image of the composition of the direct sum
embedding

H pÿ2�Q 00l ; Z�a H pÿ2�E 00; Z� � H pÿ2�Q 00l ; Z�
with the map

H pÿ2�E 00; Z� � H pÿ2�Q 00l ; Z� ÿ! H p�Pnÿ2 00; Z�
contains an element whose component in the summand H p�Pnÿ2; Z� is 5 times a
generator of H p�Pnÿ2; Z�. Since 16 and 5 are coprime, we deduce that the image
of H pÿ2�E 00; Z� � H pÿ2�Q 00l ; Z� in H p�Pnÿ2 00; Z� contains an element whose
component in the summand H p�Pnÿ2; Z� is a generator of H p�Pnÿ2; Z�.

So far we have proved that Wp�H p�Vl; Z�� is a quotient ofM
pÿ10 < i < pÿ2

i� p �2�

H i�Tl; Z� Ì H p�Pnÿ2 00; Z�:
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It is now easily seen that M
nÿ11 < i < nÿ3

i� nÿ1 �2�

H i�Tl; Z�
!
�
 M

nÿ13 < i < nÿ5
i� nÿ1 �2�

H i�Tl; Z�
!

maps into the summand M
nÿ9 < i < nÿ3

i� nÿ3 �2�

H i�pÿ1�Tl�; Z�

of H nÿ1�X 00l ; Z�. Therefore Wn ÿ 1�H n ÿ 1�Ul; Z�� � Wn ÿ 3�H n ÿ 3�Vl; Z�� �
Wn ÿ 1�H n ÿ 1�Vl; Z�� is a subquotient ofM

nÿ9 < i < nÿ3
i� nÿ3 �2�

H i�pÿ1�Tl�; Z� Ì H nÿ1�X 00l ; Z�

� H nÿ1�Xl; Z� � H nÿ3�Q 00l ; Z� �
 M

nÿ9 < i < nÿ3
i� nÿ3 �2�

H i�pÿ1�Tl�; Z�
!

and the map

H nÿ3�Ll; Z� � H nÿ3�E3; Z� ÿ! H nÿ1�Xl; Z�
is surjective. So, in particular, we have proved the following.

Lemma 5.3. The map

H nÿ3�Ll; Z� � H nÿ3�E3; Z� ÿ! H nÿ1�X; Z�
is surjective.

Since E3 is the exceptional divisor of the blow up X 00l ! X 0l , the image of

H nÿ3�E3; Z� ÿ! H nÿ1�X; Z�
is equal to the image of

H nÿ5�Q 00l ; Z� ÿ! H nÿ1�X; Z�:
We will prove that the image of this map is algebraic. Since H nÿ1�X; Z� is
torsion-free, it is enough to prove this after tensoring with Q. Since, by PoincareÂ
Duality, H nÿ5�Q 00l ; Q�> H nÿ1�Q 00l ; Q��, we ®rst determine H nÿ1�Q 00l ; Q�. For
this we use the spectral sequence

E
p;q
2 � H p�Pnÿ2 00; Rqu�Z� �) H p�q�W ; Z�

where W :� Pnÿ2 nQl � Pnÿ2 00n�eE 0 È E 00 È Q 00l � with eE 0 the proper transform of

E 0 in Pnÿ2 00 and u: W a Pnÿ2 00 is the inclusion. Recall that such a spectral
sequence degenerates at E3 [7, 3.2.13]. By [8, pp. 23±24], we have H i�W ; Z� � 0
for i > dim�W � � nÿ 2. Therefore we obtain the following exact sequence from
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the spectral sequence:

H nÿ5�eE 0 Ç E 00 Ç Q 00l ; Z�

ÿÿÿÿ!dnÿ3
H nÿ3�eE 0 Ç E 00; Z� � H nÿ3�eE 0 Ç Q 00l ; Z� � H nÿ3�E 00 Ç Q 00l ; Z�

ÿÿÿÿ!dnÿ1
H nÿ1�eE 0; Z� � H nÿ1�E 00; Z� � H nÿ1�Q 00l ; Z�

ÿÿÿÿ!dn�1
H n�1�Pnÿ2 00; Z� ÿ! 0: �9�

We have the following.

Lemma 5.4. The varieties whose cohomologies appear in sequence (9) are
described as follows.eE 0 Ç E 00 Ç Q 00l : P1-bundle over Vl where Vl :� E 0 Ç R 0l . The variety Vl is a
P2-bundle over Tl and each of its ®bres over Tl embeds into the corresponding
®bre of E 0 as the Veronese surface. Hence

H nÿ5�eE 0 Ç E 00 Ç Q 00l ; Z�> H nÿ5�Vl ; Z� � H nÿ7�Vl ; Z�
and

H i�Vl ; Z�> H i�Tl; Z� � H iÿ2�Tl; Z� � H iÿ4�Tl; Z�:
T 00l :� eE 0 Ç Q 00l : bundle over Tl with ®bres isomorphic to the blow up bS 2P2 of

the symmetric square S2P2 of P2 along the diagonal of S2P2. A ®bre ofeE 0 Ç E 00 Ç Q 00l embeds into the corresponding ®bre of eE 0 Ç Q 00l as the exceptional

divisor of the blow up bS 2
P2 ! S2P2. We have

H nÿ3�T 00l ; Z�> H nÿ3�Tl; Z� � H nÿ5�Tl; Z� � H nÿ7�Tl; Z��2

� H nÿ9�Tl; Z� � H nÿ11�Tl; Z� � H nÿ5�Vl ; Z�
> H nÿ3�Tl; Z� � H nÿ5�Tl; Z� � H nÿ7�Tl; Z�
� H nÿ7�Vl ; Z� � H nÿ5�Vl ; Z�

and, under dnÿ3, we ®nd that the summand H nÿ7�Vl ; Z�� H nÿ5�Vl ; Z� in
H nÿ5�eE 0 Ç E 00 Ç Q 00l ; Z�maps into the same summand in H nÿ3�T 00l ; Z�.

E 00 Ç Q 00l : P1-bundle over R 0l . Hence

H nÿ3�E 00 Ç Q 00l ; Z�> H nÿ3�R 0l ; Z� � H nÿ5�R 0l ; Z�:eE 0 Ç E 00: P2-bundle over Vl which contains eE 0 Ç E 00 Ç Q 00l as a conic-bundle
over Vl . We have

H nÿ3�eE 0 Ç E 00; Z�> H nÿ3�Vl ; Z� � H nÿ5�Vl ; Z� � H nÿ7�Vl ; Z�:eE 0: the blow up of E 0 along Vl , that is, bundle over Tl with ®bres isomorphic
to the blow up of P5 along the Veronese surface. This contains eE 0 Ç E 00 as its
exceptional divisor. Hence

H nÿ1�eE 0; Z�> H nÿ3�Vl ; Z� � H nÿ5�Vl ; Z� � H nÿ1�Tl; Z�
� H nÿ3�Tl; Z� � H nÿ5�Tl; Z� � H nÿ7�Tl; Z�
� H nÿ9�Tl; Z� � H nÿ11�Tl; Z�:

557cubic hypersurfaces



E 00: P2-bundle over R 0l which contains E 00 Ç Q 00l as a conic-bundle over R 0l . Hence

H nÿ1�E 00; Z�> H nÿ1�R 0l ; Z� � H nÿ3�R 0l ; Z� � H nÿ5�R 0l ; Z�:

Proof. This is easy.

Lemma 5.5. There is a natural exact sequence

0ÿ! H nÿ3�Tl; Q��H nÿ5�Tl; Q��H nÿ7�Tl; Q��2�H nÿ9�Tl; Q��H nÿ3�R 0l ; Q�
ÿ!H nÿ1�Q 00l ; Q� ÿ! H n�1�Pnÿ2; Q� ÿ! 0

where the map

H nÿ3�Tl; Q� � H nÿ5�Tl; Q� � H nÿ7�Tl; Q��2 � H nÿ9�Tl; Q� ÿ! H nÿ1�Q 00l ; Q�
is obtained from the inclusion T 00l Ì Q 00l .

Proof. From the description of eE 0 Ç Q 00l in Lemma 5.4, it follows that the map
dnÿ3 in sequence (9) is injective and we have the exact sequence

0ÿ! H nÿ5�eE 0 Ç E 00 Ç Q 00l ; Z�

ÿÿÿÿ!dnÿ3
H nÿ3�eE 0 Ç E 00; Z� � H nÿ3�eE 0 Ç Q 00l ; Z� � H nÿ3�E 00 Ç Q 00l ; Z�

ÿÿÿÿ!dnÿ1
H nÿ1�eE 0; Z� � H nÿ1�E 00; Z� � H nÿ1�Q 00l ; Z�

ÿÿÿÿ!dn�1
H n�1�Pnÿ2 00; Z� ÿ! 0:

Tensoring the exact sequence (9) with Q and using Lemma 5.4 and the isomorphism

H n�1�Pnÿ2 00; Z�> H n�1�Pnÿ2; Z�
� H nÿ1�Tl; Z� � H nÿ3�Tl; Z� � H nÿ5�Tl; Z�
� H nÿ7�Tl; Z� � H nÿ9�Tl; Z�
� H nÿ1�R 0l ; Z� � H nÿ3�R 0l ; Z�;

we easily deduce Lemma 5.5.

Remark 5.6. In fact we have the exact sequence

0ÿ! H nÿ3�Tl; Z� 130
�� � H nÿ5�Tl; Z� 130

�� � H nÿ7�Tl; Z� 130
���2

� H nÿ9�Tl; Z� 130
�� � H nÿ3�R 0l ; Z� 130

��
ÿ! H nÿ1�Q 00l ; Z� 130

�� ÿ! H n�1�Pnÿ2; Z� 1
30
�� ÿ! 0:

It follows from the previous lemma (since the cohomology of X has no torsion)
that the image of

H nÿ5�Q 00l ; Z� ÿ! H nÿ1�X; Z�
is algebraic. Hence the image of the composition H nÿ5�Q 00l ; Z� ! H nÿ1�X; Z ��
H nÿ1�X; Z�0 is algebraic. For X generic, H nÿ1�X; Z�0 has no non-zero algebraic
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part. Hence for X generic and therefore, for all X, the image of H nÿ5�Q 00l ; Z� !
H nÿ1�X; Z�0 is zero. Hence the map

H nÿ3�Ll; Z� ÿ! H nÿ1�X; Z�0
is surjective. We have

H nÿ3�Ll; Z�> H nÿ3�S 0l ; Z� � H nÿ5�S 0l ; Z�
and the restriction H nÿ5�S 0l ; Z� ! H nÿ1�X; Z�0 is the composition of pull-back
H nÿ5�S 0l ; Z� ! H nÿ5�S 00l ; Z� and push-forward H nÿ5�S 00l ; Z� ! H nÿ5�Q 00l ; Z� !
H nÿ1�X; Z�0. Hence the map H nÿ5�S 0l ; Z� ! H nÿ1�X; Z�0 is zero and the map

H nÿ3�S 0l ; Z� ÿ! H nÿ1�X; Z�0
is surjective.

Now, we have

H nÿ3�S 0l ; Z�> H nÿ3�Sl; Z� � H nÿ5�P�l ; Z� � H nÿ7�P�l ; Z�:
Recall that P�l is the variety parametrizing lines in the ®bres of pÿ1�Tl� ! Tl.
Therefore P�l is a P2-bundle over Tl . Using the fact that Tl is a smooth complete
intersection of dimension nÿ 8 in Pnÿ2, one immediately sees that the image of
the summand H nÿ5�P�l ; Z� � H nÿ7�P�l ; Z� of H nÿ3�S 0l ; Z� in H nÿ1�X; Z�0 is
zero. Therefore the map

H nÿ3�Sl; Z� ÿ! H nÿ1�X; Z�0
is surjective. This proves the theorem in the case where n is even, since in that
case H nÿ1�X; Z�0 � H nÿ1�X; Z�.

Let j1 be the inverse image in Sl of the hyperplane class on the Grassmannian
G�2; n� 1� by the composition Sl ! Dl a G�2; n� 1�. If n is odd, one easily

computes that the image of j
�nÿ3�=2
1 in H nÿ1�X; Z� is 5z �nÿ1�= 2 where z is the

hyperplane class on X. On the other hand, let x be a general point on l and let Lx

be the union of the lines in X through x. Then Lx is the intersection of X with the
hyperplane tangent to X at x and a quadric (it is the second osculating cone to X
at x). The cohomology class of a linear section (through x) of Lx of codimension
1
2
�nÿ 1� ÿ 2 is 2z�nÿ1�=2 in X and it is in the image of H nÿ3�Sl; Z�. Since 2 and

5 are coprime, the image of H nÿ3�Sl; Z� in H nÿ1�X; Z� contains z�nÿ1�=2 and the map

w: H nÿ3�Sl; Z� ÿ! H nÿ1�X; Z�
in surjective for n odd as well. It is now immediate that w 0 is also surjective
for n odd.

Let h be the ®rst Chern class of the pull-back of OP nÿ 2�1� to S 0l , let ji be the pull-
back to S 0l of the i th Chern class of the universal quotient bundle on the
Grassmannian G�2; n� 1� É Dl and let e2 be the ®rst Chern class of the exceptional
divisor of S 0l ! Sl. We make the following de®nition.

De®nition 5.7. For a positive integer k the k th primitive cohomologies of Sl

and S 0l are

H k�Sl; Z�0 :� �Zh� Zj1�' Ì H k�Sl; Z�
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and

H k�S 0l ; Z�0 :� �Zh� Zj1 � Ze2�' Ì H k�S 0l ; Z�
where ' means orthogonal complement with respect to cup-product.

Composing the map w 0 with restriction to H nÿ3�S 0l ; Z�0 on the right and with
the projection H nÿ1�X; Z�� H nÿ1�X; Z�0 on the left, we get w 00: H nÿ3�S 0l ; Z�0 !
H nÿ1�X; Z�0. Our goal is to prove the following generalization of the results of
Clemens and Grif®ths.

Theorem 5.8. The map w 00 is surjective and its kernel is the il-invariant part
H nÿ3�S 0l ; Z�0� of H nÿ3�S 0l ; Z�0.

The ®rst step for proving the theorem is the following.

Theorem 5.9. Let a and b be two elements of H nÿ3�S 0l ; Z�0. Then

w 0�a� ´ w 0�b� � a ´ i�l bÿ a ´ b:

Proof. We have

w 0�a� ´ w 0�b� � �«1 «2 r�� p�a ´ �«1 «2 r�� p�b � �«2 r�� p�a ´ «�1 «1��«2 r�� p�b:

Let y1 be the ®rst Chern class of the tautological invertible sheaf for the
projective bundle g1: E1 ! l. Let g1

i be the Chern classes of the universal quotient
bundle on the projective bundle g1: E1 ! l, that is,

g1
i � yi

1 � y iÿ1
1 ´ g�1c1�Nl=X� � . . .� g�1ci�Nl=X�:

De®ne y2, g2
i and y3, g3

i similarly for the projective bundles g2: E2 ! pÿ1�Tl� and
g3: E3 ! Q 00l respectively. By, for example, [1, 0.1.3], we have

«�1 «1��«2 r�� p�b � �«2 r�� p�b� i1�

�Xnÿ4

r�0

y r
1 ´ g�1 g1��g1

nÿ4ÿ r ´ i�1 ��«2 r�� p�b��
�

where i1: E1 a Xl is the inclusion. We also let i2: E2 a X 0l and i3: E3 a X 00l be
the inclusions.

For any r �0 < r < nÿ 4�, we have

g1��gnÿ4ÿ r ´ i�1 �«2 r�� p�b� 2 H nÿ3ÿ2 r�l; Z�:
Therefore g1��gnÿ4ÿ r ´ i�1 �«2 r�� p�b� 6� 0 only if nÿ 3ÿ 2r � 0 or nÿ 3ÿ 2r � 2.
This is impossible if n is even so we now suppose that n is odd. So if we put

B :� i1�
ÿ
y
�nÿ3�=2
1 ´ g�1 g1��g1

�nÿ5�=2 ´ i�1 ��«2 r�� p�b��

� y
�nÿ5�=2
1 ´ g�1 g1��g1

�nÿ3�=2 ´ i�1 ��«2 r�� p�b���;
we have

«�1 «1��«2 r�� p�b � �«2 r�� p�b� B:
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If n > 7, replacing g1
�nÿ5�= 2 and g1

�nÿ3�=2 in terms of y1, we obtain

B � i1�
ÿ
y
�nÿ3�=2
1 ´ g�1 g1��y�nÿ5�=2

1 ´ i�1 ��«2 r�� p�b�
� y

�nÿ7�=2
1 ´ g�1c1�Nl= X� ´ i�1 ��«2 r�� p�b���

� i1�
ÿ
y
�nÿ5�=2
1 ´ g�1 g1��y�nÿ3�=2

1 ´ i�1 ��«2 r�� p�b�
� y

�nÿ5�=2
1 ´ g�1 c1�Nl=X� ´ i�1 ��«2 r�� p�b���:

We have c1�Nl=X� � �nÿ 4� j�1 z where z � c1�OP n�1�� and j1: l a X is the
inclusion. Similarly we de®ne j2: pÿ1�Tl�a Xl and j3: Q 00l a X 0l to be the
inclusions. Therefore we obtain

B � i1�
ÿ
y
�nÿ3�= 2
1 ´ g�1 g1��y�nÿ5�=2

1 ´ i�1 ��«2 r�� p�b�
� y

�nÿ7�=2
1 ´ �nÿ 4�g�1 j�1 z ´ i�1 ��«2 r�� p�b���

� i1�
ÿ
y
�nÿ5�=2
1 ´ g�1 g1��y�nÿ3�=2

1 ´ i�1 ��«2 r�� p�b�
� y

�nÿ5�=2
1 ´ �nÿ 4�g�1 j�1 z ´ i�1 ��«2 r�� p�b���:

Or, since j1 g1 � «1 i1,

B � i1�
ÿ
y
�nÿ3�=2
1 ´ g�1 g1��y�nÿ5�=2

1 ´ i�1 ��«2 r�� p�b�
� y

�nÿ7�=2
1 ´ �nÿ 4� i�1 «�1z ´ i�1 ��«2 r�� p�b���

� i1�
ÿ
y
�nÿ5�= 2
1 ´ g�1 g1��y�nÿ3�=2

1 ´ i�1 ��«2 r�� p�b�
� y

�nÿ5�=2
1 ´ �nÿ 4� i�1 «�1z ´ i�1 ��«2 r�� p�b���:

Let E1 also denote the ®rst Chern class of the invertible sheaf OXl
�E1�. Since

y1 � ÿi�1 E1, we can write

B � �ÿ1�ni1�
ÿ
i�1 E

�nÿ3�=2
1 ´ g�1 g1� i�1 �E �nÿ5�=2

1 ´ ��«2 r�� p�b�
ÿ E

�nÿ7�=2
1 ´ �nÿ 4�«�1z ´ ��«2 r�� p�b���

� �ÿ1�ni1�
ÿ
i�1 E

�nÿ5�=2
1 ´ g�1 g1� i�1 �E �nÿ3�=2

1 ´ ��«2 r�� p�b�
ÿ E

�nÿ5�=2
1 ´ �nÿ 4�«�1z ´ ��«2 r�� p�b���:

Or, since g1� i�1 � j�1 «1�,

B � �ÿ1�n i1�
ÿ
i�1 E

�nÿ3�=2
1 ´ g�1 j�1 «1��E �nÿ5�=2

1 ´ ��«2 r�� p�b�
ÿ E

�nÿ7�=2
1 ´ �nÿ 4�«�1z ´ ��«2 r�� p�b���

� �ÿ1�ni1�
ÿ
i�1 E

�nÿ5�=2
1 ´ g�1 j�1 «1��E �nÿ3�=2

1 ´ ��«2 r�� p�b�
ÿ E

�nÿ5�=2
1 ´ �nÿ 4�«�1z ´ ��«2 r�� p�b���:

Now

«1�
ÿ
E
�nÿ5�=2
1 ´ ��«2 r�� p�b� ÿ E

�nÿ7�=2
1 ´ �nÿ 4�«�1z ´ ��«2 r�� p�b��
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is an element of H 2 nÿ6�X; Z�. Hence its image by j�1 is zero unless 2nÿ 6 < 2,
that is, n < 4. We supposed that n > 7. Similarly,

j�1 «1�
ÿ
E
�nÿ5�=2
1 ´ ��«2 r�� p�b� ÿ E

�nÿ7�=2
1 ´ �nÿ 4�«�1z ´ ��«2 r�� p�b��

is zero unless 2nÿ 4 < 2 which implies n < 3. Hence B is zero for n > 7.
Similarly, B is zero for n � 5.

Therefore

w 0�a� ´ w 0�b� � �«2 r�� p�a ´ �«2 r�� p�b:
Now write

w 0�a� ´ w 0�b� � r� p�a ´ «�2 «2�r� p�b
and, as before,

«�2 «2�r� p�b � r� p�b� i2�

�X3

r�0

yr
2 ´ g�2 g2��g2

3ÿ r ´ i�2 r� p�b�
�
:

So

w 0�a� ´ w 0�b� � r� p�a ´ r� p�b� r� p�a ´ i2�

�X3

r�0

yr
2 ´ g�2 g2��g2

3ÿ r ´ i�2 r� p�b�
�

or

w 0�a� ´ w 0�b� � r� p�a ´ r� p�b� i�2 r� p�a ´

�X3

r�0

yr
2 ´ g�2 g2��g2

3ÿ r ´ i�2 r� p�b�
�
:

We have a ´ e2 � 0. Hence p�a ´ p�e2 � 0. Let E2 also denote the cohomology
class of E2. Then it is easily seen that r�E2 � p�e2. Therefore p�a ´ r�E2 � 0. In
order to use this, we need to modify the above expression a bit.

We ®rst need to write the ®rst three Chern classes of Npÿ1�Tl�= Xl
as inverse

images of cohomology classes by j2. Consider the exact sequence

0ÿ! Npÿ1�Tl�=Xl
ÿ! Npÿ1�Tl�=P n

l
ÿ! NXl =P

n
l
jpÿ1�Tl� ÿ! 0:

We have

NXl =P
n
l

> OPE�2� 
 p�OP nÿ 2�1�
where E � OP nÿ 2�ÿ1� � O�2

P nÿ 2 , so that PE > Pn
l . Also

Npÿ1�Tl�=P n
l

> p�NTl =P
nÿ 2 > p��OP nÿ 2�3� � OP nÿ 2�2��2 � OP nÿ 2�1��3�:

It follows that we can write ci�Npÿ1�Tl�=Xl
� � j�2 ci where the ci are cohomology

classes on Xl. So

g2
r � yr

2 � yrÿ1
2 ´ g�2 j�2 c1 � . . .� g�2 j�2 cr

and, since y2 � ÿi�2 E2 and j2 g2 � «2 i2, we have

g2
r � i�2 a2

r

where

a2
r � �ÿ1�rE r

2 � �ÿ1�rÿ1E rÿ1
2 ´ «�2 c1 � . . .� «�2 cr:
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Therefore, using g2� i�2 � j�2 «2� and j2 g2 � «2 i2, we have

i�2 r� p�a ´

�X3

r�0

yr
2 ´ g�2 g2��g2

3ÿ r ´ i�2 r� p�b�
�

� i�2

�
r� p�a ´

�X3

r�0

�ÿ1�rE r
2 ´ «�2 «2��a2

3ÿ r ´ r� p�b�
��

� r� p�a ´ E2 ´

�X3

r�0

�ÿ1�rE r
2 ´ «�2 «2��a2

3ÿ r ´ r� p�b�
�

� p�a ´ r�E2 ´ r�
�X3

r�0

�ÿ1�rE r
2 ´ «�2 «2��a2

3ÿ r ´ r� p�b�
�
� 0;

and we obtain

w 0�a� ´ w 0�b� � r� p�a ´ r� p�b:

Writing r � «3eq, we have

w 0�a� ´ w 0�b� � �«3eq�� p�a ´ �«3eq�� p�b � eq� p�a ´ «�3 «3�eq� p�b

and, as before,

w 0�a� ´ w 0�b� � eq� p�a ´ eq� p�b� eq� p�a ´ i3�g�3 g3� i�3 eq� p�b

� eq� p�a ´ eq� p�b� i�3 eq� p�a ´ g�3 g3� i�3 eq� p�b:

Consider the commutative diagram

S 00l ÿÿÿÿ!
q 0

E3 ÿÿÿÿ!
g3

Q 00l
«4

ÿÿÿÿ!
???yi 03

???yi3

???y j3

S 0l  ÿÿÿ
p

Llÿÿÿÿÿ!
eq

X 00l ÿÿÿÿÿ!
«3

X 0l
where the two squares are ®bre squares. Using the diagram, we modify
w 0�a� ´ w 0�b� as follows:

w 0�a� ´ w 0�b� � eq� p�a ´ eq� p�b� q 0� i 0 �3 p�a ´ g�3 g3�q
0
� i 0 �3 p�b

� eq� p�a ´ eq� p�b� q 0�«�4 a ´ g�3 g3�q 0�«�4b

� eq� p�a ´ eq� p�b� «�4 a ´ �g3 q 0���g3 q 0��«�4b:

The morphism g3 q 0: S 00l ! Q 00l is a double cover whose involution i 0l is the lift of
il. Therefore

�g3 q 0���g3 q 0��«�4 b � «�4 b� i 0 �l «�4 b � «�4 b� «�4 i�l b

and

«�4 a ´ �g3 q 0���g3 q 0��«�4 b � «�4 a ´ �«�4 b� «�4 i�l b�
� a ´ «4��«�4 b� «�4 i�l b� � a ´ �b� i�1 b�:

On the other hand, eq� p�a ´ eq� p�b � p�a ´ p�b ´ eq�Ll;
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where we also denote by Ll the cohomology class of Ll in X 00l . We have
the following.

Lemma 5.10. The cohomology class of Ll in X 00l is equal to

5�«1 «2 «3��z ÿ 5�«2 «3��E1 ÿ 2E3 ÿ k«�3 E2

for some non-negative integer k.

Proof. To compute the coef®cient of �«1 «2 «3��z, we push Ll forward to X and
compute its degree in Pn. The image of Ll in X is the union of all the lines in X
which are incident to l. Since any such line maps to a point of Ql by the
projection from l, the image of Ll is the intersection with X of the cone of vertex
l over Ql . Since Ql has degree 5, this proves that the coef®cient of �«1 «2 «3��z is 5.

The coef®cient of �«2 «3��E1 is the negative of the multiplicity of the image of
Ll in X along l. Intersecting X with a general linear subspace of dimension 3
which contains l, we see that this linear subspace contains ten distinct lines which
are distinct from l and are in the image of Ll. Therefore, the multiplicity of the
image of Ll along l is exactly 5 � 5 ´ 3ÿ 10.

The coef®cient of E3 is the negative of the multiplicity of the image of Ll in X 0l
along Q 00l . This is 2 since Ll is smooth and r is an embedding outside S 00l and has
degree 2 on S 00l .

Now we will use the hypothesis a ´ h � 0. It implies that p�a ´ p�h � 0. One
easily sees that

p�h � �«2 r��p�X c1�OP nÿ 2�1��:
On the other hand, «�1z ÿ E1 � p�c1�OP nÿ 2�1��. Therefore

p�a ´ �«1 «2 r��z � p�a ´ �«2 r��E1:

Furthermore, we saw that p�a ´ r�E2 � 0; hence,eq� p�a ´ eq� p�b � p�a ´ p�b ´ eq�Ll � p�a ´ p�b ´ �ÿ2eq�E3� � ÿ2a ´ b:

Finally,

w 0�a� ´ w 0�b� � ÿ2a ´ b� a ´ �b� i�l b� � a ´ i�l bÿ a ´ b:

Corollary 5.11. If w 00 is surjective, the kernel of w 00 is equal to the set of
il-invariant elements of H nÿ3�S 0l ; Z�.

Proof. Let b be an element of H nÿ3�S 0l ; Z�0. Then w 00�b� is zero if and only if

for every element c of H nÿ1�X; Z�0; w 0�b� ´ c � 0:

If w 00 is surjective, this is equivalent to,

for every element a of H nÿ3�S 0l ; Z�0; w 0�a� ´ w 0�b� � 0:

By Theorem 5.9, this is equivalent to,

for every element a of H nÿ3�S 0l ; Z�0; a ´ �i�l bÿ b� � 0;

which is in turn equivalent to

b � i�l b:

We are now ready to prove the following.
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Lemma 5.12. Suppose n > 6. Then

H 2�Sl; Q� � Qh�Qj1;

H 2�S 0l ; Q� � Qh�Qj1 �Qe2;

and, if n � 5, we have the exact sequence

0ÿ! H 2�Ql; Z�0 ÿ! H 2�Sl; Z�0 ÿ! H 4�X; Z�0 ÿ! 0

and

H 2�Sl; Q� � H 2�Sl; Q�0 �Qh�Qj1

(note that Tl � 0= for n < 7 so that Ql � Q 0l and Sl � S 0l ).

Proof. First suppose that n � 5. Then the direct sum decomposition above is
clear. To prove the exactness of the sequence, note that H 2�Sl; Z� ! H 4�X; Z�0
is surjective by Theorem 5.1. Since Zh� Zj1 is algebraic, its image in H 4�X; Z�0 is
algebraic. For X generic, the group H 4�X; Z�0 has no non-zero algebraic part.
Therefore for X generic and hence for all X, the image of Zh� Zj1 in H 4�X; Z�0
is zero. It follows that the sequence is exact on the right. The exactness of the
rest of the sequence now follows from Corollary 5.11.

Now suppose n > 6. Since H 2�S 0l ; Q�> H 2�Sl; Q� �Qe2, we only need to
compute H 2�Sl; Q�. Let H1 be a general hyperplane in Pnÿ2 and let H2 be its
inverse image in Pn. The inverse image Sl ;H of H1 in Sl parametrizes the lines in
the ®bres of Xl ;H ! H1 where Xl ;H is the proper transform of XH :� X Ç H2 in
Xl. By [8, pp. 23±25], we have H 2�Sl; Z�> H 2�Sl ;H ; Z� for n > 7 and

H 2�Sl; Z�a H 2�Sl ;H ; Z� for n � 6. Suppose therefore that n � 6. If we choose a
general pencil of hyperplanes in Pnÿ2 of which H1 is a member, then H 2�Sl; Z�
maps into the part of H 2�Sl ;H ; Z� which is invariant under monodromy. Since
H 4�XH ; Z�0 has no non-zero elements invariant under monodromy, we see that

H 2�Sl; Z�0 lies in H 2�Ql ;H ; Z�0. Since H 2�Ql ;H ; Z�0 has no non-zero element

invariant under monodromy, we have H 2�Sl; Z�0 � 0 and H 2�Sl; Q� � Qh�Qj1.

We will prove Theorem 5.8 in conjunction with some results on the
cohomology of Sl and by induction as follows.

Theorem 5.13. 1. The maps

w0: H nÿ3�Sl; Z�0 ÿ! H nÿ1�X; Z�0 and w 00: H nÿ3�S 0l ; Z�0 ÿ! H nÿ1�X; Z�0
are surjective. The kernel of w 00 is the il-invariant part H nÿ3�S 0l ; Z�0� of

H nÿ3�S 0l ; Z�0 and therefore the kernel of w0 is H nÿ3�Sl; Z�Ç H nÿ3�S 0l ; Z�0�.

2. The cohomology of Sl is torsion in odd degree except in degree nÿ 3.

3. In even degree the rational cohomology of Sl is generated by monomials in h
and j1 except in degree nÿ 3.

Proof. As mentioned above, we proceed by induction on n.
We ®rst show that, for any given n > 5, parts 2 and 3 of the theorem imply part 1.
Indeed, assume that parts 2 and 3 are true for any smooth cubic hypersurface in

Pn for a ®xed n. Let Sym�h; j1� be the subvector space of H nÿ3�Sl; Q� generated
by monomials in h and j1�Sym�h; j1� � 0 if n is even). Then, if n is odd, it
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follows from numbers 2 and 3 that we have the decomposition

H nÿ3�Sl; Q�> H nÿ3�Sl; Q�0 � Sym�h; j1�:
Since Sym�h; j1� is algebraic, its image in H nÿ1�X; Z� is also algebraic. For X

generic, H nÿ1�X; Z�0 has no algebraic part. Therefore for X generic and hence for all

X, the image of Sym�h; j1� is zero in H nÿ1�X; Z�0. Since the cohomology of X has no
torsion and, by Theorem 5.1, the map w: H nÿ3�Sl; Z� ! H nÿ1�X; Z� is surjective, it
follows that

w0: H nÿ3�Sl; Z�0 ÿ! H nÿ1�X; Z�0
is surjective.

Since w0 is the composition of w 00 with the inclusion H nÿ3�Sl; Z�0 a
H nÿ3�S 0l ; Z�0, we deduce that w 00 is also surjective. The rest of part 1 is
Corollary 5.11.

Now we prove that parts 1, 2 and 3 for nÿ 1 > 5 imply parts 2 and 3 for n.
Let H1, H2, Xl ;H , Sl ;H be as in the proof of Lemma 5.12, let H 01 be the proper
transform of H1 in Pnÿ2 0 and let X 0l ;H and S 0l ;H be the proper transforms of Xl ;H

and Sl ;H in X 0l and S 0l respectively. By [8, pp. 23±25], for every k < nÿ 5, we have

H k�Sl; Z�> H k�Sl ;H ; Z�
and

H nÿ4�Sl; Z�a H nÿ4�Sl ;H ; Z�:
In particular, it follows from this and our induction hypothesis that H nÿ3�Sl; Q�
and H nÿ4�Sl; Q� are the direct sums of their primitive parts and their subvector
spaces generated by the monomials in h and j1. Now it is enough to show that
H nÿ4�Sl; Q�0 � 0.

If we choose a general pencil of hyperplanes in Pnÿ2 of which H1 is a
member, then H nÿ4�Sl; Z� maps into the part of H nÿ4�Sl ;H ; Z� which is invariant
under monodromy. By our induction hypothesis, we have the exact sequence

0ÿ! H nÿ4�Sl ;H ; Z�0 Ç H nÿ4�S 0l ;H ; Z�0�

ÿ!H nÿ4�Sl ;H ; Z�0 ÿ! H nÿ2�XH ; Z�0 ÿ! 0:

Since H nÿ2�XH ; Z�0 has no non-zero elements invariant under monodromy, we
see that H nÿ4�Sl; Z�0 lies in H nÿ4�Sl ;H ; Z�0 Ç H nÿ4�S 0l ;H ; Z�0�. Therefore all the
elements of H nÿ4�Sl; Z�0 are il-invariant and hence are contained in

H nÿ4�Q 0l ; Z�0Ì H nÿ4�S 0l ; Z�0.
Now let

Pn Ì Pn�1???y ???y
Pnÿ2 Ì Pnÿ1

be a commutative diagram of linear embeddings and projections from l. Let Y be
a general cubic hypersurface in Pn�1 such that Y Ç Pn � X, let Yl be the blow
up of Y along l and let Sl ;Y be the variety parametrizing lines in the ®bres of
Yl ! Pnÿ1. Then, again by [8, pp. 23±25], we have

H nÿ4�Sl; Z�> H nÿ4�Sl ;Y ; Z�:
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Let Tl ;Y be the variety parametrizing the planes in the ®bres of Yl ! Pnÿ1 and
similarly de®ne Ql ;Y , Q 0l ;Y , R 0l ;Y and Q 00l ;Y . By Lemma 5.5 we have the exact sequence

0ÿ! H nÿ2�Tl ;Y ; Q� � H nÿ4�Tl ;Y ; Q� � H nÿ6�Tl ;Y ; Q��2

� H nÿ8�Tl ;Y ; Q� � H nÿ2�R 0l ;Y ; Q�
ÿ! H n�Q 00l ;Y ; Q� ÿ! H n�2�Pnÿ1; Q� ÿ! 0:

It is easily seen that the intersection of the subspace

H nÿ2�Tl ;Y ; Q� � H nÿ4�Tl ;Y ; Q� � H nÿ6�Tl ;Y ; Q��2

�H nÿ8�Tl ;Y ; Q� � H nÿ2�R 0l ;Y ; Q�
of H n�Q 00l ;Y ; Q� É H n�Q 0l ;Y ; Q� with H n�Sl ;Y ; Q� Ì H n�S 00l ;Y ; Q� is zero. It

immediately follows that H nÿ4�Sl ;Y ; Q�0 � H nÿ4�Sl; Q�0 � 0.
To ®nish the proof of the theorem all we need to do is to prove the theorem in

the case n � 5. Suppose therefore that n � 5. Then part 3 is clear. Part 2 is
proved in [14, Lemme 3, p. 591]. Part 1 is Lemma 5.12.

6. The proof of Theorem 4

Let b: L! F be the family of lines in X with i: L! X the natural morphism
which is inclusion on each ®bre of b. The map f in Theorem 4 is the composition

H nÿ1�X; Z�0 a H nÿ1�X; Z�ÿÿÿ!b� i
�

H nÿ3�F; Z� ÿÿ� H nÿ3�F; Z�0:
To prove Theorem 4 consider the diagram (similar to diagram 11.7 on p. 331 of [5])

H nÿ1�X; Z�0ÿÿÿ!f H nÿ3�F; Z�0ÿÿÿ!j�
H nÿ3�S 0l ; Z�0

s

x??? t

???y
Hnÿ1�X; Z�0 ÿÿÿ

x
Hnÿ3�F; Z�0  ÿÿÿ

j�
Hnÿ3�S 0l ; Z�0

where the vertical arrows are induced by PoincareÂ Duality, the map j: S 0l ! F is
the composition of S 0l ! Sl ! Dl with the inclusion Dl a F, and x (equal to
the composition

Hnÿ3�F; Z�0a Hnÿ3�F; Z�ÿÿÿÿ!
i�b

�
Hnÿ1�X; Z� ÿÿÿ� Hnÿ1�X; Z�0)

is the transpose of f. We prove that x is an isomorphism. Since w 00 (which is
equal to x j� after identi®cation of the cohomology groups of X and S 0l with
homology groups by PoincareÂ Duality) is surjective, so is x. It remains to prove
that x is also injective. For this we will prove that the composition j� t j�fsx is
equal to multiplication by ÿ2. Let a be a topological cycle on F with homology
class �a� 2 Hnÿ3�F; Z�0. We can, and will, suppose that a is transverse to Dl.
Then it is immediately seen that j� t j�fsx��a�� is represented by the cycle
parametrizing lines on X which are incident to l as well as to some line
parametrized by a. Let l 0 be any line in X not incident to l. Then there are at
most ®ve lines in X incident to both l and l 0. Suppose that there are ®ve distinct
lines l1; . . . ; l5 in X intersecting each of l and l 0 in ®ve distinct points. This
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condition will be satis®ed by a general line l 0 in X. Let P3 be the space spanned
by l and l 0. We have one ®nal lemma.

Lemma 6.1. There is exactly a pencil of cubic surfaces in P3 containing l, l 0 and
l1; . . . ; l5. Furthermore, the cubic surfaces of this pencil are all tangent along l and l 0.

Proof. A dimension count shows that there is at least a pencil of cubic
surfaces containing l, l 0 and l1; . . . ; l5. Any two such cubic surfaces are tangent at
®ve points along l. It is easily seen then that the two surfaces are tangent
everywhere on l. Similarly, they are tangent everywhere on l 0. This implies now
that there is exactly a pencil of cubic surfaces containing l, l 0 and l1; . . . ; l5.

Therefore, on X, the cycle 2�l � � 2�l 0� � �l1� � . . .� �l5� is a complete intersec-
tion of divisors. By continuity, this will be the case whenever l and l 0 do not
intersect (even if some of the li `come together'). This is easily seen to imply
that, in F, the sum of the cycle 2a with the cycle parametrizing lines incident to l
and to some line of a is homologous to a multiple of a power of the hyperplane
class on F. Hence the sum is zero in the primitive homology of F and
j� t j�fsx��a�� � ÿ2�a�. Therefore j� t j�fsx is equal to multiplication by ÿ2 as
claimed. In particular, it is injective and so is x. Hence x is an isomorphism and
so is its transpose f.
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