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For the first,

T~a(~v+~w) = ~v+~w�2
�
~a·(~v+~w)

�
~a = ~v+~w�2(~a·~v+~a·~w)~a = T~a(~v)+T~a(~w).

For the second,

↵T~a(~v) = ↵~v � 2↵(~a · ~v)~a = ↵~v � 2(~a · ↵~v)~a = T~a(↵~v).

b. We have T~a(~a) = �~a, since ~a · ~a = a2 + b2 + c2 = 1:

T~a(~a) = ~a� 2(~a · ~a)~a = ~a� 2~a = �~a.

The transformation T~a is the 3-
dimensional version of the trans-
formation shown in Figure 1.3.4.

If ~v is orthogonal to ~a, then T~a(~v) = ~v, since in that case ~a ·~v = 0. Thus T~a

is reflection in the plane that goes through the origin and is perpendicular
to ~a.

c. The matrix of T~a is

M = [T~a(~e1) , T~a(~e2) , T~a(~e3)] =

2

4
1� 2a2 �2ab �2ac
�2ab 1� 2b2 �2bc
�2ac �2bc 1� 2c2

3

5

Squaring the matrix gives the 3⇥ 3 identity matrix: if you reflect a vector,
then reflect it again, you are back to where you started.

1.4.28 Computing M>M gives

Solution 1.4.28: The omitted
terms in these three matrices are
not given, but they are not as-
sumed to be 0.

Mz }| {2

4
a1,1 . . . a1,m

an,1 . . . an,m

3

5

2

66664

a1,1 an,1

...
...

a1,m an,m

3

77775

| {z }
M>

2

666664

(a1,1)2 + · · · + (an,1)2

. . .

(a1,m)2 + · · · + (an,m)2

3

777775

| {z }
M>M

So

tr(M>M) = (a1,1)2 + · · · (an,1)2 + · · · + (a1,m)2 + · · · + (an,m)2 = |M |2.

1.5.1 a. The set { x 2 R | 0 < x  1 } is neither open nor closed: the point
1 is in the set, but 1 + ✏ is not for every ✏, showing it isn’t open, and 0 is 
not but 0 + ✏ is for every ✏ > 0, showing that the complement is also not 
open, so the set is not closed.

Similarly, one proves the follwoing:
b. open c. neither d. closed e. closed f. neither

g. both. That the empty set �/ is closed is obvious. Showing that it is open
is an “eleven-legged alligator” argument (see Section 0.2). Is it true that for 
every point of the empty set, there exists ✏ > 0 such that . . . ? Yes, because 
there are no points in the empty set.
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1.5.2 a. The (x, y)-plane in R3 is not open; you cannot move in the z
direction and stay in the (x, y)-plane. It is closed because its complement
is open: any point in {R3 � (x, y)-plane} can be surrounded by an open
3-dimensional ball in {R3 � (x, y)-plane}.

b. The set R ⇢ C is not open: the ball of radius ✏ > 0 around a real
number x always contains the non-real number x+i✏/2. It is closed because
its complement is open; if z = x + iy 2 {C�R}, i.e., if y 6= 0, then the ball
of radius |y|/2 around z is contained in {C� R}.

c. The line x = 5 in the (x, y)-plane is closed; any point in its complement
can be surrounded by an open ball in the complement.

d. The set (0, 1) ⇢ C is not open since (for example) the point 0.5 2 R
cannot be surrounded by an open ball in R. It is not closed because its
complement is not open. For example, the point

⇣
1
0
⌘
2 C, cannot be

surrounded by an open ball in {C� (0, 1) ⇢ C}.
e. Rn ⇢ Rn is open. It is also closed, because its complement, the empty

set, is trivially open.
f. The unit 2-sphere S ⇢ R3 is not open: if x 2 S2 and ✏ > 0, then the

point (1+✏/2)x is in B✏(x) but not on S2. It is closed, since its complement
is open: if y /2 S2, i.e., if |y| 6= 1, then the open ball B||y|�1|/2(y) does not
intersect S2.

1.5.3 a. Suppose Ai, i 2 I is some collection (probably infinite) of open
sets. If x 2

S
i2I Ai, then x 2 Aj for some j, and since Aj is open, there

exists ✏ > 0 such that B✏(x) ⇢ Aj . But then B✏(x) ⇢
S

i2I Ai.
Solution 1.5.3, part b: There

is a smallest ✏i, because there are
finitely many of them, and it is
positive. If there were infinitely
many, then there would be a great-
est lower bound, but it could be 0.

Part c: In fact, every closed set
is a countable intersection of open
sets.

b. If A1, . . . , Aj are open and x 2 \k
i=1Ai, then there exist ✏1, . . . , ✏k > 0

such that B✏i(x) ⇢ Ai, for i = 1, . . . , k. Set ✏ to be the smallest of ✏1, . . . , ✏k.
Then B✏(x) ⇢ B✏i(x) ⇢ Ai.

c. The infinite intersection of open sets (�1/n, 1/n), for n = 1, 2, . . . , is
not open; as n !1, �1/1! 0 and 1/1! 0; the set {0} is not open.

1.5.4 a. Suppose U ⇢ A is open. Then for all x 2 U, there exists r > 0
such that

Br(x) ⇢ U, hence Br(x) ⇢ A,

so x is in the interior of A. Clearly the interior of A is open, and since it
contains as a subset every open set contained in A, it is the biggest open
set contained in A.

b. We are assuming that A is a subset of Rn. The definition of the
closure says that Rn � A is open, so A is the complement of an open set,
so it is closed. Moreover, if B ⇢ Rn is any closed set containing A, then
Rn � B is an open set not intersecting A, so Rn � B is contained in the
interior of Rn �A, so it is contained in Rn �A by part a, so B � A.

c. Suppose x 2 A but x /2 A. Then every neighborhood of x contains
parts of A (because x 2 A) and parts not in A (for instance, x itself), so x
is in the boundary of A.
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d. If x 2 @A, then certainly x 2 A, but x /2
�
A, since for all r > 0, we

have Br(x)\ (Rn�A) 6= /�. Conversely, if x is in A�
�
A, then for all r > 0,

we have Br(x) 6⇢ A, since x /2
�
A, and Br(x) \A 6= /�, since x 2 A.

1.5.7 a. The natural domain is R2 minus the union of the two axes; it is 
open.
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b. The natural domain is that part of R2 where x2 > y (i.e., the area
“outside” the parabola of equation y = x2). It is open since its “fence” x2

belongs to its neighbor.
c. The natural domain of ln lnx is {x|x > 1}, since we must have

lnx > 0. This domain is open.
d. The natural domain of arcsin is [�1, 1]. Thus the natural domain of

arcsin 3
x2+y2 is R2 minus the open disc x2 + y2 < 3. Since this domain is

the complement of an open disc it is closed (and not open, since it isn’t R2

or the empty set).
e. The natural domain is all of R2, which is open.
f. The natural domain is R3 minus the union of the three coordinate

planes of equation x = 0, y = 0, z = 0; it is open.

1.5.8 a. The matrix A is

A =

2

4
0 �✏ �✏
0 0 �✏
0 0 0

3

5 , since

2

4
1 ✏ ✏
0 1 ✏
0 0 1

3

5

| {z }
B

=

2

4
1 0 0
0 1 0
0 0 1

3

5

| {z }
I

�

2

4
0 �✏ �✏
0 0 �✏
0 0 0

3

5

| {z }
A

.

To compute the inverse of B, i.e., B�1, we compute the series based on A:

B�1 = (I �A)�1 = I + A + A2 + A3 . . . .

We have

A2 =

2

4
0 0 ✏2

0 0 0
0 0 0

3

5 and A3 =

2

4
0 0 0
0 0 0
0 0 0

3

5 ,

so

B�1 =

2

4
1 0 0
0 1 0
0 0 1

3

5+

2

4
0 �✏ �✏
0 0 �✏
0 0 0

3

5+

2

4
0 0 ✏2

0 0 0
0 0 0

3

5 =

2

4
1 �✏ �✏ + ✏2

0 1 �✏
0 0 1

3

5 .

In this case ✏ doesn’t need to be small for the series to converge.
b.


1 �✏

+✏ 1

�

| {z }
C

= I �


0 ✏
�✏ 0

�

| {z }
A

.

To compute C�1 = (I�A)�1 = I +A+A2 +A3 . . . , first compute A2, A3,
and A4: 

0 ✏
�✏ 0

� 
0 ✏
�✏ 0

� 
0 ✏
�✏ 0

�


0 ✏
�✏ 0

� 
�(✏2) 0

0 �(✏2)

�

| {z }
A2


0 �(✏3)
✏3 0

�

| {z }
A3


✏4 0
0 ✏4

�

| {z }
A4

.

In the series I +A+A2 +A3, each entry of A itself converges to a limit:
S = a + ar + ar2 + · · · = a

a�r . For a1,1, we have a = 1, r = �✏2, so a1,1
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Choose ⌘ > 0. Since limt!0 '(t) = 0, there exists � > 0 such that when
0 < t  � we have '(t) < ⌘. Our hypothesis guarantees that there exists
N such that when n > N , then |an � a|  '(�) = ⌘.

Now for the converse:
�
an converges to a

�
=)

⇣
(8✏ > 0)(9N)(n > N) =) |an � a| < '(✏)

⌘
.

For any ✏ > 0, we also have '(✏) > 0, so there exists N such that

n > N =) |an � a| < '(✏).

b. The analogous statement for limits of functions is:
Let ' : [0,1) ! [0,1) be a function such that limt!0 '(t) = 0. Let

U ⇢ Rn, f : U ! Rm, and x0 2 U . Then limx!x0 f(x) = a if and only if
for every ✏ > 0 there exists � > 0 such that when x 2 U and |x� x0| < �,
we have |f(x)� a| < '(✏).

1.5.12 Let us first show the interesting case: (2) =) (1).
Choose ✏ > 0, and then choose � > 0 such that when |t|  � we have

u(t) < ✏; such a � exists because limt!0 u(t) = 0. Our hypothesis is that
for all ✏ > 0 there exists � > 0 such that when |x � x0| < �, and x 2 U ,
then |f(x)� a| < u(✏). Similarly, for all � > 0 there exists � > 0 such that
when |x� x0| < �, and x 2 U , then |f(x)� a| < u(�). Since u(�) < ✏, this
implies |f(x)� a| < u(✏).

For the other direction, just take u(✏) = ✏.

1.5.13 Choose a point a 2 Rn � C. Suppose that the ball B1/n(a) of
radius 1/n around a satisfies B1/n(a) \ C 6= /� for every n. Choose an

in B1/n(a) \ C. Then the sequence n 7! an converges to a, since for any
✏ > 0 we can find N such that for n > N we have 1/n < ✏, so for n > N
we have |a � an| < 1/n < ✏. Then our hypothesis implies that a 2 C, a
contradiction. Thus there exists N such that B1/N (a)\C = /�. This shows
that Rn � C is open, so C is closed.

1.5.14 a. The functions x and y both are continuous on R2, so they
have limits at all points. Hence so does x + y (the sum of two continuous
functions is continuous), and x2 (the product of two continuous functions
is continuous). The quotient of two continuous functions is continuous

wherever the denominator is not 0, and x + y = 3 at


1
2

�
. So the limit

exists, and is 1/3. ⇣ ⌘
b. The denominator vanishes at 0

0 . If we let
x = y = t 6= 0, the function becomes

t
p

|t|
2t2

=
1

2
p

|t|
.

Evidently this can be made arbitrarily large by taking |t| su�ciently small.
Strictly speaking, this shows that the limit does not exist, but sometimes
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one allows infinite limits. Is the limit 1? No, because f
⇣

t
0
⌘

= 0, so there
also are points arbitrarily close to the origin where the function is zero. So
there is no value, even 1, which the function is close to when |

⇣
x
y

⌘
| is

small (i.e., the distance from
⇣

x
y

⌘
to the point

⇣
0
0
⌘
,
����


x� 0
y � 0

�����, is small).

c. This time, if we approach the origin along the diagonal, we get

f
⇣

t
t

⌘
=

|t|p
2|t|

=
1p
2
,

whereas if we approach the origin along the axes, the function is zero, and
the limit is zero. Thus the limit does not exist.

clusion |
p

x � 5| < ✏ (i.e., that 5
is the limit) is the conclusion “are
orange with blue spots” and the
conclusion |

p
x�3| < ✏ (i.e., that 3

is the limit) is the conclusion “are
black with white stripes.”

d. This is no problem: x2 is continuous everywhere, y3 is continuous ev-
erywhere, �3 is continuous everywhere, the sum is continuous everywhere,
and the limit exists, and is 6.

1.5.15 Both statements are true. To show that the first is true, we say:
for every ✏ > 0, there exists � > 0 such that for all x satisfying x � 0 and
|� 2� x| < �, then |

p
x� 5| < ✏. For any ✏ > 0, choose � = 1. Then there

is no x � 0 satisfying |� 2� x| < �. So for those nonexistent x satisfying
| � 2 � x| < 1, it is true that |

p
x � 5| < ✏. By the same argument the

second statement is true.

1.5.16 a. For any ✏ > 0, there exists � > 0 such that when

0 <
p

x2 + y2 < �, we have
���f
⇣

x
y

⌘
� a
��� < ✏.

The original solution for part
b of Exercise 1.5.16 was incorrect.
This correct solution was written
by David Ma, a student in a class
taught by Daniel Bettendorf.

b. The first limit,

lim
x
y

!

!
0
0

!
sin (x + y)p

(x2 + y2)
,

does not exist. To see that, one may approach the origin along the x-axis,
yielding sin (x)p

(x2)
= sin x

|x| , which would tend toward 1 or �1 depending upon

the direction of the approach along the axis.
But we claim that

lim
x
y

!

!
0
0

!(|x| + |y|) ln (x2 + y4) = 0.

First we observe that when 0 < x2 + y2 < 1, we have

0 > ln (x2 + y4) � lnx2,

which implies | lnx2| � | lnx2 + y4| > 0.
Similarly, | ln y4| � | ln (x2 + y4)| > 0.
Next, we assume from single-variable calculus that lim

x!0+
x lnx = 0 and

more generally (by basic properties of logarithms and limits) that

lim
x!0+

xn lnxm = 0 for positive integers m,n.



44 Solutions for Chapter 1

when m > M , then |cm| < ✏/C (this is possible since the cm converge to
0). Then when m > M we have

|cmam| = |cm||am|  ✏

C
C = ✏.

1.5.18 If cm is a subsequence of an then 8n 9mn such that if m � mn

then 9nm � n such that cm = anm , so if the sequence ak converges to a
then so does any subsequence (instead of m � n we have m � mn).

1.5.19 a. Suppose I �A is invertible, and write

I �A + C = (I �A) + C(I �A)�1(I �A) =
�
I + C(I �A)�1

�
(I �A),

so

(I �A + C)�1 = (I �A)�1
⇣
I + C(I �A)�1

⌘�1

= (I �A)�1 I � (C(I �A)�1) + (C(I �A)�1)2 � (C(I �A)�1)3 + · · ·
| {z }

geometric series if |C(I�A)�1|<1

!

so long as the series is convergent. By Proposition 1.5.38, this will happen
if

|C(I �A)�1| < 1, in particular if |C| <
1

|(I �A)�1| .

Thus every point of U is the center of a ball contained in U .
For the second part of the question, the matrices

Cn =


1� 1/n 0
0 1� 1/n

�
, n = 1, 2, . . .

converge to I, and Cn is in U since I � Cn =


1/n 0
0 1/n

�
is invertible.

b. Simply factor: (A + I)(A� I) = A2 + A�A� I = A2 � I, so

(A2 � I)(A� I)�1 = (A + I)(A� I)(A� I)�1 = A + I,

which converges to 2I as A ! I.
c. Showing that V is open is very much like showing that U is open

(part a). Suppose B �A is invertible, and write

B �A + C = (I + C(B �A)�1)(B �A),

so

(B �A + C)�1 = (B �A)�1
�
I + C(B �A)�1

��1

= (B �A)�1
⇣
I � (C(B �A)�1) + (C(B �A)�1)2 � (C(B �A)�1)3 + · · ·

⌘

so long as the series is convergent. This will happen if

|C(B �A)�1| < 1, in particular, if |C| <
1

|(B �A)�1| .
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Thus every point of V is the center of a ball contained in V . Again, the
matrices


1 + 1/n 0

0 �1 + 1/n

�
, n = 1, 2, . . .

do the trick.

d. This time, the limit does not exist. Note that you cannot factor
A2 �B2 = (A + B)(A�B) if A and B do not commute.

First set

Solution 1.5.19, part d: You
may wonder how we came by the
matrices An; we observed that

B


0 1
0 0

�
=


0 1
0 0

�


0 1
0 0

�
B =


0 �1
0 0

�
,

so these matrices do not commute.

An =


1/n + 1 1/n
0 �1 + 1/n

�
.

Then

A2
n �B2 =


2/n + 1/n2 2/n2

0 �2/n + 1/n2

�
and (A�B)�1 =


n �n
0 n

�
.

Thus we find

(A2
n �B2)(An �B)�1 =


2 + 1/n �2 + 1/n

0 �2 + 1/n

�
!


2 �2
0 �2

�

as n !1.
Do the same computation with A0n =


1/n + 1 0

0 �1 + 1/n

�
. This time

we find

(A02n �B2)(A0n �B)�1 =


2 + 1/n 0
0 �2 + 1/n

�
!


2 0
0 �2

�
= 2B

as n !1.
Since both sequences n 7! An and n 7! A0n converge to B, this shows

that there is no limit.

1.5.20 a. The powers of A are

A2 =


2a2 2a2

2a2 2a2

�
, A3 =


4a3 4a3

4a3 4a3

�
, . . . , An =


2n�1an 2n�1an

2n�1an 2n�1an

�
.

For this sequence of matrices to converge to the zero matrix, each entry
must converge to 0. This will happen if |a| < 1/2 (see Example 0.5.6). The
sequence will also converge if a = 1/2; in that case the sequence is constant.

b. Exactly as above,
2

4
a a a
a a a
a a a

3

5
n

=

2

4
3n�1an 3n�1an 3n�1an

3n�1an 3n�1an 3n�1an

3n�1an 3n�1an 3n�1an

3

5 ,

so the sequence converges to the 0 matrix if |a| < 1/3; it converges when
a = 1/3 because it is a constant sequence. For an m⇥m matrix filled with
a’s, the same computation shows that An will converge to 0 if |a| < 1/m.
It will converge when a = 1/m because it is a constant sequence.




