1.5.1 a. Theset {z € R | 0 < <1} is neither open nor closed: the point
1 is in the set, but 1 + € is not for every €, showing it isn’t open, and 0 is

not but 0 + € is for every € > 0, showing that the complement is also not
open, so the set is not closed.

Similarly, one proves the follwoing:

b. open c. neither d. closed e. closed f. neither

g. both. That the empty set ¢his closed is obvious. Showing that it is open
is an “eleven-legged alligator” argument (see Section 0.2). Is it true that for
every point of the empty set, there exists € > 0 such that . . . ? Yes, because
there are no points in the empty set.



Solution 1.5.3, part b: There
is a smallest €;, because there are
finitely many of them, and it is
positive. If there were infinitely
many, then there would be a great-
est lower bound, but it could be 0.

Part c: In fact, every closed set
is a countable intersection of open
sets.

1.5.2 a. The (x,y)-plane in R? is not open; you cannot move in the z
direction and stay in the (x,y)-plane. It is closed because its complement
is open: any point in {R® — (x,y)-plane} can be surrounded by an open
3-dimensional ball in {R?® — (z,y)-plane}.

b. The set R C C is not open: the ball of radius ¢ > 0 around a real
number z always contains the non-real number z+ie/2. It is closed because
its complement is open; if z = z + iy € {C —R}, i.e., if y # 0, then the ball
of radius |y|/2 around z is contained in {C — R}.

c¢. Theline z = 5 in the (z, y)-plane is closed; any point in its complement
can be surrounded by an open ball in the complement.

d. The set (0,1) C C is not open since (for example) the point 0.5 € R
cannot be surrounded by an open ball in R. It is not closed because its

complement is not open. For example, the point ((1)) € C, cannot be
surrounded by an open ball in {C — (0,1) C C}.

e. R™ C R" is open. It is also closed, because its complement, the empty
set, is trivially open.

f. The unit 2-sphere S C R? is not open: if x € S? and € > 0, then the
point (1+4€/2)x is in B,(x) but not on S2. It is closed, since its complement
is open: if y ¢ S, i.e., if |y| # 1, then the open ball Bjy|_y/2(y) does not
intersect S2.

1.5.3 a. Suppose A;,i € I is some collection (probably infinite) of open
sets. If x € | J;c; Ai, then x € A; for some j, and since A; is open, there
exists € > 0 such that B.(x) C A;. But then B(x) C |, As-

b. If A;,...,A; are open and x € Nk_, A;, then there exist €1, ..., e, >0
such that B, (x) C A;, fori =1,..., k. Set € to be the smallest of €1, ..., €.
Then B.(x) C B, (x) C A;.

c¢. The infinite intersection of open sets (—1/n,1/n), forn =1,2,..., is
not open; as n — 0o, —1/00 — 0 and 1/00 — 0; the set {0} is not open.

1.5.4 a. Suppose U C A is open. Then for all x € U, there exists r > 0
such that

B.(x) CU, hence B,(x)C A,

so x is in the interior of A. Clearly the interior of A is open, and since it
contains as a subset every open set contained in A, it is the biggest open
set contained in A.

b. We are assuming that A is a subset of R™. The definition of the
closure says that R — A is open, so A is the complement of an open set,
so it is closed. Moreover, if B C R"™ is any closed set containing A, then
R™ — B is an open set not intersecting A, so R™ — B is contained in the
interior of R™ — A, so it is contained in R™ — A by part a, so B D A.

c. Suppose x € A but x ¢ A. Then every neighborhood of x contains
parts of A (because x € A) and parts not in A (for instance, x itself), so x
is in the boundary of A.



d. If x € OA, then certainly x € A, but x ¢ A, since for all 7 > 0, we
have B,.(x) N (R™ — A) #@. Conversely, if x is in A — A, then for all r > 0,
we have B,.(x) ¢ A, since x ¢ A, and B,.(x) N A #¢, since x € A.

1.5.7 a. The natural domain is R? minus the union of the two axes; it is
open.



b. The natural domain is that part of R? where 22 > y (i.e., the area
“outside” the parabola of equation y = x?). It is open since its “fence” z?
belongs to its neighbor.

c. The natural domain of Inlnz is {x|x > 1}, since we must have
Inz > 0. This domain is open.

d. The natural domain of arcsin is [—1,1]. Thus the natural domain of
arcsin IQ?’Tyz is R? minus the open disc 2% + y? < 3. Since this domain is
the complement of an open disc it is closed (and not open, since it isn’t R?
or the empty set).

e. The natural domain is all of R?, which is open.

f. The natural domain is R3® minus the union of the three coordinate
planes of equation x =0, y = 0, z = 0; it is open.



1.5.14 a. The functions z and y both are continuous on R?, so they
have limits at all points. Hence so does x 4+ y (the sum of two continuous
functions is continuous), and z? (the product of two continuous functions
is continuous). The quotient of two continuous functions is continuous

wherever the denominator is not 0, and x +y = 3 at [;] So the limit
exists, and is 1/3.

b. The denominator vanishes at 8 . If we let ( )
x =1y =1t%#0, the function becomes

VIt 1

Evidently this can be made arbitrarily large by taking |¢| sufficiently small.
Strictly speaking, this shows that the limit does not exist, but sometimes




one allows infinite limits. Is the limit co? No, because f ( 6) =0, so there
also are points arbitrarily close to the origin where the function is zero. So
there is no value, even oo, which the function is close to when | (Z) | is
=
y—0

c. This time, if we approach the origin along the diagonal, we get

small (i.e., the distance from (gyg) to the point (8), , 1s small).

7(1) = 1
v V2
whereas if we approach the origin along the axes, the function is zero, and
the limit is zero. Thus the limit does not exist.
d. This is no problem: 2 is continuous everywhere, 3> is continuous ev-
erywhere, —3 is continuous everywhere, the sum is continuous everywhere,
and the limit exists, and is 6.



I-A+0O)!

(B-A+0)" ' =

1.5.19 a. Suppose I — A is invertible, and write
I-A+C=(I-A)+C(I-A)I-A) = (I—&—C’(I—A)_l)(I—A)7
S0

— (=) (1+cu -

=(I-A)7" I-(CU-A))+(CU-A))?—(CU-A)")° +-- >
geometric series if |C(I—A)71|<1
so long as the series is convergent. By Proposition 1.5.38, this will happen
if
-
(T —A)~1
Thus every point of U is the center of a ball contained in U.
For the second part of the question, the matrices
1-1/n 0
0 1-1/n

|C(I — A)™| <1, in particular if |C| <

C, = }, n=12,...

1/n
0 1/n
b. Simply factor: (A+1)(A—I1)=A2+A—-A—-T1=A%-1, 50
(A2 -DNA-D'=A+DA-DA-I)"'=A+1,

converge to I, and C,, is in U since I — C), = [ ] is invertible.

which converges to 21 as A — 1.

c. Showing that V is open is very much like showing that U is open
(part a). Suppose B — A is invertible, and write

B-A+C=(I+C(B—A)"YB-A),
SO
(B-A)'I+C(B-A)"")"
(B — A)_l(f —(CB=A™H+(CB-A"H?—(C(B-A)1) +. )

1

so long as the series is convergent. This will happen if

1

|C(B—A)"! <1, in particular, if |C|< .
(B —A)~|



Solution 1.5.19, part d: You
may wonder how we came by the
matrices Ay; we observed that

o[l 4
3ol

so these matrices do not commute.

Thus every point of V is the center of a ball contained in V. Again, the
matrices

[1+1/n 0

0 —1+1/n]’ n=12,...

do the trick.

d. This time, the limit does not exist. Note that you cannot factor
A%? — B? = (A+ B)(A — B) if A and B do not commute.
First set

A {1/71—!—1 1/n ]

" 0 -141/n
Then
5 po_ [2/n+1/n? 2/n? -1 |no-n
A= B _[ 0 —2/n+1/n? and (A -B)™ = 0 nl|’
Thus we find
2 p2 - -1 _ 2+1/n —2+1/7’L 2 =2
(A = B)(4n = B) _{ 0 —2+1/n] |0 -2
as n — o0o.
Do the same computation with A/ = /n+1 0 . This time
" 0 —1+4+1/n
we find
2 pavear -1 |2+ 1/n 0 2 0]
(A% = B)(4'n = B) _[ 0 —241/n| |0 —2|=%B

as n — 0o.
Since both sequences n — A, and n — Al converge to B, this shows
that there is no limit.

1.5.20 a. The powers of A are

20 2a? 4a3  4a3 n—lgn  gn—lgn

2 _ 3 _ n _

A% = |:2(12 20,2:| ) A® = |:4a3 4&3 [ A" = 2n71an 2n71an .
For this sequence of matrices to converge to the zero matrix, each entry
must converge to 0. This will happen if |a| < 1/2 (see Example 0.5.6). The
sequence will also converge if a = 1/2; in that case the sequence is constant.

b. Exactly as above,

n
3n71an 3n71an 3n71an

a a
a a — 3n71an 3n71an 3n71an
a a 3n—1an 3n—1an 3n—1an

[SESTRS]

so the sequence converges to the 0 matrix if |a| < 1/3; it converges when
a = 1/3 because it is a constant sequence. For an m x m matrix filled with
a’s, the same computation shows that A™ will converge to 0 if |a| < 1/m.
It will converge when a = 1/m because it is a constant sequence.





