1.5.1 a. The set $\{x \in \mathbb{R} \mid 0<x \leq 1\}$ is neither open nor closed: the point 1 is in the set, but $1+\epsilon$ is not for every ϵ, showing it isn't open, and 0 is not but $0+\epsilon$ is for every $\epsilon>0$, showing that the complement is also not open, so the set is not closed.

Similarly, one proves the follwoing:
b. open
c. neither
d. closed
e. closed
f. neither
g. both. That the empty set ϕ is closed is obvious. Showing that it is open is an "eleven-legged alligator" argument (see Section 0.2). Is it true that for every point of the empty set, there exists $\epsilon>0$ such that . . . ? Yes, because there are no points in the empty set.

Solution 1.5.3, part b: There is a smallest ϵ_{i}, because there are finitely many of them, and it is positive. If there were infinitely many, then there would be a greatest lower bound, but it could be 0 .

Part c: In fact, every closed set is a countable intersection of open sets.
1.5.2 a. The (x, y)-plane in \mathbb{R}^{3} is not open; you cannot move in the z direction and stay in the (x, y)-plane. It is closed because its complement is open: any point in $\left\{\mathbb{R}^{3}-(x, y)\right.$-plane $\}$ can be surrounded by an open 3-dimensional ball in $\left\{\mathbb{R}^{3}-(x, y)\right.$-plane $\}$.
b. The set $\mathbb{R} \subset \mathbb{C}$ is not open: the ball of radius $\epsilon>0$ around a real number x always contains the non-real number $x+i \epsilon / 2$. It is closed because its complement is open; if $z=x+i y \in\{\mathbb{C}-\mathbb{R}\}$, i.e., if $y \neq 0$, then the ball of radius $|y| / 2$ around z is contained in $\{\mathbb{C}-\mathbb{R}\}$.
c. The line $x=5$ in the (x, y)-plane is closed; any point in its complement can be surrounded by an open ball in the complement.
d. The set $(0,1) \subset \mathbb{C}$ is not open since (for example) the point $0.5 \in \mathbb{R}$ cannot be surrounded by an open ball in \mathbb{R}. It is not closed because its complement is not open. For example, the point $\binom{1}{0} \in \mathbb{C}$, cannot be surrounded by an open ball in $\{\mathbb{C}-(0,1) \subset \mathbb{C}\}$.
e. $\mathbb{R}^{n} \subset \mathbb{R}^{n}$ is open. It is also closed, because its complement, the empty set, is trivially open.
f. The unit 2 -sphere $S \subset \mathbb{R}^{3}$ is not open: if $\mathbf{x} \in S^{2}$ and $\epsilon>0$, then the point $(1+\epsilon / 2) \mathbf{x}$ is in $B_{\epsilon}(\mathbf{x})$ but not on S^{2}. It is closed, since its complement is open: if $\mathbf{y} \notin S^{2}$, i.e., if $|\mathbf{y}| \neq 1$, then the open ball $B_{||\mathbf{y}|-1| / 2}(\mathbf{y})$ does not intersect S^{2}.
1.5.3 a. Suppose $A_{i}, i \in I$ is some collection (probably infinite) of open sets. If $\mathbf{x} \in \bigcup_{i \in I} A_{i}$, then $\mathbf{x} \in A_{j}$ for some j, and since A_{j} is open, there exists $\epsilon>0$ such that $B_{\epsilon}(\mathbf{x}) \subset A_{j}$. But then $B_{\epsilon}(\mathbf{x}) \subset \bigcup_{i \in I} A_{i}$.
b. If A_{1}, \ldots, A_{j} are open and $\mathbf{x} \in \cap_{i=1}^{k} A_{i}$, then there exist $\epsilon_{1}, \ldots, \epsilon_{k}>0$ such that $B_{\epsilon_{i}}(\mathbf{x}) \subset A_{i}$, for $i=1, \ldots, k$. Set ϵ to be the smallest of $\epsilon_{1}, \ldots, \epsilon_{k}$. Then $B_{\epsilon}(\mathbf{x}) \subset B_{\epsilon_{i}}(\mathbf{x}) \subset A_{i}$.
c. The infinite intersection of open sets $(-1 / n, 1 / n)$, for $n=1,2, \ldots$, is not open; as $n \rightarrow \infty,-1 / \infty \rightarrow 0$ and $1 / \infty \rightarrow 0$; the set $\{0\}$ is not open.
1.5.4 a. Suppose $U \subset A$ is open. Then for all $\mathbf{x} \in U$, there exists $r>0$ such that

$$
B_{r}(\mathbf{x}) \subset U, \quad \text { hence } \quad B_{r}(\mathbf{x}) \subset A,
$$

so \mathbf{x} is in the interior of A. Clearly the interior of A is open, and since it contains as a subset every open set contained in A, it is the biggest open set contained in A.
b. We are assuming that A is a subset of \mathbb{R}^{n}. The definition of the closure says that $\mathbb{R}^{n}-\bar{A}$ is open, so \bar{A} is the complement of an open set, so it is closed. Moreover, if $B \subset \mathbb{R}^{n}$ is any closed set containing A, then $\mathbb{R}^{n}-B$ is an open set not intersecting A, so $\mathbb{R}^{n}-B$ is contained in the interior of $\mathbb{R}^{n}-A$, so it is contained in $\mathbb{R}^{n}-\bar{A}$ by part a, so $B \supset \bar{A}$.
c. Suppose $\mathbf{x} \in \bar{A}$ but $\mathbf{x} \notin A$. Then every neighborhood of \mathbf{x} contains parts of A (because $\mathbf{x} \in \bar{A}$) and parts not in A (for instance, \mathbf{x} itself), so \mathbf{x} is in the boundary of A.
d. If $\mathbf{x} \in \partial A$, then certainly $\mathbf{x} \in \bar{A}$, but $\mathbf{x} \notin \AA$, since for all $r>0$, we have $B_{r}(\mathbf{x}) \cap\left(\mathbb{R}^{n}-A\right) \neq \varnothing$. Conversely, if \mathbf{x} is in $\bar{A}-A$, then for all $r>0$, we have $B_{r}(\mathbf{x}) \not \subset A$, since $\mathbf{x} \notin A$, and $B_{r}(\mathbf{x}) \cap A \neq \varnothing$, since $\mathbf{x} \in \bar{A}$.
1.5.7 a. The natural domain is \mathbb{R}^{2} minus the union of the two axes; it is open.
b. The natural domain is that part of \mathbb{R}^{2} where $x^{2}>y$ (i.e., the area "outside" the parabola of equation $y=x^{2}$). It is open since its "fence" x^{2} belongs to its neighbor.
c. The natural domain of $\ln \ln x$ is $\{x \mid x>1\}$, since we must have $\ln x>0$. This domain is open.
d. The natural domain of arcsin is $[-1,1]$. Thus the natural domain of $\arcsin \frac{3}{x^{2}+y^{2}}$ is \mathbb{R}^{2} minus the open disc $x^{2}+y^{2}<3$. Since this domain is the complement of an open disc it is closed (and not open, since it isn't \mathbb{R}^{2} or the empty set).
e. The natural domain is all of \mathbb{R}^{2}, which is open.
f. The natural domain is \mathbb{R}^{3} minus the union of the three coordinate planes of equation $x=0, y=0, z=0$; it is open.
1.5.14 a. The functions x and y both are continuous on \mathbb{R}^{2}, so they have limits at all points. Hence so does $x+y$ (the sum of two continuous functions is continuous), and x^{2} (the product of two continuous functions is continuous). The quotient of two continuous functions is continuous wherever the denominator is not 0 , and $x+y=3$ at $\left[\begin{array}{l}1 \\ 2\end{array}\right]$. So the limit exists, and is $1 / 3$.
b. The denominator vanishes at $\quad \begin{aligned} & 0 \\ & 0\end{aligned}$. If we let $x=y=t \neq 0$, the function becomes

$$
\frac{t \sqrt{|t|}}{2 t^{2}}=\frac{1}{2 \sqrt{|t|}}
$$

Evidently this can be made arbitrarily large by taking $|t|$ sufficiently small. Strictly speaking, this shows that the limit does not exist, but sometimes
one allows infinite limits. Is the limit ∞ ? No, because $f\binom{t}{0}=0$, so there also are points arbitrarily close to the origin where the function is zero. So there is no value, even ∞, which the function is close to when $\left|\binom{x}{y}\right|$ is small (i.e., the distance from $\binom{x}{y}$ to the point $\binom{0}{0},\left|\left[\begin{array}{l}x-0 \\ y-0\end{array}\right]\right|$, is small).
c. This time, if we approach the origin along the diagonal, we get

$$
f\binom{t}{t}=\frac{|t|}{\sqrt{2}|t|}=\frac{1}{\sqrt{2}}
$$

whereas if we approach the origin along the axes, the function is zero, and the limit is zero. Thus the limit does not exist.
d. This is no problem: x^{2} is continuous everywhere, y^{3} is continuous everywhere, -3 is continuous everywhere, the sum is continuous everywhere, and the limit exists, and is 6 .
1.5.19 a. Suppose $I-A$ is invertible, and write

$$
I-A+C=(I-A)+C(I-A)^{-1}(I-A)=\left(I+C(I-A)^{-1}\right)(I-A),
$$

so

$$
\begin{aligned}
(I-A+C)^{-1} & =(I-A)^{-1}\left(I+C(I-A)^{-1}\right)^{-1} \\
& =(I-A)^{-1} \underbrace{I-\left(C(I-A)^{-1}\right)+\left(C(I-A)^{-1}\right)^{2}-\left(C(I-A)^{-1}\right)^{3}+\cdots}_{\text {geometric series if }\left|C(I-A)^{-1}\right|<1})
\end{aligned}
$$

so long as the series is convergent. By Proposition 1.5.38, this will happen if

$$
\left|C(I-A)^{-1}\right|<1, \quad \text { in particular if } \quad|C|<\frac{1}{\left|(I-A)^{-1}\right|}
$$

Thus every point of U is the center of a ball contained in U.
For the second part of the question, the matrices

$$
C_{n}=\left[\begin{array}{cc}
1-1 / n & 0 \\
0 & 1-1 / n
\end{array}\right], \quad n=1,2, \ldots
$$

converge to I, and C_{n} is in U since $I-C_{n}=\left[\begin{array}{cc}1 / n & 0 \\ 0 & 1 / n\end{array}\right]$ is invertible.
b. Simply factor: $(A+I)(A-I)=A^{2}+A-A-I=A^{2}-I$, so

$$
\left(A^{2}-I\right)(A-I)^{-1}=(A+I)(A-I)(A-I)^{-1}=A+I
$$

which converges to $2 I$ as $A \rightarrow I$.
c. Showing that V is open is very much like showing that U is open (part a). Suppose $B-A$ is invertible, and write

$$
B-A+C=\left(I+C(B-A)^{-1}\right)(B-A)
$$

so

$$
\begin{aligned}
(B-A+C)^{-1} & =(B-A)^{-1}\left(I+C(B-A)^{-1}\right)^{-1} \\
& =(B-A)^{-1}\left(I-\left(C(B-A)^{-1}\right)+\left(C(B-A)^{-1}\right)^{2}-\left(C(B-A)^{-1}\right)^{3}+\cdots\right)
\end{aligned}
$$

so long as the series is convergent. This will happen if

$$
\left|C(B-A)^{-1}\right|<1, \quad \text { in particular, if } \quad|C|<\frac{1}{\left|(B-A)^{-1}\right|}
$$

Solution 1.5.19, part d: You may wonder how we came by the matrices A_{n}; we observed that

$$
\begin{aligned}
& B\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]=\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right] \\
& {\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right] B=\left[\begin{array}{rr}
0 & -1 \\
0 & 0
\end{array}\right]}
\end{aligned}
$$

so these matrices do not commute.

Thus every point of V is the center of a ball contained in V. Again, the matrices

$$
\left[\begin{array}{cc}
1+1 / n & 0 \\
0 & -1+1 / n
\end{array}\right], \quad n=1,2, \ldots
$$

do the trick.
d. This time, the limit does not exist. Note that you cannot factor $A^{2}-B^{2}=(A+B)(A-B)$ if A and B do not commute.

First set

$$
A_{n}=\left[\begin{array}{cc}
1 / n+1 & 1 / n \\
0 & -1+1 / n
\end{array}\right]
$$

Then
$A_{n}^{2}-B^{2}=\left[\begin{array}{cc}2 / n+1 / n^{2} & 2 / n^{2} \\ 0 & -2 / n+1 / n^{2}\end{array}\right] \quad$ and $\quad(A-B)^{-1}=\left[\begin{array}{cc}n & -n \\ 0 & n\end{array}\right]$.
Thus we find

$$
\left(A_{n}^{2}-B^{2}\right)\left(A_{n}-B\right)^{-1}=\left[\begin{array}{cc}
2+1 / n & -2+1 / n \\
0 & -2+1 / n
\end{array}\right] \rightarrow\left[\begin{array}{ll}
2 & -2 \\
0 & -2
\end{array}\right]
$$

as $n \rightarrow \infty$.
Do the same computation with $A_{n}^{\prime}=\left[\begin{array}{cc}1 / n+1 & 0 \\ 0 & -1+1 / n\end{array}\right]$. This time we find

$$
\left(A_{n}^{\prime 2}-B^{2}\right)\left(A^{\prime}{ }_{n}-B\right)^{-1}=\left[\begin{array}{cc}
2+1 / n & 0 \\
0 & -2+1 / n
\end{array}\right] \rightarrow\left[\begin{array}{rr}
2 & 0 \\
0 & -2
\end{array}\right]=2 B
$$

as $n \rightarrow \infty$.
Since both sequences $n \mapsto A_{n}$ and $n \mapsto A_{n}^{\prime}$ converge to B, this shows that there is no limit.
1.5.20 a. The powers of A are

$$
A^{2}=\left[\begin{array}{ll}
2 a^{2} & 2 a^{2} \\
2 a^{2} & 2 a^{2}
\end{array}\right], A^{3}=\left[\begin{array}{ll}
4 a^{3} & 4 a^{3} \\
4 a^{3} & 4 a^{3}
\end{array}\right], \ldots, A^{n}=\left[\begin{array}{ll}
2^{n-1} a^{n} & 2^{n-1} a^{n} \\
2^{n-1} a^{n} & 2^{n-1} a^{n}
\end{array}\right]
$$

For this sequence of matrices to converge to the zero matrix, each entry must converge to 0 . This will happen if $|a|<1 / 2$ (see Example 0.5.6). The sequence will also converge if $a=1 / 2$; in that case the sequence is constant.
b. Exactly as above,

$$
\left[\begin{array}{lll}
a & a & a \\
a & a & a \\
a & a & a
\end{array}\right]^{n}=\left[\begin{array}{lll}
3^{n-1} a^{n} & 3^{n-1} a^{n} & 3^{n-1} a^{n} \\
3^{n-1} a^{n} & 3^{n-1} a^{n} & 3^{n-1} a^{n} \\
3^{n-1} a^{n} & 3^{n-1} a^{n} & 3^{n-1} a^{n}
\end{array}\right]
$$

so the sequence converges to the 0 matrix if $|a|<1 / 3$; it converges when $a=1 / 3$ because it is a constant sequence. For an $m \times m$ matrix filled with a 's, the same computation shows that A^{n} will converge to 0 if $|a|<1 / m$. It will converge when $a=1 / m$ because it is a constant sequence.

