A function of class C^{ω}, also called a real analytic function, is a function which equals its Taylor expansion

$$
f(x)=f(a)+(x-a) f^{\prime}(a)+(x-a)^{2} \frac{f^{\prime \prime}(a)}{2!}+\ldots+(x-a)^{n} \frac{f^{(n)}(a)}{2!}+\ldots
$$

We sometimes incorrectly learn that every function of class C^{∞} equals its Taylor series, but this is not the case as we will show below.
(a) Consider the function

$$
f(x)= \begin{cases}\exp \left(\frac{1}{x}\right) & \text { if } x<0 \\ 0 & \text { if } x=0\end{cases}
$$

Show that $f^{\prime}(0)=0$, directly from the definition.
(b) Write down a formula for $f^{\prime}(x)$ which is valid for all values of x.
(c) Now consider the formula you found in (ii) and differentiate once again. First, show that $f^{\prime \prime}(0)=0$ by using the definition of the derivative. Then, write down a formula for $f^{\prime \prime}(x)$ which is valid for all x.
(d) Do the same for third derivatives. You should be able to prove $f^{\prime \prime \prime}(0)=0$.
(e) In fact, continuing in this fashion you will see that $f^{(n)}(0)=0$ for all n. Explain that this implies that f is not real analytic, i.e., it does not equal its Taylor series at $a=0$.

