Consider the function

$$
F(x, y, z)=x^{2} y+e^{x}+z
$$

and its locus of zeros $Z(F):=\left\{(x, y, z) \mid x^{2} y+e^{x}+z=0\right\} \subset \mathbb{R}^{3}$. Show that $(0,1,-1) \in Z(F)$ and that there exists a differentiable function g defined in an open neighborhood of $(1,-1)$ such that

$$
F(g(y, z), y, z)=0, \quad g(1,-1)=0 .
$$

Furthermore, find the derivative of g at $(1,-1)$.
Write the equation of the tangent vector space to $Z(F)$ at $(0,1,-1)$.
Write the equation of the tangent affine space to $Z(F)$ at $(0,1,-1)$.

