- (a) Is the function $g(x) = x^2$ uniformly continuous on (0, 1)? Is it uniformly continuous on \mathbb{R} ? Is the function $f(x) = \frac{1}{x}$ uniformly continuous on $(0, \infty)$? On (0, 1]? If b > a > 0, is f uniformly continuous on [a, b]?
- (b) Which of the following sets are compact?
 - (i) $K := \{ \frac{1}{2^n} \mid n > 0 \}$
 - (ii) the set of rational numbers in the interval [0, 1]
 - (iii) a finite union of compact sets
 - (iv) an arbitrary union of compact sets
 - (v) a finite intersection of compact sets
 - (vi) an arbitrary intersection of compact sets
 - (vii) the boundary of a bounded set
 - (viii) the boundary of an arbitrary set
- (c) Extra credit: Let X be a subset of \mathbb{R}^n . We say that a subset V of X is open if there exists an open subset U of \mathbb{R}^n such that $V = U \cap X$. We say that a subset Z of X is closed if there exists a closed subset Y of \mathbb{R}^n such that $Z = Y \cap X$. Prove
 - (i) a function $f: X \to \mathbb{R}^m$ is continuous if and only if, for every open subset U of \mathbb{R}^m , the pre-image $f^{-1}(U)$ is open,
 - (ii) a function $f: X \to \mathbb{R}^m$ is continuous if and only if, for every closed subset Y of \mathbb{R}^m , the pre-image $f^{-1}(Y)$ is closed.