(a) Is the function $g(x)=x^{2}$ uniformly continuous on $(0,1)$? Is it uniformly continuous on \mathbb{R} ? Is the function $f(x)=\frac{1}{x}$ uniformly continuous on $(0, \infty)$? On $(0,1]$? If $b>a>0$, is f uniformly continuous on $[a, b]$?
(b) Which of the following sets are compact?
(i) $K:=\left\{\left.\frac{1}{2^{n}} \right\rvert\, n>0\right\}$
(ii) the set of rational numbers in the interval $[0,1]$
(iii) a finite union of compact sets
(iv) an arbitrary union of compact sets
(v) a finite intersection of compact sets
(vi) an arbitrary intersection of compact sets
(vii) the boundary of a bounded set
(viii) the boundary of an arbitrary set
(c) Extra credit: Let X be a subset of \mathbb{R}^{n}. We say that a subset V of X is open if there exists an open subset U of \mathbb{R}^{n} such that $V=U \cap X$. We say that a subset Z of X is closed if there exists a closed subset Y of \mathbb{R}^{n} such that $Z=Y \cap X$. Prove
(i) a function $f: X \rightarrow \mathbb{R}^{m}$ is continuous if and only if, for every open subset U of \mathbb{R}^{m}, the pre-image $f^{-1}(U)$ is open,
(ii) a function $f: X \rightarrow \mathbb{R}^{m}$ is continuous if and only if, for every closed subset Y of \mathbb{R}^{m}, the pre-image $f^{-1}(Y)$ is closed.

