Extra-credit: Suppose f, g are two differentiable functions from the space M_{n} of $n \times n$ matrices to itself. Prove that the function $f g$ defined by matrix multiplication as $(f g)(A):=$ $f(A) g(A)$ is differentiable and that its differential at $A \in M_{n}$ is the following linear map

$$
\begin{aligned}
& D(f g)(A): M_{n} \\
& \\
& V \longmapsto M_{n} \\
&\longmapsto D f(A)](V) g(A)+f(A)[D g(A)](V)
\end{aligned}
$$

