
3 Immersions and Embeddings

A prototypical theme in geometry is the study of “spaces with structure”, i.e.
a set X equipped with some sort of additional geometric structure, such as a
topology in the case of topological spaces, or in our case an atlas (to turn X into
a topological manifold) along with differentiable transition functions (making
X a differentiable manifold). From this perspective, we should investigate how
functions between our spaces with structure interact with the structure on those
spaces, and concern ourselves only with those functions which “preserve” the
structure (e.g. in this class we are concerned with differentiable maps between
differentiable manifolds, which are maps respecting the differentiable structure).

With this theme in mind, though set-theoretically injective maps give some
notion of embedding sets into other sets, set-theoretic injectivity alone (even
of differentiable maps) should be inadequate to describe the vague notion of
“embedding” a differentiable manifold into another, since something should ad-
ditionally be prescribed for how the map acts on the differentiable structure.

Definition (Immersions) A differentiable mapping

ϕ : Mm → Nn

of differentiable manifolds is said to be an immersion if dϕp : TpM → Tϕ(p)N
is injective for all points p ∈M .

This is at least a weak version of what one should expect to happen if one
has an embedding (whatever that means) of a differentiable manifold. Indeed,
since TpM parametrizes the different directions in which one can move at a
point p ∈M , moving in distinct directions about p should then map to moving
in distinct directions about ϕ(p) in N if ϕ is an embedding at least in the vicin-
ity of p. This is simply then the statement that dϕp : TpM → Tϕ(p)N is injective.

Note: Since dϕp : TpM → Tϕ(p)N is a linear map between vector spaces
and dimTpM = dimM for all points p of a differentiable manifold M, it fol-
lows by linear algebra that if ϕ is an immersion then dimM ≤ dimN . We call
dimN − dimM the codimension of ϕ.

Examples

(i) The curve α : R→ R2 given by

α(t) = (t, |t|2)

is not differentiable at t = 0, hence it is not a differentiable map since, much
less an immersion, since |t| is not differentiable at t = 0. Nevertheless, α
is still injective.

(ii) The curve α : R→ R2 given by

α(t) = (t3, t2)
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is not an immersion, since dtα is the zero map for t = 0.

(iii) The curve α : R→ R2 given by

α(t) = (t3 − 4t, t2 − 4)

is an immersion, since α′(t) is never zero (as 3t2 − 4 = 2t = 0 has no
solution in t). However, it is not an injective map, as α(2) = α(−2), so
this is a curve with self-intersection at α(2) = (0, 0).

As seen in the last example, immersions aren’t necessarily injective on points,
so they don’t fully capture the notion of injectively “embedding” a space into
another (though as alluded to by our discussion of immersions, we will see how
immersions can be seen as yielding local embeddings). To properly capture this
notion in the setting of differentiable manifolds, we have the following definition.

Definition: (Embeddings) An immersion ϕ : M → N of differentiable mani-
folds is an embedding if ϕ is a homeomorphism ofM onto its image ϕ(M) ⊂ N ,
where ϕ(M) inherits the subspace topology from N. If M ⊂ N and the inclu-
sion map M ↪→ N is an embedding, then we say that M is a submanifold of N .

Thus, an embedding is a map which a homeomorphism onto its image (which
is what one should expect at least as topological spaces), along with the extra
condition of being injective on tangent spaces.

Examples

(i) Define the curve α(t) as

α(t) = (0,−(t+ 2))

for t ∈ (−3,−1), as

α(t) = (−t,− sin(
1

t
))

for t ∈ (− 1
π , 0), and then for t ∈ [−1,− 1

π ] as any regular curve connecting
the endpoint (0,−1) of the first segment to the startpoint (− 1

π , 0) of the
third segment which doesn’t intersect the other two segments (see page 13
of do Carmo for a picture). This is an injective immersion from (−3, 0)
to R2 without self-intersection. However, it is not an embedding. To see
this, let p be a point along the interior of the first segment (e.g. p =
(0, 0)). Any open neighborhood of p in the subspace topology in R2 will
consist of infinitely many disconnected open intervals (coming from the
oscillating sine wave near x = 0). However, any open neighborhood of the
corresponding point in the source manifold (−3, 0) will simply be an open
interval. Thus, α is not a homeomorphism onto its image and hence not
an embedding.
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(ii) As mentioned previously, the map α(t) = (t3, t2) from R to R2 is not
an immersion for t = 0. However, it is both a differentiable map and a
topological embedding (homeomorphism onto its image). This example
shows the importance of the immersion condition as part of the definition
of a smooth embedding - the image of α in R2 is a curve with a cusp at
the origin, which does not give a differentiable manifold.

(iii) It follows from the definition of a regular surface S that the coordinate
chart mappings Uα → S ⊂ R3 are smooth embeddings (they are dif-
ferentiable homeomorphisms onto their images by definition of S and are
immersions since we required the differential to be injective at each point).

In fact, we can prove the stronger condition that S ⊂ R3 is actually a
submanifold. To show that the inclusion map i is a smooth embedding, let
p ∈ S be arbitrary. Then there exists a parametrization ϕ : U ⊂ R2 → S
at p and another parametrization id : V ⊂ R3 → R3 at i(p) of the smooth
manifold R3, where id is just the identity map. As id−1 ◦ i ◦ ϕ = ϕ is a
differentiable map by definition, we have that i is a differentiable map from
the abstract regular surface S to its image in R3. It is immediate that i
is an immersion as its differential is the identity, and the topology on S
is already defined to agree with that of its image in R3 in the subspace
topology, so that S is indeed a submanifold of R3.

Having seen several examples and non-examples of immersions and embeddings,
we now prove a theorem showing that immersions are in a sense “the next best
thing” to embeddings, in that they are locally embeddings.

Theorem: Let ϕ : Mn
1 → Mm

2 , n ≤ m be an immersion of differentiable
manifolds. Then for every point p ∈ M1 there exists an open neighborhood
V ⊂M1 of p such that the restriction ϕ|V : V → ϕ(V ) is an embedding.

Proof: Let φ1 : U1 ⊂ Rn → M1 and φ2 : U2 ⊂ Rm → M2 respectively be
local charts about p, ϕ(p), and let (x1, ..., xn), (y1, ..., ym) respectively denote
the coordinates in Rn and Rm. In coordinates, we may write

ϕ̃ := φ−12 ◦ ϕ ◦ φ1 : Rn → Rm = (y1(x1, ..., xn), ..., ym(x1, ..., xn)).

Set q = φ−11 (p). Since ϕ is an immersion, the Jacobian matrix of ϕ̃ at q has
maximal rank n, so that after relabeling coordinates if necessary we have that
the Jacobian determinant of the first n by n block

| ∂(y1, ..., yn)

∂(x1, ..., xn)
(q)| 6= 0.

In order to apply the inverse function theorem we need the dimensions of the
source and target space to match up, so define

φ : U1 × Rm−n=k → Rm
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via

φ(x1, ..., xn, t1, ..., tk) = (y1(x1, ..., xn), ..., yn(x1, ..., xn), (1)

yn+1(x1, ..., xn) + t1, ..., yn+k=m(x1, ..., xn) + tk), (2)

where t1, ..., tk are the coordinates on Rk. By definition we have that the re-
striction of φ to U1 × {0} is just ϕ̃. Moreover, if (q, 0) denotes the point in
U1×Rk with q in the first factor and the zero vector in the second, then we can
easily compute the Jacobian matrix

dφ(q,0) =

 ∂(y1, ..., yn)

∂(x1, ..., xn)
0

M Ik


where M is some k by n matrix of partials, Ik is the k by k identity matrix,
and 0 denotes the n by k zero matrix. This is a block lower triangular matrix
and hence has determinant

det(dφ(q,0)) = | ∂(y1, ..., yn)

∂(x1, ..., xn)
| · det(Ik) (3)

= | ∂(y1, ..., yn)

∂(x1, ..., xn)
| (4)

6= 0. (5)

The inverse function theorem now applies to φ, so that there exist open neigh-
borhoodsW1 ⊂ U1×Rk of (q, 0) andW2 ⊂ Rm of φ(q, 0) such that the restriction
φ|W1

is a diffeomorphism onto W2. Set Ṽ = W1 ∩ U1, so that φ|Ṽ = ϕ̃|Ṽ . Note
that φ1, φ2 are diffeomorphisms and that the composition and inverses of dif-
feomorphisms are diffeomorphisms. Moreover, we have that ϕ = φ2 ◦ ϕ̃◦φ−11 by
definition of ϕ̃, so that the restriction of ϕ to φ1(Ṽ ) = V is a diffeomorphism
onto ϕ(V ) ⊂M2, and hence an embedding.
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