(5) If \(X \) is a noetherian scheme and \(\mathcal{F} \) is coherent, then \(\forall x \in X \) and \(\forall i \) and \(\forall y \in \mathcal{Y}_x \)-module:

\[
\text{Ext}_X^i(\mathcal{F}, y)_x \cong \text{Ext}_X^i(\mathcal{F}_x, y_x)
\]

Dualizing sheaves:

Def: \(X \) proper scheme of dimension \(n \) over a field \(k \).

A dualizing sheaf for \(X \) is a coherent sheaf \(\omega_X \), together with a “trace” morphism

\[
t : \text{Hom}(\mathcal{F}_x, \omega_x) \to k
\]

s.t. \(\forall \) coherent \(\mathcal{F} \), the natural pairing

\[
\text{Hom}(\mathcal{F}_x, \omega_x) \times H^n(X, \mathcal{F}) \to H^n(X, \omega_x)
\]
followed by it is a perfect pairing, i.e., it gives an isomorphism
\[\text{Hom} (\mathcal{E}^\vee, \omega_X) \cong H^m (X, \mathcal{E})^\vee. \]

Fact:

1. Dualizing sheaves do not always exist, but are unique when they do.
2. If \(X \) is projective, then
 \[\omega_X \cong \text{Ext}_{\mathcal{O}_{\mathbb{P}^n}}^r (\mathcal{O}_X, \mathcal{O}_{\mathbb{P}^n}) \]
 where \(X \hookrightarrow \mathbb{P}^n \), \(r = m - n \) is the codimension of \(X \) in \(\mathbb{P}^n \), \(\mathcal{O}_{\mathbb{P}^n} := \bigwedge^m \mathcal{O}_{\mathbb{P}^n} \).
(3) In particular, apply (2) to $X = \mathbb{P}^n$:

$$\omega_{\mathbb{P}^n} = \text{Ext}^0_{\mathbb{P}^n}(\mathcal{O}_{\mathbb{P}^n}, \mathcal{O}_{\mathbb{P}^n}^*)$$

$$= \text{Hom}_{\mathbb{P}^n}(\mathcal{O}_{\mathbb{P}^n}, \mathcal{O}_{\mathbb{P}^n}^*) = \mathcal{O}_{\mathbb{P}^n}^*$$

Recall the Euler sequence:

$$0 \to \Omega^1_{\mathbb{P}^n}(1) \to H^0(\mathcal{O}_{\mathbb{P}^n}(1)) \otimes \mathcal{O}_{\mathbb{P}^n} \to \mathcal{O}_{\mathbb{P}^n}(1) \to 0$$

Twist back by -1:

$$0 \to \Omega^1_{\mathbb{P}^n}(-1) \to H^0(\mathcal{O}_{\mathbb{P}^n}(-1)) \otimes \mathcal{O}_{\mathbb{P}^n}(-1) \to \mathcal{O}_{\mathbb{P}^n}(-1) \to 0$$

Take top exterior power (past homework):
\[\Lambda^{m+1}(H^0(\mathcal{O}_P^{\mu+1}(-1)) \otimes \mathcal{O}_P^{\mu+1}) \cong \Lambda^{m+1} \mathcal{O}_P^{\mu+1} \otimes \mathcal{O}_P^{\mu+1} \]

\[\Lambda^{m+1}(\mathcal{O}_P^{\mu+1}(-1) \oplus (\mu+1)) \cong \mathcal{O}_P^{\mu+1} \]

\[\mathcal{O}_P^{\mu+1} \cong \mathcal{O}_P^{\mu+1} \otimes (\mu+1) \]

\[\mathcal{O}_P^{\mu+1}(-1) \cong \mathcal{O}_P^{\mu+1} \]

\[\mathcal{O}_P^{\mu+1}(-\mu-1) \cong \mathcal{O}_P^{\mu+1} = \mathcal{O}_P^{\mu+1} \]

(4) More generally, if X is a nonsingular projective (mod.) variety over a field, then the dualizing sheaf of X is its canonical sheaf, i.e., the top exterior power of its sheaf of differentials Ω^1_X.
(5) Local Duality:

Theorem: If X is a Cohen-Macaulay and projective
of pure dimension n (i.e., all irreducible components
have dimension n), then, for all coherent sheaves \mathcal{F}
and all i, there are functional isomorphisms:

$$\text{Ext}^i(\mathcal{F}, \mathcal{O}_X) \cong H^{n-i}(X, \mathcal{F}^*)^*.$$

For all locally free sheaves of finite rank:

$$H^i(X, \mathcal{F}) \cong H^{n-i}(X, \mathcal{O}_X \otimes \mathcal{F}^*)^*.$$

(recall $\mathcal{F}^* := \hom_{\mathcal{O}_X}(\mathcal{F}, \mathcal{O}_X)$)
(6) If X is projective and a local complete intersection of codimension n in \mathbb{P}^m, then

$$\mathcal{O}_X = \mathcal{O}_{\mathbb{P}^m} \otimes \mathcal{N}(\mathcal{I}_X/\mathcal{I}_X^2)$$.

Def: $(\mathcal{I}_X/\mathcal{I}_X^2)^*$ is the normal sheaf of X in \mathbb{P}^n.

$\mathcal{I}_X/\mathcal{I}_X^2$ is the conormal sheaf.

Regular sequence and the Cohen-Macaulay condition:

Def: given a ring A and an A-module M, a sequence a_1, \ldots, a_n of elements of A is called regular for M if

1. a_1 is not a zero divisor in M ($a_1: M \rightarrow M$)
2. $\forall i \geq 2$, a_i is not a zero divisor in $M/(a_1, \ldots, a_{i-1})M$.
Def: If A is a local ring with maximal ideal m, the depth of M is the maximum length of a regular sequence $\{a_1, \ldots, a_n\} \subseteq m$.

A noetherian local ring A is called Cohen–Macaulay if its depth as a module over itself is equal to its dimension.

Facts: Regular local rings are Cohen–Macaulay and quotients of Cohen–Macaulay rings by ideals generated by regular sequences are Cohen–Macaulay.

Def: (1) A scheme is Cohen–Macaulay if all its local rings are Cohen–Macaulay.
(2) A scheme is a local complete intersection if \(\forall x \in X \exists \) affine neighborhood \(U = \text{Spec} A \ni x \)

s.t. \(A = B/\mathcal{I} \) where \(\mathcal{I} \) can be generated by a sequence \(a_1, \ldots, a_n \in \mathcal{I} \) s.t.

\(\forall y \in \text{Spec} B \quad (a_1)_y, \ldots, (a_n)_y \in (\mathcal{I})_y \) is a regular sequence.

and \(\text{Spec} B \) is a regular scheme.

Intuitively, Cohen–Macaulay means that the closed points of \(X \) can be cut out by regular sequences.
Fact: If a_1, \ldots, a_n is a regular sequence and $I := (a_1, \ldots, a_n) \subset A$, then $I/\mathfrak{m} = A/\mathfrak{m}$ is a free A-module of rank n and, for all d, the natural map

$$\text{Sym}^d(I/\mathfrak{m}) \to I^d/\mathfrak{m}^{d+1}$$

is an isomorphism.

To say that a noetherian local ring of dimension n is Cohen-Macaulay means that there exists a regular sequence a_1, \ldots, a_n such that the quotient $A/(a_1, \ldots, a_n)$ has dimension zero. (When the ring is regular, a sequence a_1, \ldots, a_n is a field.)