Sure vanishing:

Theorem: \(X \) a projective scheme over a noetherian ring \(A \), \(\mathcal{O}_X(1) \) a very ample invertible sheaf on \(X \).

Then for any coherent sheaf on \(X \):

1. \(H^i(X, \mathcal{F}) \), is a finitely generated \(A \)-module \(\forall \ i \).
2. \(\exists \ n_0 \in \mathbb{Z} \) (depending on \(\mathcal{F} \)) s.t. \(\forall \ n \geq n_0, \forall \ i > 0, \)
 \[H^i(X, \mathcal{F}(n)) = 0 \quad \text{where} \quad \mathcal{F}(n) := \mathcal{F} \otimes \mathcal{O}_X(n) \]

Proof: Let \(i : X \hookrightarrow \mathbb{P}^n_A \) be an embedding such that \(\mathcal{O}_X(1) \cong i^* \mathcal{O}_{\mathbb{P}^n}(1) \). Since \(X \) is projective over \(A \), it is proper over \(A \). \(\Rightarrow \) \(i \) is proper \(\Rightarrow \) image of \(i \) is closed

\(\Rightarrow \) \(i \) is a closed embedding.
\[\Rightarrow i^* F \text{ and } F \text{ have the same cohomology.} \]

we also know \(i^* F \) is coherent.

So we can assume \(X = \mathbb{P}^n \).

If \(F = O_X (n) \) for some \(n \), then the theorem follows from the previous theorem.

\(O_X (1) \) is very ample \(\Rightarrow \) ample \(\Rightarrow \exists m \in \mathbb{Z} \text{ s.t. } \)

\(F (m) \) is generated by global sections.

this means \(H^0 (X, F (m)) \otimes \mathbb{C} X \rightarrow \mathbb{F} (m) \)

twist by \(\mathbb{C} (-m) \) to obtain

\[H^0 (X, F (m)) \otimes \mathbb{C} (-m) \rightarrow F \]

take \(E := A^d \otimes \mathbb{C} (-m) \) where \(A^d \rightarrow H^0 (X, F (m)) \)
We have the exact sequence

\[0 \to R \to \mathcal{E} \to \mathcal{F} \to 0 \]

where \(R \) is, by def, the kernel of \(\mathcal{E} \to \mathcal{F} \).

We have the long exact sequence:

\[\ldots \to H^i(X, \mathcal{E}) \to H^i(X, \mathcal{F}) \to H^{i+1}(X, R) \to \ldots \]

\[\cong \]

\[H^i(X, \mathcal{O}_X(-n)) \]

Now we use descending induction on \(i \).

\[H^i(X, \mathcal{F}) = H^i(X, \mathcal{O}) = 0 \quad \forall \ i \geq n \]

\[(\dim X = n \text{ or } X \text{ has a covering by } n+1 \text{ aff. open sets and } X \text{ is separated}) \]

\[\Rightarrow (1) \]
For (2) twist by \(n \):
\[
0 \rightarrow \mathcal{R}(n) \rightarrow \mathcal{E}(n) \rightarrow \mathcal{F}(n) \rightarrow 0
\]

The long exact sequence:
\[
\ldots \rightarrow H^i(\mathcal{E}(n)) \rightarrow H^i(\mathcal{F}(n)) \rightarrow H^{i+1}(\mathcal{R}(n)) \rightarrow \ldots \]
again use descending induction on \(i \).

cohomological criterion for ampleness:

Theorem: \(X \) a proper scheme over \(A \) noetherian, \(\mathcal{L} \)

an invertible sheaf on \(X \). The following are equivalent:

1. \(\mathcal{L} \) is ample.
2. \(\forall \mathcal{F} \) coherent on \(X \), \(\exists n_0 \in \mathbb{Z}, n \) s.t. \(\forall i > 0 \) and \(\forall n \geq n_0 \), \(H^i(X, \mathcal{F} \otimes \mathcal{L}^n) = 0 \)
Proof: (1) ⇒ (2) X is ample.

⇒ \exists m > 0 \text{ s.t. } L^m \text{ is very ample} (A)

Then, by base vanishing, \exists b_0 \text{ s.t. } \forall n \geq b_0, \forall i > 0

H^i(F_0 \otimes (L^m)^n) = 0.

\therefore 0 \leq i \leq m - 1 \text{ put } F_i := F_0 \otimes L^i.

\forall n \geq b_0, \exists b_i \text{ s.t. } \forall n \geq b_i, \forall i > 0

H^i(X, F_i \otimes (L^m)^n) = 0

Put \beta = \max \{ b_i : 0 \leq i \leq m - 1 \}, n_0 := \beta \cdot m

\forall n \geq n_0, \text{ write } n = q \cdot m + r \quad 0 \leq r \leq m - 1, q \geq \beta

⇒ H^i(X, F_0 \otimes L^n) = H^i(X, F_{q \cdot m} \otimes L^r) = 0 \quad \forall i > 0
We will prove that for all coherent F, $\exists n_0 \in \mathbb{Z}$, s.t. $\forall n \geq n_0$, $F \otimes \mathbb{L}^n$ is generated by global sections.

Let $p \in X$ be a closed point. We have the exact reduced sequence:

$$0 \rightarrow J_p \rightarrow \mathcal{O}_X \rightarrow \mathcal{O}_p \rightarrow 0$$

form with F

$$F \otimes \mathcal{O}_p \rightarrow F \rightarrow F \otimes \mathcal{O}_p \rightarrow 0$$

such that $J_p F = \text{image of } F \otimes \mathcal{O}_p \text{ in } F$ to obtain the exact sequence

$$0 \rightarrow J_p F \rightarrow F \rightarrow F \otimes \mathcal{O}_p \rightarrow 0.$$
twist with L^μ:

\[0 \to T_p \mathcal{F} \otimes L^\mu \to \mathcal{F} \otimes L^\mu \to \mathcal{F} \otimes L^\mu \otimes \mathcal{O}_p \to 0 \]

\[\exists m_0 \in \mathbb{Z} \text{ s.t. } \forall n \geq m_0, \quad H^1(T_p \mathcal{F} \otimes L^\mu) = 0 \]

(If \mathcal{F} is coherent \Rightarrow $T_p \mathcal{F}$ is coherent \Rightarrow $T_p \mathcal{F}$ is coherent)

\Rightarrow the long exact sequence of cohomology gives a

morphism

\[H^0(X, T_p \mathcal{F} \otimes L^\mu) \to H^0(\mathcal{F} \otimes L^\mu \otimes \mathcal{O}_p) \]

for $n \geq m_0, \mu$

$\mathcal{F} \otimes L^\mu \otimes \mathcal{O}_p$ is a skyscraper sheaf supported at p.

\Rightarrow we can identify $H^0(\mathcal{F} \otimes L^\mu \otimes \mathcal{O}_p)$ with the stalk at p.
We have \((F_0 \otimes \mathcal{L}_m)^\dagger = \frac{((F_0 \otimes \mathcal{L}_m)^\dagger)}{M_p (F_0 \otimes \mathcal{L}_m)^\dagger}\).

So we can write the injection from the previous page as:

\[
H^0 (X, F_0 \otimes \mathcal{L}_m) \rightarrow \frac{((F_0 \otimes \mathcal{L}_m)^\dagger)}{M_p (F_0 \otimes \mathcal{L}_m)^\dagger}
\]

Nakayama's lemma \Rightarrow

\[
H^0 (X, F_0 \otimes \mathcal{L}_m) \rightarrow (F_0 \otimes \mathcal{L}_m)^\dagger
\]

Since \(F_0\) is coherent, \(\exists\) open neighborhood \(U_{p,n}\) of \(\phi\) s.t. \((F_0 \otimes \mathcal{L}_m)^\dagger\) is generated by global sections. We need to find a neighborhood which does not depend on \(n\).
Take $\mathcal{F}_p = \mathcal{O}_X$, then \(\exists \ m_{n, p} \) and a neighborhood \(U_p \) of \(p \) s.t. \(L^{m_{n, p}} \) is generated by its global sections on \(U_p \).

Also, \(\forall \ n = 0, 1, \ldots, m_{n, p} - 1 \), \(\exists \) neighborhood \(U_{n, p} \) of \(p \) s.t. \(\mathcal{F}_p \otimes L^{m_{n, p} + n} \) is generated by global sections on \(U_{n, p} \).

Put \(U_p := U_{n, p} \cap U_{0, p} \cap \cdots \cap U_{n_{1}, p} \).

Then on \(U_p \), all the sheaves \(L^{m_{n, p}}, \mathcal{F}_p \otimes L^{m_{n, p} + n} \)

\(n = 0, \ldots, m_{n, p} - 1 \) are globally generated. Tensor products of globally generated sheaves are also globally generated. \(\forall \ m \geq m_{0, p}, \exists \ m > 0 \) and \(n \in \{0, \ldots, m_{n, p} - 1\} \)

s.t. \(m = m_{0, p} + n + m_{n, p} \).
Then $F \otimes \mathbb{L}^m = F \otimes \mathbb{L}^{m,1} \otimes (\mathbb{L}^{m,1})^m$ is globally generated on U_x.

Now cover X by a finite number of open neighborhoods U_{x_1}, \ldots, U_{x_k} and put $m_0 = \max \{m_{0,x_i}\}$.

Exterior groups and sheaves:

(X, \mathcal{O}_X) a ringed space. F an \mathcal{O}_X-module.

The functors $\text{Hom}_{\mathcal{O}_X}(F, \cdot)$ and $\text{Hom}_{\mathcal{O}_X}(F, \cdot)$ are left exact covariant functors from the category $\text{Mod}(\mathcal{O}_X)$ to the categories Ab and $\text{Mod}(\mathcal{O}_X)$.